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In the interval (0, t0) the following problem will be considered

m(t)
dν

dt
= k1F (t)− f1(ν), (1)

−k2
dm

dt
= F (t), (2)

f2(ν) + K3F (t) = m(t)Kn, (3)

m(0) = M0, V (0) = V0, (4)

m(t0) = m0, (5)

where f1(V ) and f2(V ) are given continuous on V functions at V ≥ 0, k1, k2, k3, k4,
M0, m0 and V are given positive constants, m(t), F (t) and V (t) unknown functions to
be found in the interval (0, t0), satisfying the conditions

0 < m0 < M0, f1(0) = 0, f2(V0) < k4M0, (6)

f ′1(V ) > 0, f ′2(V ) > 0 at V > 0, (7)

f ′1(V ) → +∞, f ′2(V ) → +∞ at V → +∞.

In this section we prove the following theorems.
Theorem 1. The problem (1) - (5) is uniquely solvable. To prove theorems 1 and 2

we need the following lemma.
Lemma 1. Let F (t), V (t) and m(t) be the solution of the problem (1) - (4) in the

interval 0 < t < t0 and m(t) satisfy the condition

m0 ≤ m(t) ≤ M0 (8)

then V (t) > 0, F (t) > 0 at 0 ≤ t < t, t0 < ∞.
Proof of lemma 1. Let V (t) be equal to zero at some point τ, 0 < τ < t0 and τ be

the smallest number such that V (τ) = 0. As V (0) = V0 > 0 then V (t) > 0 at 0 ≤ t < τ ,
so



V ′(τ) ≤ 0. (9)

Substituting into (3) t = τ and recalling the equality f1(0) = 0 and inequality (8),
we get

F (τ) ≥ m0k4

k3
. (10)

Putting into (1) t = τ , we get

m(τ)V ′(τ) = F (τ)k1. (11)

From (9), (10) and (11) we have
V ′(τ) > 0. (12)

The condition (12) is a contradiction with (9). This means that the supposition
V (τ) = 0 at some point τ ∈ (0, t0) is not true. Hence

V (τ) > 0 at 0 ≤ t < t0.

We prove now that F (t) > 0 at 0 ≤ t < t0. From the condition f2(V0) < M0k4 and
equality (3) at t = 0 it follows that F (0) > 0. Let F (t) be equal to zero at some point
of the interval (0, t0). Then, as for (9), we can show that there exists a point τ ∈ (0, t0)
where

F (τ) = 0, F ′(τ) ≤ 0. (13)

Putting in (2) t = τ , we get
m′(τ) = 0. (14)

Differentating the both sides of (3) with respect to t and substituting t = τ , we get

V ′(τ)f ′2(V (τ)) + F ′(τ)k3 = 0. (15)

As V (τ) > 0, the condition (7) implies f ′2(V (τ)) > 0. So from (13) and (15) we have

V ′(τ) ≥ 0. (16)

Putting into (1) t = τ and recalling the condition F (τ) = 0 we obtain

m(τ)V ′(τ) = −f1(V (τ)). (17)

As f1(0) = 0 and f ′(V ) > 0 at V > 0, then f1(V ) > 0 at V > 0. So from (17) it follows
that

V ′(τ) < 0. (18)

The condition (18) is a contradiction with (16). This means that F (t) is not equal to
zero in the interval (0, t0). As F (0) > 0 we get F (t) > 0 at 0 ≤ t < t0.

We prove now that t0 < ∞. Integrating the inequality (2) from zero to t, t ∈ (0, t0)
and using the inequality (8) we have

t0∫

0

F (t)dt ≤ k2(M0 −m0). (19)



As F (t) > 0 the inequality (19) implies that the left - hand side has a limit at t → t0.
Passing in (19) to the limit at t → t0, we get

t0∫

0

F (t)dt ≤ k2(M0 −m0). (20)

Let ω and Ω be two subsets of the interval (0, t0) satisfying the conditions

F (t) ≤ m0k4

2k3
at t ∈ ω, (21)

F (t) ≤ m0k4

2k3
at t ∈ Ω, (22)

respectively. Denote by ω0 and Ω0 the Lebesgue measure of the sets ω and Ω,

0 ≤ ω0 ≤ t0, Ω0 = t0 − ω0.

