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1.Introduction. We consider the system of nonlinear parabolic equations with
transformed argument

∂u

∂t
= D(t, ε)

∂2u

∂x2
+ A(t, ε)u + B(t, ε)u∆ + f(t, u, u∆, ε) (1)

with periodic condition
u(t, x + 2π) = u(t, x). (2)

Here u∆ = u(t, x − ∆),∆ is a transformation of the argument, the matrices D(t, ε),
A(t, ε), B(t, ε) and function f : R2n+p+1 → Rn are fourfold continuously differentiable
with respect to all arguments and 2π - periodic with respect to t, f(t, u, v, ε) = O(|u|2 +
|v|2) as |u|+ |v| → 0. Therefore the function f(t, u, v, ε) satisfies to the conditions

f(t, 0, 0, ε) = 0, |f(t, u, v, ε)− f(t, u′, v′, ε)| ≤ ν(|u− u′|2 + |v − v′|2)1/2,

|u| ≤ ρ, |u′| ≤ ρ, |v| ≤ ρ, |v′| ≤ ρ, (3)

where |u|2 = u2
1 + . . . + u2

n, Lipschitz constant ν may be make sufficiently small under
decreasing ρ. Function f(t, u, v, ε) can be determined outside the region |u| ≤ ρ, |v| ≤ ρ,
so that the conditions (3) valid overall the space. Let the matrix D(t, ε) is positive
definite.

System (1) is used for modelling of nonlinear effects in optics [1]. The autonomous
parabolic equation with transformed argument was considered in paper [2].

We consider the linear system

∂u

∂t
= D(t, ε)

∂2u

∂x2
+ A(t, ε)u + B(t, ε)u∆. (4)

We will search the solution of the problem (4),(2) in the form of complex Fourier series

u(t, x) =
∞∑

k=−∞
yk(t)exp(−ikx), y−k(t) = ȳk(t). (5)



Substituting (5) into (4) and comparising the coefficients under exp(−ikx), we obtain
the countable system of differential equations in Fourier coefficients

dyk(t)
dt

= [−k2D(t, ε) + A(t, ε) + B(t, ε)exp(ik∆)]yk(t), k = 0,±1, . . . (6)

System (6) is a one of linear differential equations with periodic coefficients. According
to the Floquet theorem, a matrix Hk(t, ε), detHk(t, ε) 6= 0, Hk(t + 2π, ε) = Hk(t, ε)
exists, such that the substitution yk = Hk(t, ε)zk transforms system (6) to the form

dzk

dt
= Ck(ε)zk, C−k(ε) = C̄k(ε), k = 0,±1, . . . (7)

Suppose that the characteristic equation det(Ck(ε) − λE) = 0, k ∈ Z, has the simple
roots αm(ε) ± iβm(ε), αm(0) = 0, βm(0) = λm > 0,m = 1, ..., p, and the remaining of
roots satisfies to the condition |Re λ| > γ + δ, γ > δ > 0. Suppose that ε is the p -
dimensional parameter.

We will search the solution of the problem (1),(2) in the form of series (5). Substi-
tuting (5) into (1) and comparising the coefficients under exp(−ikx), k ∈ Z, we obtain
the countable system of differential equations in Fourier coefficients

dy

dt
= M(t, ε)y + F (t, y, ε), (8)

where y = (y0, y1, y−1, ...)T , M(t, ε) is infinite blocks- diagonal matrix with the blocks
Mk(t, ε) = −k2D(t, ε) + A(t, ε) + B(t, ε) exp(ik∆), k = 0,±1, ...; F (t, y, ε) = (f0, f1,
f−1, ...)T is nonlinear function, where fk are the Fourier coefficients of the function
f(t, u, u∆, ε) under exp(−ikx).

We will show that the function F (t, y, ε) satisfies to the Lipschitz condition. Let us
introduse in the space of sequences the following norm |y| = (

∑∞
k=−∞ |yk|2)1/2. We

consider another vector z = (z0, z1, z−1, ...)T of Fourier coefficiets for solution v(t, x) of
equation (1) and the corresponding vector F (t, z, ε) = (g0, g1, g−1, ...)T . Using Parseval
equation, we obtain

|F (t, y, ε)− F (t, z, ε)| = (
∞∑

k=−∞
|fk − gk|2)1/2 = (

1
2π

2π∫

0

|f(t, u, u∆, ε)−

−f(t, v, v∆, ε)|2dx)1/2 ≤ ν(
1
2π

2π∫

0

(|u− v|2 + |u∆ − v∆|2)dx)1/2 =

= ν(2
∞∑

k=−∞
|yk − zk|2)1/2 =

√
2ν|y − z|.

