BOUNDARY VALUE PROBLEM FOR CERTAIN
CLASSES OF NON-LINEAR ORDINARY
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In the interval (0,¢y) the following problem will be considered

m(t) o = kil (t) = f1(v), (1)
dm

_kZE = F(t)a (2)

f2(v) + KsF(t) = m(t)Kn, (3)

m(0) = My, V(0) = Vq, (4)

m(to) = my, (5)

where f1(V) and fo(V') are given continuous on V functions at V' > 0, ky, ko, k3, kg,
My, mg and V are given positive constants, m(t), F'(t) and V (¢) unknown functions to
be found in the interval (0, tp), satisfying the conditions

0 <mo < Mo, f1(0) =0, f2(Vo) < kaMo, (6)

f1(V)>0, f5(V)>0 at V>0, (7)

f1(V) = 400, f5(V) = 400 at V — +oo.

In this section we prove the following theorems.

Theorem 1. The problem (1) - (5) is uniquely solvable. To prove theorems 1 and 2
we need the following lemma.

Lemma 1. Let F(t), V(t) and m(t) be the solution of the problem (1) - (4) in the

interval 0 < t < to and m(t) satisfy the condition

then V() > 0,F(t) >0at 0 <t <t,ty < 0.
Proof of lemma 1. Let V() be equal to zero at some point 7,0 < 7 < ¢ty and 7 be

the smallest number such that V(7) =0. As V(0) =Vp > 0then V(¢) >0at 0 <t <7,
S0



V(1) <0. (9)

Substituting into (3) ¢ = 7 and recalling the equality f1(0) = 0 and inequality (8),
we get
moka

Fir) > (10)
Putting into (1) t = 7, we get
m(T)V' (1) = F(7)k;. (11)
From (9), (10) and (11) we have
V'(r) > 0. (12)

The condition (12) is a contradiction with (9). This means that the supposition
V(7) = 0 at some point 7 € (0,ty) is not true. Hence

V(r)>0 at 0<t<t.

We prove now that F(t) > 0 at 0 < t < to. From the condition f2(Vh) < Moyks and
equality (3) at t = 0 it follows that F'(0) > 0. Let F'(¢) be equal to zero at some point
of the interval (0,%p). Then, as for (9), we can show that there exists a point 7 € (0, o)

where F(r)=0, F'(r)<0. (13)

Putting in (2) t = 7, we get
m/(1) = 0. (14)

Differentating the both sides of (3) with respect to t and substituting ¢t = 7, we get
V(1) fo(V(7)) + F'(7)ks = 0. (15)
As V(1) > 0, the condition (7) implies f5(V (7)) > 0. So from (13) and (15) we have
V'(t) > 0. (16)
Putting into (1) ¢ = 7 and recalling the condition F'(7) = 0 we obtain

m(T)V'(1) = =f(V(7)). (17)

As f1(0) =0and f/(V) >0at V >0, then f1(V) >0at V > 0. So from (17) it follows
that
V'(r) < 0. (18)

The condition (18) is a contradiction with (16). This means that F(¢) is not equal to
zero in the interval (0,tp). As F'(0) > 0 we get F'(t) > 0 at 0 <t < tg.

We prove now that ty < co. Integrating the inequality (2) from zero to t, ¢t € (0, %)
and using the inequality (8) we have

to

/F(t)dt S k‘g(M() — mo). (19)
0



As F(t) > 0 the inequality (19) implies that the left - hand side has a limit at ¢ — .

