УДК 517.5

©2008. Р.Р. Салимов

ОЦЕНКА ВНУТРЕННЕЙ ДИЛАТАЦИИ КОЛЬЦЕВЫХ Q-ГОМЕОМОРФИЗМОВ

В статье установлена оценка внутренней дилатации для кольцевых Q-гомеоморфизмов при локально интегрируемой функции Q.

1. Введение. Ввиду того, что ёмкости и модули являются основным геометрическим методом в современной теории отображений, следующая концепция была предложена профессором Олли Мартио, см., напр., [7]–[9]. Пусть D – область в \mathbb{R}^n , $n \geq 2$, и пусть $Q: D \to [1, \infty]$ – измеримая функция. Гомеоморфизм $f: D \to \overline{\mathbb{R}^n} = \mathbb{R}^n \bigcup \{\infty\}$ называется Q—гомеоморфизмом, если

$$M(f\Gamma) \le \int_{D} Q(x) \cdot \rho^{n}(x) \ dm(x) \tag{1}$$

для любого семейства Γ путей в D и любой допустимой функции ρ для Γ . Здесь m обозначает меру Лебега в \mathbb{R}^n .

Эта концепция является естественным обобщением геометрического определения квазиконформного отображения по Вяйсяля, см., напр., 13.1 и 34.6 в [16]. Целью теории Q-гомеоморфизмов является установление взаимосвязей между различными свойствами мажоранты Q и самого отображения f.

Напомним, что борелева функция $\rho: \mathbb{R}^n \to [0,\infty]$ называется допустимой для семейства кривых Γ в \mathbb{R}^n , пишут $\rho \in adm \Gamma$, если

$$\int_{\gamma} \rho \, ds \, \ge \, 1 \tag{2}$$

для всех $\gamma \in \Gamma$. Modynb семейства кривых Γ определяется равенством

$$M(\Gamma) = \inf_{\rho \in adm} \int_{D} \rho^{n}(x) \, dm(x). \tag{3}$$

Для отображения $f: D \to \mathbb{R}^n$, имеющего в D частные производные почти всюду (п.в.), полагаем f'(x) – якобиева матрица отображения f в точке x, J(x, f) – якобиан отображения f в точке x, т.е. детерминант f'(x). В дальнейшем

$$||f'(x)|| = \max_{h \in \mathbb{R}^n \setminus \{0\}} \frac{|f'(x)h|}{|h|}$$

– матричная норма f'(x). Пусть, кроме того,

$$l\left(f'(x)\right) = \min_{h \in \mathbb{R}^n \setminus \{0\}} \frac{|f'(x)h|}{|h|}.$$

Напомним, что внешняя дилатация отображения f в точке x есть величина

$$K_O(x,f) = \frac{\|f'(x)\|^n}{|J(x,f)|},$$

если $J(x,f) \neq 0$, $K_O(x,f) = 1$, если f'(x) = 0, и $K_O(x,f) = \infty$ в остальных точках. Внутренняя дилатация отображения f в точке x есть величина

$$K_I(x,f) = \frac{|J(x,f)|}{l(f'(x))^n},$$

если $J(x,f) \neq 0$, $K_I(x,f) = 1$, если f'(x) = 0, и $K_I(x,f) = \infty$ в остальных точках. Линейная дилатация f в точке x есть величина

$$H(x,f) = \sqrt[n]{K_I(x,f)K_O(x,f)}.$$

Пусть $E, F \subseteq \mathbb{R}^n$ — произвольные множества. Обозначим $\Gamma(E, F, D)$ семейство всех кривых $\gamma: [a,b] \to \mathbb{R}^n$, которые соединяют E и F в D, т.е. $\gamma(a) \in E$, $\gamma(b) \in F$ и $\gamma(t) \in D$ при $t \in (a,b)$. Следующее понятие, мотивированное кольцевым определением квазиконформности по Герингу, см. [1], и представляющее собой обобщение и локализацию понятия Q—гомеоморфизма, впервые было введено В.Рязановым, У.Сребро и Э.Якубовым на плоскости, см., напр., [12], [13]. Пусть $r_0 = dist(x_0, \partial D)$ и пусть $Q: D \to [0, \infty]$ — измеримая по Лебегу функция.

