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A NEW CLASS OF NONSTATIONARY MOTIONS
OF A SYSTEM OF HEAVY LAGRANGE TOPS
WITH A NON-PLANAR CONFIGURATION

OF THE SYSTEM’S SKELETON

For a chain consisting of n heavy Lagrange tops coupled by ideal spherical joints, the existence
of a class of nonstationary motions with a non-planar configuration of the chain’s skeleton is
proved. Sufficient conditions for existence of these motions are established, and the equations of
motion of the chain are reduced to quadratures. Under the assumption that the mass distribution
of the bodies forming the chain is given, it is shown how they have to be coupled so that the
motions of interest could be realized. Some properties of the new motions are discussed.

Keywords: analytical multibody dynamics, Lagrange top, nonstationary motion of a system of
coupled rigid bodies

1. Formulation of the problem. We consider a mechanical system S
consisting of heavy Lagrange tops Bi, Ba,...,By,. The bodies B; and By
(i =1,2,...,n — 1) are coupled by an ideal spherical joint at a common point
O;+1 so that the system S constitutes a chain of rigid bodies. One of the chain’s
end links, By, is absolutely fixed at one of its points O;(# O3). It is assumed
that the attachment points of the body B; lie on its axis of symmetry I;, i.e.,
O1€,0; €l;4 ﬁli(i =23,...,n— 1).

Let {O1,ejezes3} be a Cartesian reference frame whose vectors are fixed in

inertial space so that the vector es is vertically directed. Let also {O;, e1 e(2 )eg )}

be a Cartesian frame that is rigidly embedded in the body B; such that e3 H l;. We
determine the position of the body B; with respect to the reference frame by Euler
angles 6;,1;, and ;. The vector equations of motion for a chain of coupled rigid
bodies is given in [1|. Projecting these equations on the axes of the corresponding
body-fixed frames, one can obtain the following scalar equations of motion of the
system S

F(m) + CLZZSJG + s Z ajG(m) 0, (1)
Jj=t+1
QOZ'+¢Z‘COSQZ‘:C]Z‘, 1=1,2,...,n, (2)

where m =1, 2,
E(l) == ‘]z/ (91 - ¢z2 sin 91 COS 91> + stql’l/)l sin (91 — ;g sin (91',
oW — (Gj sin@; + 0]2 coS 0j> sin 6; + (wj sin6; + 2@% coS 0j> cos 0; sin(; — 1)+

ij
+ (63 cos; — (932 + %2) sin 9j> cos 0; cos(¥; — 1),

244



A new class of nonstationary motions of a system of heavy Lagrange tops

Fz‘@) =J! (% sin 0; 4 260;1); cos ‘9i> — Ji'4i0:,
Gl(i) - (% sin 6 + 261 cos 9j> cos(th; — 1) —

— (6?] cos; — (9]2 + lb?) sin 9j) sin(1); — ;)
and the dots denote differentiation with respect to time. In equations (1), (2),

si = |0;0j41/, ¢; is an integration constant, J; and J? are the moments of inertia
(4)

of body B; with respect to O; about the axes egi) (or egi)) and e;’, respectively,
and
Ji/ =J,+ miS?, a; = mic; +m;s;, (3)
n
where ¢; = |0;C;, C; is the center of mass of body B;,m; = ), mj, and m; is

j=i+1
the mass of body B;.

The motion of system S is a superposition of the motion of its skeleton, that
is composed of the segments of axes [; bounded by the corresponding suspension
points, and the pure rotation of each body about its axis of dynamic symmetry.
The former motion is completely determined by all angles 6;, 1;, while the rotation
of B; about [; is described by the angle ;.