Therefore the function F satisfies the Lipschitz condition with the constant
√

2ν.
In the system (8), we make the substitution yk = Hk(t, ε)zk, k = 0,±1, ..., then we

obtain the system
dz

dt
= C(ε)z + G(t, z, ε), (9)

where z = (z0, z1, z−1, ...)T , C(ε) = diag(C0(ε), C1(ε), C−1(ε), ...), G(t, z, ε) = H−1

(t, ε)F (t,H(t, ε)z, ε), H(t, ε) = diag (H0,H1,H−1, ...). We reduce the matrices Ck(ε)
with eigenvalues αm(ε)± iβm(ε) and eigenvalues with positive real parts to the Jordan
canonical form. Under this transformation, we obtain the system



dw1

dt
= A1(ε)w1 + G1(t, w, ε),

(10)

dw2

dt
= A2(ε)w2 + G2(t, w, ε),

where w = (w1, w2)T , A1(ε) = diag(A3(ε), A4(ε)), w1 ∈ Rl+2p, w2 belong to the some
Banach space M , the eigenvalues of the matrix A3(ε) lie on the half-plane Re λ >
γ + δ, A4(ε) is the diagonal matrix with number αm(ε) ± iβm(ε) on diagonal, and
the eigenvalues of the infinite blocks-diagonal matrix A2(ε) lieing on half-plane Re λ <
−γ − δ. Since the vector-function G satisfies the Lipschitz condition and G(t, 0, ε) = 0,
we obtain

G1(t, 0, ε) = G2(t, 0, ε) = 0, (|G1(t, v, ε)−G1(t, w, ε)|2+
(11)

+|G2(t, v, ε)−G2(t, w, ε)|2)1/2 ≤ ν1|v − w|.
The following estimations are valid

| exp[A3(ε)t] ≤ N exp[(γ + δ)t], t ≤ 0, | exp[A2(ε)t]| ≤

(12)

≤ N exp[−(γ + δ)t], t ≥ 0, | exp[A4(ε)t]| ≤ N exp[(γ − δ)|t|], t ∈ R.

2.Existence and properties of integral manifolds.

Theorem 1. Let the estimates (11),(12) holds. Thus, if

ν1 <
δ

N(1 + 2N)
, (13)

then there exists a function h : Rl+3p+1 → M ,

h(t, 0, ε), |h(t, w1, ε)− h(t, w′1, ε)| ≤
1
2
|w1 − w′1|, (14)

such that the set S− = {(t, w1, w2)|t ∈ R, w1 ∈ Rl+2p, w2 = h(t, w1, ε), w2 ∈ M} is the
integral manifold of the system (10). For any solution w(t) = (w1(t), h(t, w1(t), ε)) of
the system (10) on manifold S−, the following estimate is valid

|w(t)| ≤ 2N |w1(σ)| exp[γ(σ − t)], t ≤ σ.

Theorem 2. Let the conditions (11)-(13) are satisfied. Then there exists a function
g : Rp+1 × M → Rl+2p, g(t, 0, ε) = 0, |g(t, w, ε) − g(t, w′, ε)| ≤ 1

2 |w − w′|, such that
the set S+ = {(t, w1, w2)|t ∈ R,w2 ∈ M, w1 = g(t, w2, ε), w1 ∈ Rl+2p} is the integral
manifold of the system (10). For any solution w(t) = (g(t, w2(t), ε), w2(t)) of the system



(10) on manifold S+, the folloving estimate is valid |w(t)| ≤ 2N |w2(σ)|exp[γ(σ − t)],
t ≥ σ.

Let t = σ is some number (initial value). We show that the integral manifold S− is
exponential stable.

Note that the equation on manifold S− is of the following form

dv

dt
= A1(ε)v + G1(t, v, h(t, v, ε), ε). (15)

Theorem 3. Let w(t) = (w1(t), w2(t)) be arbitrary solution of the system (10) with
initial value w(σ) under t = σ. If the condition (13) is satisfied, then there exists a
solution ξ(t) = (v(t), h(t, v(t), ε) on manifold S−, such that the following estimate is
valid

|w(t)− ξ(t)| ≤ 2N |w2(σ)− h(σ, v(σ), ε)|exp[γ(σ − t)], t ≥ σ.