Положим

$$A(r_1, r_2, x_0) = \{x \in \mathbb{R}^n : r_1 < |x - x_0| < r_2\},$$

$$S_i = S(x_0, r_i) = \{x \in \mathbb{R}^n : |x - x_0| = r_i\}, \quad i = 1, 2.$$

Говорят, что гомеоморфизм $f:D\to\mathbb{R}^n$ является кольцевым Q-гомеоморфизмом в точке $x_0\in D$, если соотношение

$$M(f(\Gamma(S_1, S_2, A))) \le \int_A Q(x) \cdot \eta^n(|x - x_0|) dm(x)$$
 (4)

выполнено для любого кольца $A = A(r_1, r_2, x_0), \ 0 < r_1 < r_2 < r_0$ и для каждой измеримой функции $\eta: (r_1, r_2) \to [0, \infty]$ такой, что

$$\int_{r_1}^{r_2} \eta(r) dr \geq 1.$$

Если (4) выполнено для каждой точки $x_0 \in D$, то f называется кольцевым Q-гомеоморфизмом. Следует отметить, что в случае ограниченной функции Q(x), определения кольцевого Q-гомеоморфизма и Q-гомеоморфизма эквивалентны, и, фактически, генерируют собой определение квазиконформных отображений, см. знаменитую работу Геринга [1]. В общем случае, каждый Q-гомеоморфизм является

кольцевым, но не наоборот. В работе [12] приведены примеры кольцевых Q-гомеоморфизмов в фиксированной точке x_0 , таких что 0 < Q(x) < 1 на некотором множестве, для которого x_0 является точкой плотности.

Проблема локального поведения Q-гомеоморфизмов изучалась в \mathbb{R}^n в случае $Q \in BMO$ (ограниченного среднего колебания) в работах [7]–[9], а в случае $Q \in FMO$ (конечного среднего колебания) и в других случаях в работах [10] и [11]–[13]. В работах [19], [14] было установлено свойство ACL для Q-гомеоморфизмов в \mathbb{R}^n , $n \geq 2$ при локально интегрируемой Q. Там же показана принадлежность таких Q-гомеоморфизмов соболевскому классу $W_{loc}^{1,1}$ и дифференцируемость п.в. Также установлена оценка внешней дилатации для Q-гомеоморфизмов

$$K_O(x,f) \le C_n Q^{n-1}(x) \tag{5}$$

для п.в. $x \in D$. Эти результаты были перенесены на кольцевые Q-гомеоморфизмы в работе [20]. Здесь устанавливается новая оценка внутренней дилатации для кольцевых Q-гомеоморфизмов

$$K_I(x,f) \le c_n Q(x) \tag{6}$$

для п.в. $x \in D$, где константа c_n зависит только от размерности n.

Следуя работе [6], пару E=(A,C) называем конденсатором, где $A\subset \mathbb{R}^n$ открытое множество, а C – непустое компактное множество, содержащееся в A. E называем конденсатором, если $B=A\setminus C$ – кольцо, т.е., область, дополнение которой $\overline{\mathbb{R}^n}\setminus B$ состоит в точности из двух компонент. E называем ограниченным конденсатором, если множество A является ограниченным. Говорят, что конденсатор E=(A,C) лежит в области D, если $A\subset D$. Очевидно, что если $f:D\to \mathbb{R}^n$ – открытое отображение и E=(A,C) – конденсатор в D, то (fA,fC) также конденсатор в fD. Далее fE=(fA,fC).