When the system S performs P.V. Kharlamov’s motion [2], the skeleton
belongs to a vertical plane II rotating about the vertical in accordance with a
non-stationary law ¢ (t) while its segments change their position with respect to
IT identically in time, i.e., all the bodies move similarly. Therefore, these motions
of the bodies system are called similar motions. For such motions, it is fulfilled
that 6; = 0(t),¢¥; = ¥(t) + d;m, where 6; € {—1,0,1} and ¢ = 1,2,...,n. Some
properties of the system’s motion and its generalizations can be found in the

works [2-4].
Let n, be a fixed integer with 1 < n, < n. This integer partitions the set
I ={1,2,...,n} of indices of all bodies constituting system S into two subsets

L ={1,2,...,n.} and I* = {n, + 1,n. +2,...,n}. In what follows, we consider
two subsystems of S: S, = {Bj|j € I} and S* = {Bylk € I*}. (Clearly, the
subsystems are coupled at the point O,,11.) In this paper, we seek to find a
new class of nonstationary motions of system .S with the following properties: the
bodies forming the subsystem S, (S*) move similar to each other and the planes
II, and IT* containing the skeletons of the subsystems S, and S*, respectively, in
general, do not coincide, i.e.

9] = 917 ¢] = sz)l +6j7’(’, j € I*7 (4)
O = On, e e kel

where 0; € {—1,0,1} and 64, 0,11, and v, are functions of time to be determined.
We also require that
cos 0, = i cos 6, (5)

where u(# 0) is a constant.
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2. Structure of the solution. In this section we establish sufficient condi-
tions for existence of the class of solution to equations (1), (2) with properties
(4), (5). We restrict our study to the case of nonstationary motions of the bodies

system, i.e., 61 # 0,6, # 0,41 # 0, and 1, # 0. In all notations used below, we
assume that 1el,jel,, and k€ I*

Introducing the notation

1, lf5l:5m or 5l:5m:|:2,

1, if 0 =6 £ 1, Lmel, (6)

Eim = €08 [(0; — Opp) 7] = {_
we derive, by virtue of (4), that

cos(tr — ) = Elms if ilmel, or [yme ",
eimcos(1 — ), iflel,mel* orlel* mel,

0, if ,mel, or l,me I* (7)
sin(y; — ¥m) = < emsin(r — y,), if 1€ L,me I*,
Eim sin(tn — 1), if 1€ I*,m € I,.

Substituting (4) into (1) and taking into account formulas (6) and (7), we
obtain

P; (91 —1/)% sin 0 cos «91> + (J]‘-qui/')l —a;9 — Qj(cosby)” —]Sbj (cos 91)”) sin 61+
+ Ty cos 1 (£ cos (vr =) + £ sin (¥ — 6n) ) = 0,
P; <¢1 sin 67 + 2&191 cos 01) — J;qjél—
= 15 (#Dsin (1 = ) — £ cos (11 = 1) ) = 0, ®)
Py (B, =02 sin 0, c03 0, ) + (T authn — arg— Qx (05 1)~ Ry, (cos 0,)") sin 4
+ T cos O (17 cos (1n = 1) + £ sin (6 = 1)) =0,
P, <¢n sin6,, + 2¢n9n cos Hn) — J,ﬁqkén—
= T (A sin (0 — 1) = f{ cos (0 = 1)) =0,

where, for m = 1,n,
fr(r}) =0,, cos O,, — (972;1 + w%) sin 6, fr(,f) = lbm sin6,, + 2¢m6}m coS Oy,
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and
j—1 n. n
!
Pj :Jj+ajzsl5jl+5j Z €, Qj =Sj Z a,
1=1 I=j+1 I=n.+1
k-1 n T
!
Pe=Ji+ar Y sEw+sk Y, wew, Qr=ary_ s, (9)
l=n,+1 I=k+1 =1
j—1 s n
R; :ajZSZ(l—Ejl)-l-Sj Z al(1_5jl)7 T; = s; Z €,
=1 l=j+1 I=n.+1
k—1 n Nk
Ry = ay, si(l—ew)+sk Yy, a(l—cp),  Th=ar)  sicn.
I=n.+1 I=k+1 1=1