It is clear that
t0∫

0

F (t)dt ≥
∫

F (t)dt ≥ ω0
m0k4

2k3
. (23)

From (20) and (23) follows the inequality

ω0 ≤ 2k2k3(M0 −m0)
k4m0

. (24)

From the inequalities (10), (22) and the equality (3) we have

f2(V (t)) ≥ m0k4

2
(25)

Dividing the both sides of (1) by m(t) we obtain

f1(V (t))
m(t)

=
k1F (t)
m(t)

− V ′(t). (26)

Integrating (26) from zero to t, (t ∈ (0, t0)) we get

t∫

0

f1(V (t))
m(t)

dt = k1

t∫

0

F (t)
m(t)

dt− V ′(t) + V. (27)

As V (t) > 0 and F (t) > 0 at t ∈ (0, t0) and m0 ≤ m(t) ≤ M0, (29) implies

t∫

0

f1(V (τ))dτ

m(τ)
≤ k1

m0

t∫

0

F (τ)dτ + V0. (28)



The last inequality and (20) yield

t∫

0

f1(V (τ))dτ

m(τ)
≤ k1k2

m0
(M0 −m0) + V0, t ∈ (0, t0). (29)

As V (τ) > 0, f1(V (τ)) > 0 and m(τ) > 0, from the inequality (29) we deduce that
the left - hand side has a limit at t → t0 and this limit satisfies the inequality

t∫

0

f1(V (τ))dτ

m(τ)
≤ V0 +

k1k2

m0
(M0 −m0). (30)

Let c0 be a positive solution of the equation

f2(c0) =
m0k4

2
. (31)

As f1(V ) and f2(V ) are increasing functions, from (25) and (31) it follows that

V (t) ≥ c0 at t ∈ Ω, (32)

f1(V (t)) ≥ f1(c0) at t ∈ Ω. (33)

From (10) and (33) we have

t0∫

0

f1(V (τ))dτ

m(τ)
≤

∫

Ω

f1(V (τ))dτ

m(τ)
≥ f1(c0)

M0
Ω0. (34)

From the inequalities (30) and (34) we obtain

Ω0 ≤ M0

f1(c0)

[
V0 +

k1k2

m0
(M0 −m0)

]
. (35)

From the relations (4) and (35) we get t0 < ∞. Lemma 1 is proved.
Proof of theorem 1. It is known that the problem (1) - (4) possesses a solution in

a sufficiently small neighbourhood (0, ε) (. [1], [2]).
As F (0) > 0, from (2) deduce that m(t) is a monotone decreasing in this neighbour-

hood function an
m0 < m(t) < M0 at t ∈ (0, ε). (36)

Let (0, t0) be the maximal neighbourhood where the solution of the problem (1) -
(4), satisfying the inequality

m0 < m(t) < M0 at t ∈ (0, t0) (37)

exists.
According to lemma 1, the interval (0, t0) is bounded.



As m(t) is decreasing in interval (0, t0) and satisfies the inequality (37) the limit of
m(t) at t → t0 exists. Denote this limit by m(t0). It is clear that m0 < m(t) < M0. We
show that m(t0) = m0.

According to lemma 1 V (t) > 0 and F (t) > 0 at t ∈ (0, t0). Hence f2(V ) is also
positive. Thus from (3) and (37) we get

f2(V ) ≤ M0k4, k3F (t) ≤ M0k4. (38)

So
0 ≤ V ≤ c1, F (t) ≤ M0k4

k3
at 0 ≤ t < t0, (39)

where c1 is a positive solution of the equation f2(c1) = M0k4. The inequalities (37)
and (39) imply that the right - hand side of (1) is bounded in the interval (0, t0). This
means that is also bounded in this interval. Hence there exists the limit of V (t) at
t → t0. Denote this limit by V (t0). Therefore, from (1) - (3) we may conclude that
F (t),m(t) and V (t) are continously derivable on the segment [0, t0] functions. As in the
case of lemma 1, we can show that

F (t0) > 0, V (t0) > 0. (40)

Let m(t0) 6= m0. Then
m0 < m(t0) < M0. (41)

Denote V (t0) = V1, m(t0) = m1. Consider Cauchy problem for the system of equa-
tions (1) - (3) in the interval (t0, t0 + ε) with boundary conditions

V (t0) = V1,m(t0) = m1. (42)

As it is know this problem admits a solution for sufficiently small ε. The double
inequality m0 < m(t0) < M0 shows that letting ε to be small one might ensure the
inequality m0 < m(t0) < M0 at t0 ≤ t ≤ t0 + ε. So the solution of the problem (1)-(4),
satisfying the inequality (37) in the interval (0, t0 + ε) exists. But this is not possible
as (0, t0) is the maximal neighbourhood, where such a solution exists. This means that
our supposition, namely m(t0) 6= m0, is not true, hence m(t0) = m0 . Theorem 1 is
proved.

The above results are used in mathematical modelling of the flight of winged aircraft
along a given trajectory.

References

1. Petrovsky I.G., Lectures on the theory of ordinar01.y differential equations (Russian), M., Nauka,
1970.

2. Tricomi F., Differential equations (Russian), M., IL, 1962.