The equation (15) can be represented in the form

dw3

dt
= A3(ε)w3 + G3(t, w3, w4, h(t, w3, w4, ε), ε),

(16)

dw4

dt
= A4(ε)w4 + G4(t, w3, w4, h(t, w3, w4, ε), ε).

where v = (w3, w4), G1 = (G3, G4). If the condition (13) is satisfies, then the integral
manifold S+

1 = {(t, w3, w4)|t ∈ R,w4 ∈ R2p, w3 = r(t, w4, ε), w3 ∈ Rl} of the system
(16) exists [3,4]. The function r(t, w, ε) satisfies the following estimate

r(t, 0, ε) = 0, |r(t, w, ε)− r(t, v, ε)| ≤ 1
2
|w − v|, w ∈ R2p, v ∈ R2p.

We denote r1(t, w, ε) = h(t, r(t, w, ε), w, ε).
Theorem 4. Let the conditions (11)-(13) be satisfied. Then there exists the cen-

tral manifold S = {(t, w3, w4, w2)|t ∈ R, w4 ∈ R2p, w3 = r(t, w4, ε), w3 ∈ Rl, w2 =
r1(t, w4, ε), w2 ∈ M} of the system (10).

3.Bifurcation of equilibrium point. The equation on manifold S is of the follow-
ing form

dw4

dt
= A4(ε)w4 + G4(t, r(t, w4, ε), w4, r1(t, w4, ε), ε). (17)

The equation (17) can be represented in the form

dvk

dt
= [αk(ε) + iβk(ε)]vk + Vk(t, v, v̄, ε),

(18)

dv̄k

dt
= [αk(ε)− iβk(ε)]v̄k + V̄k(t, v, v̄, ε),



where vk is the complex variable, v = (v1, ..., vp)T , Vk(t + 2π, v, v̄, ε) = Vk(t, v, v̄, ε),
Vk(t, v, v̄, ε) = O(|v|2) as |v| → 0, k = 1, ..., p.

Let the following condition be satisfied
1) n1λ1 + ...+npλp 6= m as 0 < |n1|+ ...+ |np| < 6, where m,n1, ..., np are the integer

numbers.
Substituting the variable

v = x +
4∑

k=2

Wk(t, x, x̄, ε),

where W2,W3,W4 are the forms of the 2,3 and 4 order with periodic coefficients, we
transform the system (18) to the following form [5,6]

dxk

dt
= [αk(ε) + iβk(ε)]xk + xk

p∑

j=1

akj(ε)xj x̄j + Xk(t, x, x̄, ε),

dx̄k

dt
= [αk(ε)− iβk(ε)]x̄k + x̄k

p∑

j=1

ākj(ε)xj x̄j + X̄k(t, x, x̄, ε),

where Xk(t + 2π, x, x̄, ε) = Xk(t, x, x̄, ε), Xk(t, x, x̄, ε) = O(|x|5) as |x| → 0. Passing to
the polar coordinates xk = rk exp(iϕk), x̄k = rk exp(−iϕk), we obtain the real system

drk

dt
= αk(ε)rk + rk

p∑

j=1

bkj(ε)r2
j + Rk(t, r, ϕ, ε),

dϕk

dt
= βk(ε) +

p∑

j=1

ckj(ε)r2
j + Φk(t, r, ϕ, ε),

where bkj(ε) = Reakj(ε), ckj(ε) = Imakj(ε), Rk(t, r, ϕ, ε) = O(|r|5), Φk(t, r, ϕ, ε) =
O(|r|4) as |r| → 0.

We consider the bifurcation equation B(ε)r2 + a(ε) = 0, where B(ε) is the matrix
with elements bkj(ε), a(ε) and r2 are the vectors with elements αk(ε) and r2

j .
Theorem 5. Let detB(0) 6= 0, detda

dε (0) 6= 0, the all elements of vector B−1(ε)a(ε)
are negative and condition 1 is satisfied. Then, there exists an invariant torus of the
system (1).

The solutions on the torus are quasi-periodic if |(n, λ) + q| > γ|n|−p−1, λ = (λ1,
..., λp) = (β1(0), ..., βp(0)), where γ is some positive number, n = (n1, ..., np), q, n1, ..., np

are integer numbers.
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