Equations (8) form an overdetermined system of 2n second-order differential
equations with respect to four unknowns 61,1, 6, and v¥,,. (Note that 6, and 6,
are not independent due to (5).) In the rest of this section, we shall examine the
compatibility of the system (8) in the case when

T, = 0. (10)

P;

Using (5) and (10), we rewrite the system (8) as follows:
51—¢% sin 64 cos 91) + {J;jS/.)l —a;9—R; (cos 91)"} sinf, =0,
P:

(
dl

b, (Hn—wz sin 6,, cos Hn) + [J,ﬁqk¢n—akg—Rk (cos Hn)] sind,, = 0,
(

4y sin 0y + 2416, cos 01) — J3q;61 =0, (11)

Py, (4, sin 0, + 24),,0,, cos Hn) — J,‘jqkén =0, (12)

where B B
Rj=R;j+puQj, Ry = pRg+ Q. (13)
For each index j € I, the pair of equations (11) has the following first integrals
P; (6?% + 1)? sin® 01) + Rjé% sin® 01 + 2a;gcos 0y = h;,
ij,l}l sin® 6y + J;qj cos 1 = pj,
where h; and p; are constants of integration. Solving the above equations for 9%

and ¢1 yields
0% = ®j(01)7 ¢1 = \Pj(el)v (14)
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2
where O (0;) = [P] sin? 6, (hj —2ajgcosb) — (pj — J3g; cos 01) ] /[P; sin? 6y x

X (]DJ + Rj SiIl2 91)], \I/j (91) = (pj — J;Qj COS (91) / (]DJ sin2 (91) .
Similarly, for each index k € I'*, the pair of equations (12) leads to the equati-
ons
0721 = Gk(en)a % = \I/k(en)a (15)
where O (0,,) = [Pk sin 0, (hy, — 2axg cos 6y,) — (pr. — J3qx cos HH)Q] /[Py sin? 0,, x

X (Pk + Ry, sin® GR)], Ui (0n) = (pr— Jiqrcosby)/ (Pk sin® Hn) ,hi, and pj, are
constants of integration.
One can check that if the conditions

BB e _hi_pio P Be_Jiae ok i _peo g
P R Jqn a1 o opi P, Ry, Jign an hy pp
are fulfilled, then ©1(0;) = ©2(61) = ... = 0,,,(01),V1(01) = VUy(bh) = ... =
= Un(01),On.11(0n) = Ony2(0n) = ... = On(0n), and Uy, 11(0) =
=, 200,) = = U,,(0,). Hence, in this case, the system of equations (11),
(12) reduces to the four equations
02 =0,(601), 02=0,(6,)), (17)
77&1 =" (01) ) % =y, (Hn) = E/n (01)7 (18)

where \Tln (01) = (pn — JSgnpcos 91)/ [ (1 — 2 cos 91)]
It follows from (5) that 62 sin?6, = u26?sin®#,. Therefore, the right-hand
sides of equations (17) are related to each other by the formula

1201 (61)sin? 6, — ©,, (6,)sin*6,, = 0. (19)
Since Oy, (0,,)sin?6,, (m = 1,n) is a polynomial in cos®,,, we can eliminate
cos B, from (19) by means of (5). This results in a polynomial in cos#; which
needs to be satisfied identically in cos #;. Equating the coefficients of all powers
of cos 0 to zero leads to the following conditions:
anél = Haléna
7 =\ 2| 2|7 75\2 2
{hn + (1) qn} By=p [hl + () ql}
128ng — PrdagnRi = (alg WhJia Ry,
- ~\2 - ~ -
2 [hn +(7:) qi} (14 )+ (hn—2) B = (20)

= { [ (7)) (14 Ra) 42 (i - 52) B}

ng — Prddn (1 + E) = u [619 —pJiq (1 + R, ] :

(3

\/mg
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() (1) =1 s 30) (1 7).

where @m = am/Pmhi = b/ P, J5 = J5 /Py Dm = Dm/Pm, and Ry, =
=Ry/Ppn (m=1,N).