Пусть E=(A,C) – конденсатор. $W_0(E)=W_0(A,C)$ – семейство неотрицательных функций $u:A\to R^1$ таких, что 1) $u\in C_0(A),$ 2) $u(x)\geq 1$ для $x\in C,$ и 3) u принадлежит классу ACL и пусть

$$|\nabla u| = \left(\sum_{i=1}^n (\partial_i u)^2\right)^{1/2}.$$

Полагают

$$cap E = cap (A, C) = \inf_{u \in W_0(E)} \int_A |\nabla u|^n dm$$

и называют \ddot{e} мкостью конденсатора E. Известно, что

$$cap E \ge \frac{(\inf m_{n-1} S)^n}{[m(A \setminus C)]^{n-1}},\tag{7}$$

где $m_{n-1}S - (n-1)$ -мерная мера Лебега C^{∞} – многообразия S, являющегося границей $S = \partial U$ ограниченного открытого множества U, содержащего C и содержащегося вместе со своим замыканием \overline{U} в A, а точная нижняя грань берется по всем

таким S. см. Предложение 5 из [17], и

$$cap E = M(\Delta(\partial A, \partial C; A \setminus C)), \tag{8}$$

где, для множеств S_1 , S_2 и S_3 в \mathbb{R}^n , $n \geq 2$, $\Delta(S_1, S_2; S_3)$ обозначает семейство всех непрерывных кривых, соединяющих S_1 и S_2 в S_3 , см. [2]–[15].

Напомним, что отображение $f:D\to\mathbb{R}^n$ обладает (N^{-1}) -свойством, если из условия |f(E)|=0 следует |E|=0, где |E| – мера Лебега множества $E\subset D$.

Теорема 1. Пусть D – область в \mathbb{R}^n , $n \geq 2$, и пусть $f: D \to \overline{\mathbb{R}^n}$ – кольцевой Q-гомеоморфизм с $Q \in L^1_{loc}$. Тогда f обладает (N^{-1}) -свойством.

Доказательство. Согласно [19], $f \in W_{loc}^{1,1}$ и

$$||f'(x)||^n \le C_n Q^{n-1}(x) J(x, f)$$

для п.в. $x\in D$. Поэтому на основании работы [5], см. теорему 1.2., достаточно показать, что $Q^{n-1}\in L^{n'-1}_{loc}$, где $\frac{1}{n'}+\frac{1}{n}=1$. Действительно, для компактного множества $V\subset D$ имеем, что

$$\int\limits_V Q(x)^{(n-1)(n'-1)} dx = \int\limits_V Q(x) \ dx < \infty.$$

Таким образом, по работе [18] получаем из теоремы 1:

Следствие 1. Пусть D – область в \mathbb{R}^n , $n \geq 2$, u пусть $f: D \to \overline{\mathbb{R}^n}$ – кольцевой Q-гомеоморфизм $c \ Q \in L^1_{loc}$. Тогда $J(x,f) \neq 0$ п.в.

Теорема 2. Пусть D и D' – области в \mathbb{R}^n , $n \geq 2$, и $f:D \to D'$ – кольцевой Q-гомеоморфизм с $Q \in L^1_{loc}$. Тогда n.в.

$$K_I(x,f) \le c_n Q(x)$$
,

где константа c_n зависит только от n.

Доказательство. Согласно работе [20], f дифференцируемо п.в. и по следствию 1 $J(x,f)\neq 0$. В каждой точке $x\in D$ дифференцируемости отображения f, где $J(x,f)\neq 0$, рассмотрим конденсатор (E_r,G_r) , где $E_r=\{y:|x-y|<2r\}$ и $G_r=\{y:|x-y|\leq r\}$.

Тогда (fE_r, fG_r) – кольцевой конденсатор в D' и, согласно [2], см. также [3] и [15],

$$cap(fE_r, fG_r) = M(\Delta(\partial fE_r, \partial fG_r; fR_r(x))),$$

где $R_r(x) = E_r \setminus G_r$ и, ввиду гомеоморфности f,

$$\Delta \left(\partial f E_r, \partial f G_r; f R_r(x) \right) = f \left(\Delta \left(\partial E_r, \partial G_r; R_r(x) \right) \right).$$

Таким образом, так как f является кольцевым Q-гомеоморфизмом,

$$cap (fE_r, fG_r) \le \int_{r < |x-y| < 2r} Q(y) \eta^n(|x-y|) dm(y)$$

для любой неотрицательной измеримой функции $\eta:(r,2r)\to [0,\infty]$, такой что $\int\limits_{-r}^{2r}\eta(t)dt\geq 1.$