Passing in (19) to the limit at ¢ — to, we get

to

/F(t)dt S kQ(MO — m()).
0

Let w and €2 be two subsets of the interval (0, ) satisfying the conditions

moky

F(t) < t ¢
m0k4
F(t) < t te)

respectively. Denote by wy and €2y the Lebesgue measure of the sets w and (2,

0 <wp < tg, o = to — wo-

It is clear that \
0

/F(t)dt > /F(t)dt > g TR
2ks

0
From (20) and (23) follows the inequality

< 2]{72]{33(M0 — mo)

wo
kamg

From the inequalities (10), (22) and the equality (3) we have

mo k4

f2(V (1)) > 5

Dividing the both sides of (1) by m(t) we obtain

[V(E) _ kFQR)
my — omy O

Integrating (26) from zero to ¢, (t € (0,tg)) we get

t t

F(
/fl(Vt dt =k idt '(t) + V.

m(t) Om

0
AsV(t) >0and F(t) >0 at t € (0,ty) and mg < m(t) < My, (29) implies

(1) mo

/—fl(Z(T))dT < ﬁ/F(T)dT +Vo.
0 0

(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)



The last inequality and (20) yield

/fl(;((:)))dT < k;,;? (Mo —mo) + Vo, t € (0,t0). (29)
0

As V(1) > 0, f1(V(7)) > 0 and m(7) > 0, from the inequality (29) we deduce that
the left - hand side has a limit at ¢ — ¢y and this limit satisfies the inequality

JEUE < vt B 0ty — ), (30)
m(T mo
0

Let cg be a positive solution of the equation

mo k4
2

fa(co) =

As f1(V) and f2(V) are increasing functions, from (25) and (31) it follows that

V(t)>co at te, (32)
[i(V(#) = fi(co) at teQ. (33)
From (10) and (33) we have
THVE)dr _ [AVE)dr _ fileo)
/ m(T) = / m(T) = My lo- (34)
0 Q
From the inequalities (30) and (34) we obtain
My k1ko
Qo < ilco) {Vo + m—O(Mo —my)| - (35)

From the relations (4) and (35) we get top < co. Lemma 1 is proved.

Proof of theorem 1. It is known that the problem (1) - (4) possesses a solution in
a sufficiently small neighbourhood (0,¢) (. [1], [2]).

As F(0) > 0, from (2) deduce that m(t) is a monotone decreasing in this neighbour-

hood function an
mo < m(t) < My at te(0,¢). (36)

Let (0,tp) be the maximal neighbourhood where the solution of the problem (1) -
(4), satisfying the inequality

mo < m(t) <My at te (0,t0) (37)

exists.
According to lemma 1, the interval (0, %) is bounded.



As m(t) is decreasing in interval (0,%p) and satisfies the inequality (37) the limit of
m(t) at t — to exists. Denote this limit by m(tp). It is clear that mg < m(t) < My. We
show that m(ty) = mo.

According to lemma 1 V(¢) > 0 and F(t) > 0 at t € (0,fy). Hence f2(V) is also
positive. Thus from (3) and (37) we get

Jo(V) < Moky, k3F(t) < Moks. (38)

So
Mok,

k3

where ¢; is a positive solution of the equation fa(c1) = Myks. The inequalities (37)
and (39) imply that the right - hand side of (1) is bounded in the interval (0,ty). This
means that is also bounded in this interval. Hence there exists the limit of V(¢) at
t — to. Denote this limit by V(ty). Therefore, from (1) - (3) we may conclude that
F(t),m(t) and V (t) are continously derivable on the segment [0, o] functions. As in the
case of lemma 1, we can show that

0<V<c, F@)< at 0 <t <t, (39)

F(to) > 0, V(to) > 0. (40)

Let m(tp) # mo. Then
mo < m(to) < M. (41)

Denote V(ty) = V1, m(to) = my. Consider Cauchy problem for the system of equa-
tions (1) - (3) in the interval (¢, to 4+ €) with boundary conditions

V(to) = m,m(to) = 1mi. (42)

As it is know this problem admits a solution for sufficiently small €. The double
inequality mo < m(ty) < My shows that letting € to be small one might ensure the
inequality mo < m(tp) < My at tog <t < tg+e. So the solution of the problem (1)-(4),
satisfying the inequality (37) in the interval (0,%y + ¢) exists. But this is not possible
as (0,1p) is the maximal neighbourhood, where such a solution exists. This means that
our supposition, namely m(tg) # mg, is not true, hence m(ty) = mg . Theorem 1 is

roved.
P The above results are used in mathematical modelling of the flight of winged aircraft
along a given trajectory.
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