We can now state the following:

Proposition 1. If the conditions (10), (16), and (20) are fulfilled, the system
of equations (1), (2) has a class of exact solutions with properties (4), (5).

Proor. Indeed, we infer from the previous discussion that, under the assumpti-
on of the Claim, the system (8) is compatible. To find the dependence of the vari-
ables 0;,;, and ¢;, 7 € I, on time, we proceed as follows. We find #; as a function
of time by integrating the first equation in (17). Next, we determine v (t) and
¥y, (t) from (18). We can now obtain 6,,(¢) from (5) (or the second equation in
(17)) and 02(t)7 03(t)7 s 70n—1(t)7 ¢2 (t)v ¢3(t)7 s 7¢n—1(t) from (4) Finauy? the
remaining variables ¢; can be found from (2). This competes the proof of the
proposition. [

Based on the quadratures (17) and (18), geometry of the motion of each body
in the system can be analyzed by means of the methods that are usually used for
studying the motion of a symmetric top.

3. On Compatibility of the Conditions (10), (16), and (20) . As
stated in Proposition 1, the system of equations (1), (2) has exact solutions with
properties (4), (5) if the conditions (10), (16), and (20) are fulfilled. In this section
we show that there exist physically meaningful values of the multibody chain
parameters making these conditions compatible in the case when

Si 75 0, a; 75 0. (21)
n
In this case, relations (10) are equivalent to n, conditions > a5 = 0 and
l=n++1
Mx
n — n, conditions Y sieg; = 0. Using (6), one can verify that, for i,l,m € I,

=1
€li = ElmEmi and

n n n
E a5 = § A1€jnEnl = Ejn E A1En],

l=n++1 l=n4++1 l=n4+1
M Mx Mx
> siER = Y SIEREN = ER1 Y SIELL-
=1 =1 =1

Hence, conditions (10) can be replaced with the two equalities:

Mx

Y agn =0, > sien =0. (22)

l=n.+1 =1
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We also note that, if either of the subsystems S, and S* consists of a single
top only, one of the above equalities contradicts one of the assumptions (21).
Therefore, the system S can perform the motion of interest only when each of its
subsystems S, and S* consists of at least two tops, making the total number of
bodies in .S not less than four.

The case of a four-body system. Below we consider the simplest possible case
of a four-body system assuming that S, = {By, By}, S* = {Bs, B4}, 2 = d3 = 1,
and Ry = Ry = Ry = R4y = 0. Then, the last conditions and relations (22) imply

51 = S, s1+ psg =0, ag = aq, az + pag = 0, (23)

the conditions (16) become

Jé—51a27J§QQ7%7@:12 (24)

Ji—siaa  Jjqg a1 k1 p1’
Jé = Jziv J§Q3 = JZEQ47 p3 = P4, h3 = h47 (25)
and the relations (20) reduce to

a) = jiaq, 26
~ N2 5 = N2 o
hat (T3) @ =i+ (7)) di,
asg —Patias = pt (619 - ﬁﬁfcn) ;
ha == (ln — ).
The relations (23)-(29) form an algebraic system of 16 equations with
respect to 32 unknowns JP(> 0),J5(> 0),m;(> 0),¢i,pi hiyqi (i = 1,2,3,4),

s; (i =1,2,3), and p. Here J? is the central equatorial moment of inertia of the
body B; and

(26)
(27)
(28)
(29)

29

Ji = JZO + TTLZCZ2 (30)

In the rest of this section we solve the following problem: if the chain parameters
defining the mass distribution of its bodies and the parameter p are known, find
possible ways for coupling the bodies as well as the initial conditions of their
motion. In other words, given the values of JZ-O, J?, m;, and pu, we seek to find
the quantities ¢;, s;, pi, hi, and g; so that the system of relations (23)—(29) is
compatible.

