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1. INTRODUCTION

The counting function N(A) = N (), Q) of the Dirichlet Laplacian on a bounded open
set QO C R? is a defined as the number of eigenvalues less than a given A. The problem
of the asymptotic behaviour of the counting function as A — +o0o has been extensively
studied by mathematicians and physicists almost 100 years. The first mathematical
results in this direction belong to H.-Weyl who showed in 1911 that for domains with
smooth boundaries

N Q) ~ (21) " %wq|Q|Y? as X — +oo, (1)

where wy is the volume of the unit ball in R?. Formula (1) was then extended to
arbitrary open sets in R? with finite volume and generalized to higher-order elliptic
operators with constant coeficients, see [1], [2].

Our aim is the corresponding spectral asymptotics for the Kohn-Laplacian A g asso-
ciated to the Heisenberg group. This operator Ay is of Hormander type, not strongly
elliptic, and invariant with respect to translations on the Heisenberg group. More ex-
actly, we consider the eigenvalue problem

—Apgu = Au, uloq =0, (2)

where ) is a bounded domain in the odd-dimensional space R?"*!, and get the asymp-
totic formula

N\ Q) ~ C,|QA%/2, dy =2(n+1). (3)

The exponent ds (> d = 2n+1) depends on n and we say d; is the spectral dimension
relative to our problem.

2. PRELIMINARIES

Let us recall the definition of the operator Ay in dimension d = 3. The definitions
and statements in any odd dimension d = 2n + 1 will be given later.
Consider the two linear operators X' and Y'!:
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and introduce the gradient Vg by
V= (XYY" =0V,

where V is the standard gradient: V = (%, %7 Z%)’ and o is the following matrix

Then the operator Ay is given by
AH — (X1)2 4 (Y1)2 —

o? H? H? ? ?
=+ (AP + 42— + 4 —4 = div(cT
R + 0 + (4y” + 4o )822 Yo 520 (o oV),
where
1 0 2y
olo = 0 1 —2x

2y —2x 4y 4+ 42

The operator Ay is elliptic (i.e. o7c¢ - & > 0 for any & € R?) but clearly not strongly
elliptic, because the first eigenvalue of o7 ¢ is zero and the rank of o7 is two in every
point. However we have the following condition on commutator

XLyy=XxYW!'-vix! = —4%. (4)

As a consequence of (4), Ay is an Hérmander type operator, and enjoys nice properties
like hipoellipticity, subelliptic estimates, the maximum principle, Poincaré’s inequality.
The space R? becomes a group if the group law + define as following:

for vectors &€ = (v,y,2), & = (2',y,2") we set

+eé=@+ay+y,2+72 2"y —zy)).

Notice that & + & # & + £ and the Lebesgue measure is invariant with respect to
these right or left translations. The operator Ay is invariant with respect to the left
translations, i.e. for fixed &',

Ap(u(E +-) = (Au(u)(E + ).

The similar definitions can be given for any odd-dimensional space R?"*!. Let & =

(xl, 2%, a2yl y? oy, 2) = (x,v, 2), where 2,y € R™. Consider the operators
. o) -0 , 0 -0
xi= %yl yio 9 0w 12 0
Ox’ Vo2 oy’ 92 7
and set

Vg =X X% ... X" YLy? .vm),
Ay = Z(Xj)Z + (Y92,

j=1

Then all properties of Ay remain the same.



3. COUNTING FUNCTION OF THE DIRICHLET KOHN-LAPLACIAN

Let © be a bounded domain in R?"*1,
We denote by D% () the closure of C§°(€) with respect to the norm

1/2

Q/|VHU|2d§+/v2d§

Q

The Poincaré inequality

/v2d§ < 0(Q) / IVv|?de  for any v e CJ°(Q),
Q Q

and Lax-Milgram lemma give the unique solvability of the problem:

{ —Agu=fin Q,
ulan = 0,

()

where f € L?(), i.e. the existence and the uniqueness of a function u € D% () such
that

/VHU'VHSDdf:/fSOdf for any ¢ € C5° ().
QO 0

Consider the collection of all the solutions of problem (5) for f varying in L?(Q).

This set is a domain of —Ap as a positive self-adjoint operator in L?(Q2). By definition
we have

/(—AH)wpdé = /VHU - Vgpde for any ¢ € D%(Q).
Q Q

Remark that the inverse operator (—Ag) ™! is compact. It is clearly from the following
subelliptic estimate:

1/2

el < C / Vol + / 2de | for any ¢ € C5(9),
Q Q

where || - || g1/2(q) is the classical H'/? norm.

So for any bounded open set, the spectrum of —A g consists of a countable sequence
of positive eigenvalues \;(Q)(j =1,2,...):

0<A(Q) < X)) <...<N@) <., Aj(2) = 00 as j— oo.

Definition. Let A\ be a given positive number. We denote by L(\) = N(A, ) the
number of eigenvalues less than .

The function N (A, Q) is called the counting function of the Dirichlet Kohn-Laplacian
on ().



Let us formulate the main result.
Theorem. Assume € is measurable in the sense of Jordan. Then asymptotic

relation (3) holds with

= 1>r<ni D) (dm) / (%> 1.

where I'(a) is the Euler gamma-function.
Clearly that it is sufficient to proof formula (3) for smooth domains € only.
4. SKETCH OF THE PROOF

We apply Carleman’s analytic aproach or ”parabolic equation method”.
Let K(&,£',t) be a fundamental solution associated to the parabolic operator

0
Eri Ag.
One can prove the following properties:
1 7/ e\ A
K(t = K(t,0,0) = o + —*- 6
( 7575) (7 9 ) (47Tt)n+1 / <Sh@) tn—|—1 ( )
0
c c
0< K(16€) < g exp(= P2 (6:€), (7)
where ¢1,co > 0 and
p(§,€) =

— [(w =2+ () + (-2 =2 -y —az-y)* """

By G(&,&,t) (£,¢ € Q) denote a Green function of the parabolic problem

ot

{ Ou — Agu=0in Q x (0,00),
u‘aQZO.

Then G is continuous on 2 x Q X (0, 00); moreover, from estimate (7) and the maxi-
mum principle we have

G(§&:1) <T(E & t) for any § € Q,t >0,

T(6,6) < G(E,6) +c(8)t  if €€ Qand p(€,09) > § > 0.
It follows that

A, |9
tn—||—1| :/F(§7§at)d§N/G(§,§,t)d§ as t — +0.
Q

Q



Let goj (€) be a eigenfunction corresponding to the eigenvalue \; and normalized by
f @3d¢ = 1. Then we have

p; € CP(Q), Y P3¢ < CAmtl
)\j<>\

oo

G, ¢ t) = Zeﬂ (©)p;(&).

As a result, we obtain the important relation

oo oo

)
/e—*th /G £,6,t)d t”—+|1| as t — +0. (8)

0 0

Now it is sufficient to apply the classical Tauberian theorem of Hardy-Littelwood.
Tauberian Theorem (see [3]). Assume that N()) is a nondecreasing function on
[0,00) and

oo

/6_’\th()\) < oo for any t > 0.

Then the relations

/ “AMAN(N) ozF(a ) as t — +0
0

are equivalent.
Now from (6), (8) we get asymptotic formula (3).
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