В частности, рассмотрим однопараметрическое семейство вещественнозначных функций

$$\eta_r(t) = \begin{cases} \frac{1}{r}, & \text{если } t \in (r, 2r), \\ 0, & \text{если } t \in \mathbb{R} \setminus (r, 2r). \end{cases}$$

Тогда

$$cap (fE_r, fG_r) \le \frac{2^n \Omega_n}{m(E_r)} \int_{E_r} Q(y) dm.$$
 (9)

С другой стороны, по неравенству (5)

$$cap (fE_r, fG_r) \ge \frac{(\inf m_{n-1} S)^n}{[m(fE_r \setminus fG_r)]^{n-1}}.$$
(10)

Комбинируя (7) и (8) получаем, что

$$\left(\inf m_{n-1} S\right)^n \le \frac{2^n \Omega_n \left[m(fE_r \setminus fG_r)\right]^{n-1}}{m(E_r)} \int_{E_r} Q(y) \, dm,$$

где $m_{n-1} S - (n-1)$ -мерная мера Лебега C^{∞} – многообразия S_r , являющегося границей $S_r = \partial U_r$ ограниченного открытого множества U_r , содержащего fG_r и содержащегося вместе со своим замыканием $\overline{U_r}$ в fE_r , а точная нижняя грань берется по всем таким S_r .

При $r \to 0$ множество $f(G_r)$ с точностью до o(r) представляет собой эллипсоид $f'(G_r)$, являющийся образом шара G_r при линейном отображении f'. Если данный эллипсоид имеет полуоси $0 < a_1 r \le ... \le a_n r$, то $m(f'G_r) = \Omega_n a_1 ... a_n r^n = \Omega_n J(x, f) r^n$.

Разместим наш эллипсоид таким образом, чтобы его центр совпал с началом координат, а главные направления с координатными осями $e_1, ..., e_n$. Тогда площадь его поверхности допускает нижнюю оценку:

$$m_{n-1}(f'(G_r)) \geq 2m_{n-1}(Pr_1(f'(G_r))) = 2\Omega_{n-1}a_2...a_nr^{n-1} = 2\Omega_{n-1}\frac{J(x,f)}{l(f'(x)}r^{n-1},$$

где Pr_1 обозначает проекцию на гиперплоскость, перпендикулярную вектору e_1 . Следовательно,

$$\left[\omega_{n-1} \frac{J(x,f)}{l(f'(x))} r^{n-1} - o(r^{n-1})\right]^n \le \left[m_{n-1} \partial f'(E_r) - o(r^{n-1})\right]^n \le$$

$$\le \frac{2^n \Omega_n \left[m(fE_r \setminus fG_r)\right]^{n-1}}{m(E_r)} \int_{E_r} Q(y) \, dm.$$

Разделив это неравенство на $r^{n(n-1)}$ и устремляя $r \to 0$, будем иметь

$$\left[\frac{J(x,f)}{l(f'(x))}\right]^n \le [J(x,f)]^{n-1}c_nQ(x)$$

для п.в. $x \in D$., следовательно,

$$K_I(x,f) = \frac{J(x,f)}{l^n(f'(x))} \le c_n Q(x)$$

для п.в. $x \in D$.

Следствие 2. Пусть D и D' – области в \mathbb{R}^n , $n \geq 2$, и $f: D \to D'$ – кольцевой Q-гомеоморфизм $c \ Q \in L^1_{loc}$. Тогда n.s.

$$H(x, f) \le c_n Q(x),$$

где константа c_n зависит только от n.

Следствие 3. Пусть D – область в \mathbb{R}^n , $n \geq 2$, u пусть $f: D \to \mathbb{R}^n$ – кольцевой Q-гомеоморфизм c $Q \in L^1_{loc}$. Тогда $H(x,f), K_I(x,f) \in L^1_{loc}(D)$.

Из работ [20], [4] вытекает важное следствие на плоскости для кольцевых Q-гомеоморфизмов.