We start our analysis of the abovementioned system with relations (23). From
the first two relation in (23), we have

S9 = 851 and S3 = —s1/ M. (31)

By virtue of (3) and (31), the remaining pair of equations in (23) can be solved
for ¢y and c3 as follows:

Cy) = — (um464 + 771281) /mg, (32)
c3 = my (pca + s1) / (pms) - (33)
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Next, we observe that equation (26) can be transformed, by means of (24),
into
Jay (Jé — slag) = ay (Jfl — 53a4) . (34)
After successive substitutions of the expressions for J/, a;, s2, s3, 2, and c3 from
(3) and (30)—(32) into (34) and the first equation in (25), we arrive at the system
of two equations with respect to ¢4 and s1:

pwrmy (my — ms) CZ + 2um26431 + 7%277148% + u’ms (Jg — Jff) =0, (35)

wmy (m2 + ,u2m4) CZ +my [m2 + H2 (m1 + 77”&2)] €481 + ,1”71177”&28%-1—
+ pms (J3 + J§) = 0. (36)

For the sake of brevity, below we consider a special case when
JY=J9. (37)
Then, equation (35) decomposes into the following two cases: s1 = —ucy or

s1 = pea(ms —my) /ma. (38)
In the first case, equation (36) reduces to the form ¢ = —my (J§ + J) x

X [;ﬂmg (mg + mg)]_l and cannot be satisfied by the acceptable values of the
quantities it contains.
In the second case, when s; and ¢4 are related by (38), equation (36) assumes

the form
= ay, (39)

where oy = moms (Jg + Jf) /(msas), as = (,u2 — 2) momy — p?mims. Clearly,
one can find a real-valued ¢4 from (39) only when ay > 0. This inequality is true
if the parameters p, ms, and meo are selected such that

p? > 2, (40)

m3 < (1—2/p?) ma, ma > mg (mg +ma) / [(1—2/p) myg —mg] . (41)
(Note that it follows from (41) that

ms —my <0 and mims — mamy < 0, (42)

respectively.)
We now consider the equation (see (24)) a1 (J5, — s1a2) = as (J] — s1a2) . Usi-

ng (3), (30)-(32), (38), and (39), we can write it in the form (¢ + fac1 + 3 = 0,
where

fr = —agpumimomscy,

B = mamngmsg [2J9mamy — p?J{ (Maims — mamy)]

B3 = ey [ﬁ%gmgm4 (u2ﬁ11m3 + (2 — u2) m2m4) J?—F

+ m2m4(m3 — m4) ((2 — /1,2) mims + ,u2m2m4) Jg—f—

+ p? (m — m3) (ma + mg3) (Mims — mamy) J§).
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The discriminant of the last equation D = mjm3as is nonnegative only when
a3 = —044J? + a5 > 0. (43)

Here ay = 4a2,u2m2ﬁzgm3m?1 (JS + Jff) ,

— (J9)* [as (J9/99)" + oz (J8/J9) + ] (44)

o = 4m%mi [m1m§ + uQ(mg —my) ((2 — ,u2) mims + u2m2m4)] ,

a7 = 4pPmamy [mlmg (momy — myms) + 2mymomsmy(ms — my)+
+ p?(my —m3) (Mamams(ma + m3) — 2m3m})],
ag = pt (Myms — mamy) [Amama(ma + mg) (mZ - m%) +

+ mlmg (ﬁllmg - m2m4)] .

Note that ay > 0 for all acceptable values of the mechanical parameters.
Therefore, in order to satisfy (43), one should require that

T < as/ay. (45)

A meaningful value of J? satisfying (45) can only be selected when as > 0.
The sign of as coincides with the sign of the quadratic polynomial (in J9/JY) in
(44). The leading coefficient of this polynomial, ag, is positive when

my > p?(mg —my) [(4* — 2)mams — pmamy] /m3 (46)

and, in accordance with (42), its discriminant D, = 16a3u*m3m3m3 (ms — my4) x

X [ml(ﬁzlmg —mamy) +m3 (mg — m4)] is always positive. Hence, the polynomial
in J9/J? in (44) has two real roots and, by choosing

J9 > J9 ( ar++/D ) (2a), (47)

we obtain as > 0.

Based on the above analysis, we can suggest the following algorithm for selecti-
ng the multibody system parameters satisfying the system of equations (23)—(29).

First, we assume that the moments J¢ (> 0) (i = 1,2,3,4),J) and the mass
my are chosen arbitrarily. Then, J§ = JJ (see (37)). We also assume that > /2
or < —v/2 (see (40)) and the masses mg3, msa, and m as well as the moments
JY and JY are successively selected to satisfy the inequalities (41), (46), (47), and
(45). Now, one can find ¢4 from (39): ¢4 = %,/0q. Selecting one of the two possible
values of ¢4, we obtain s; from (38) and, then, so, s3,c2, and c3 from (31)—(33).

We can also compute ¢; by the formula ¢; = (—,82 + \/5) /(201).

Note that, by this moment, we have already obtained the values of all
parameters of interest, except for p;, ¢;, and h; (i = 1,2,3,4). To find the remai-
ning parameters, we assign arbitrary values to pi,ps, and ¢q. This immedi-
ately gives us the value of p3 (see (25)). We can also find py from (24):
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p2 = agpi/ai. Next, by means of (28), (24), and (25), we derive that ¢; =
(paTias — g+ ping) / (11 7) o = azJiar/ (@1J5) , and g5 = J3qs/J5. Sol-
ving the system of equations (27) and (29) with respect to hy and hy, we obtain

hi = (J] — s1a2) [iﬁ + (fi)Q(ﬁ - (ff)Qfﬁ —u%ﬂ /(1= p?),
= (4 = saa) | ()" - () a2 - 2) | pa -

Finally, according to (25), hs = h4 and hy can be found from (24): he = aghy/a;.
Knowing the values of the integration constants, one can determine the initial
conditions of motion, using (2), (4), (5), (17), and (18).

Thus, we have proven that it is possible to select physically meaningful values
of parameters characterizing the chain of rigid bodies under consideration so that
the relations (10), (16), and (20) will be fulfilled. This completes our proof on the
existence of the motions of interest for the chain of Lagrange tops.

4. Some properties of the motions of interest. In this section we give
a mechanical interpretation of conditions (22). We recall that O,,, 11 is the point
where the subsystems S, and S* are coupled to each other. Let also C* denote
the center of mass of S*.

Proposition 2. When the system S performs the motion of interest, the poi-
nts O, +1 and C* move along the vertical line L passing through O;.

We denote s, = 010,,+1,¢* = O1C*, m* = m,, and observe that

Z 8j = Z 5393])7

7=1

n n k—1
m*c* = Z m0,Cy, = Z my, (ck—l—s*—i— Z si> =

k=n.+1 k=n.+1 1=nx+1

n n
=mis.ct Y. (mgep sy =ms. Y agel.  (48)
k=n.+1 k=ns+1

As was mentioned in section 1, when the system S moves so that the properties
(4) are fulfilled, the skeleton of the subsystem S,(S*) remains in the vertical
plane II,.(IT*). Clearly, the point O, 41 belongs to the plane II, which rotates
about L with the speed @Z}l(t). Introducing the Cartesian frame {O1, ese,} rigidly
embedded in I, (the unit vector e, is chosen such that e, - s; = s1sinf;), we