Следствие 4. Пусть $D\,,D'$ – области в $\mathbb{R}^2,$ и пусть $f:D\to D'$ – кольцевой Q-гомеоморфизм $c\;Q\in L^1_{loc}.$ Тогда $f^{-1}\in W^{1,2}_{loc}(D').$

- Gehring F.W. Rings and quasiconformal mappings in space, Trans. Amer. Math. Soc., 103, 1962, P.353-393.
- 2. Gehring F. W. Quasiconformal mappings in Complex Analysis and its Applications, V.2, International Atomic Energy Agency, Vienna, 1976.
- 3. Hesse J. A p-extremal length and p-capacity equality, Ark. Mat. 13 (1975), P.131-144.
- 4. Hencle S., Koskela P. Regularity of the inverse of a planar Sobolev homeomorphism, Arch. Ration. Mech. Anal. 180 (1975), no.1, P.75-95.
- Koskela P., Maly J. Mappings of finite distortion: The zero set of Jacobian, J. Eur. Math. Soc., 5, 2003, P.95-105.
- Martio O., Rickman S., Vaisala J. Definitions for quasiregular mappings, Ann. Acad. Sci. Fenn. Ser. A1. Math. 448 (1969), 40pp.
- Martio O., Ryazanov V., Srebro U., Yakubov E. Mappings with finite length distortion, J. d'Anal. Math., 93 (2004), P.215-236.
- 8. Martio O., Ryazanov V., Srebro U., Yakubov E. Q-homeomorphisms, Contemporary Math., 364 (2004), P.193-203.
- 9. Martio O., Ryazanov V., Srebro U., Yakubov E. On Q—homeomorphisms, Ann. Acad. Sci. Fenn. Ser. A1. Math., 30 (2005), P.49-69.
- Ignat'ev A., Ryazanov V. Finite mean oscillation in the mapping theory, Ukrainian Math. Bull., 2 (2005), №3, P.403-424.
- 11. Ryazanov V., Salimov R. Weakly flat spaces and boundaries in the mapping theory, Ukrainian Math. Bull., 4 (2007), N2, P.199-234.
- 12. Ryazanov V., Srebro U., Yakubov E. On ring solutions of Beltrami equations, J. d'Anal. Math., 96 (2005), P.117-150.
- 13. Ryazanov V., Srebro U., Yakubov E. The Beltrami equation and ring homeomorphisms, Ukrainian Math. Bull. 4 (2007), no.1, P.79-115.

- Salimov R. ACL and differentiability of Q-homeomorphisms Ann. Acad. Sci. Fenn. Ser. A1. Math., 33 (2008), P.295-301.
- 15. Shlyk V.A. On the equality between p-capacity and p-modulus, Sibirsk. Mat. Zh. 34, no.6 (1993), P.216-221; transl. in Siberian Math. J. 34, no.6 (1993), P.1196-1200.
- 16. $V\ddot{a}is\ddot{a}l\ddot{a}$ J. Lectures on n-Dimensional Quasiconformal Mappings, Lecture Notes in Math., 229, Berlin etc., Springer-Verlag, 1971.
- 17. Кругликов В.И. Ёмкости конденсаторов и пространственные отображения, квазиконформные в среднем, Матем. сб., 1986, 130, №2, С.185-206.
- 18. Пономарев С. П. (N^{-1}) -свойство отображений и (N)-условие Лузина, Матем. заметки. 58 (1955), С.411-418.
- 19. Салимов Р. Абсолютная непрерывность на линиях и дифференцируемость одного обобщения квазиконформных отображений, Изв. РАН. Сер. матем., 2008, 72:5, С.141–148.
- 20. Салимов Р., Севостьянов Е. ACL и дифференцируемость почти всюду кольцевых гомеоморфизмов. Труды ИПММ НАН Украины. 2008. вып.16. С.171-178.

 $\mathit{И}$ н-т прикл. математики и механики HAH $\mathit{У}$ краины, $\mathit{Д}$ онецк $\mathit{salimov@iamm.ac.donetsk.ua}$

Получено 07.04.2008