Tx
obtain, using the second relation in (22), that s, - e, = ) sjeijsinf; = 0, i.e.
j=1
s«||es || L.
Since the attachment point of the subsystem S* moves along L, we conclude
that the plane II*, containing the point C*, rotates about L with the speed
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¥ (t). Now, in order to prove that c*|| L, it is sufficient to show that the second
term in (48) is parallel to L. Introducing the Cartesian frame {O,,11,e3e*}
rigidly embedded in IT* (the unit vector e* is chosen such that e* -s, =

n
= s, 8in6,), we obtain, using the first relation in (22), that > akeék) e* =
k=ns+1
n
= > apenksiné, =0, which implies c*||es|| L.
k=ns+1
Thus, we have proven that both points O,,,+1 and C* move along L.
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d.A. Yebanos

HoBblil kj1acc HecTalMOHAPHBIX ABUXKEHUU CHUCTEMBI TS2KEJIbIX T'MPOCKOIIOB
JlarpaH>ka c HeIJIOCKO# KoHdUrypailmeii ocToBa CUCTEMbI

JIJ1sT TIemoYKy N TSIZKEeJIBIX THPOCKOMOB Jlarpanika, COeUHEHHBIX WIeaTbHBIMU CHEPUICCKUMU
MIapHUpPaMM, yCTAaHOBJIEHO CYIEeCTBOBaHME KJjacca HeCTAIlMOHAPHBIX JIBUKEHUN, IPU KOTOPLIX
OCTOB CHCTE€MBI UMeEeT HeIJIOCKYI0 KoHduryparuio. [lomydens! 1o0CcTaTOYHbIE YCIOBHS CYIIECTBO-
BaHUA TaKuX JBrKeHuil. Haliena 3aBHCHMOCTH OCHOBHBIX IE€pEMEHHBIX OT BpeMmenu. lIpu 3a-
JAaHHOM paclpejieJIeHUN MacC B TeJaX JJid IeNOYKN, COCTOANIe U3 deThIpex TeJ, Olpe/eseHbl
CITIOCOOBI X COYJIEHEHUsI, IPU KOTOPBIX YCTAHOBJIEHHBIE BUKEHHS BO3MOXKHBI. Y Ka3aHbI HEKO-
TOpbIEe CBOMCTBA HOBBIX JIBUXKEHUI.

KuaroueBbie ciioBa: aHa umMuueckans OUHAMUKG CUCTIEM men, 2upocxkon JIaepaHOfca, Hecmauyu-
OoHapHoe deusicenue cucmembl meep(?mx men

1.0. Yebanon

HoBuii ky1ac HecTarioHapHUX PyXiB cucTeMHu BaXXKKuX ripockomiB Jlarpamxka
3 HEMJIOCKOI0 KOH(QITrypalli€elo 0OCToBa CUCTEMU

JIJtst TaHIIoXKKa N BayKKAX TipockomiB Jlarpan:xka, 3’eiHaAHUX iMealbHUMU CPEPUITHUMUA TIAPHI-
paMu, BCTAHOBJIEHO iCHYBaHHSI KJIACY HECTAIIOHAPDHUX PYXiB, IMPU sKUX OCTIB CUCTEMU Ma€ He-
mwiocky koudirypamio. OTpuMaHo JoCTATHI yMOBHM iCHyBaHHSI TakKux pyXiB. 3HaiifeHO 3aje-
JKHICTB OCHOBHMX 3MiHHMX Bij dacy. I[Ipu 3ajanomy posnojiii Mac B Tijlax s JIAHITIOXKKA, 1110
CKJIAJIAE€THCS 3 YOTUPHOX TiJI, BU3HAYEHO CIOCOOM 1X 3UJIEHYBAHHS, IPU SKUX BCTAHOBJIEHI PYXHU
MOXKJINBi. YKa3aHO [esAKi BJIACTHBOCTI HOBUX PYXIiB.

Kimrouosi ciioBa: anasimuswna dunamika cucmenm mia, eipockon Jlazpanoica, necmauionaprud
PYT cucmemu meepouxr min
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