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On the stability of invariant sets of systems with impulse effect
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Abstract

A system of differential equations with impulse effect is considered. It is assumed that this system has an invariant set M . By
means of the direct Lyapunov method, the necessary and sufficient conditions of its uniform asymptotic stability are obtained.
The conditions on the perturbations of right hand sides of differential equations and impulse effects, under which the uniform
asymptotic stability of the invariant set M of the “nonperturbed” system implies the uniform asymptotic stability of the invariant
set of the “perturbed” system, are obtained. The stability properties of invariant sets of periodic systems are also studied.
c© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Many evolution processes are characterized by the fact that at certain moments of time they experience a change of
state abruptly. These processes are subject to short-term perturbations whose duration is negligible in comparison with
the duration of the process. Consequently, it is natural to assume that these perturbations act instantaneously, that is, in
the form of impulses. It is known, for example, that many biological phenomena involving thresholds, bursting rhythm
models in medicine and biology, optimal control models in economics, pharmacokinetics and frequency modulated
systems, do exhibit impulsive effects. Thus impulsive differential equations, that is, differential equations involving
impulse effects, appear as a natural description of observed evolution phenomena of several real world problems [2,1,
14,15,37,45,48,53,54]. In recent years, the study of impulsive systems has received an increasing interest [10,21,30,
45].

The theory of impulsive differential equations is much richer than the corresponding theory of differential equations
without impulse effects. Consequently, the theory of impulsive differential equations is interesting in itself and has
many applications. Thus there is every reason for studying the theory of impulsive differential equations as a well
deserved discipline. Impulsive differential equations consist of three elements; namely, a continuous-time differential
equation, which governs the motion of the dynamical system between impulsive or resetting events; a difference
equation, which governs the way the system states are instantaneously changed when a resetting event occurs; and a
criterion for determining when the states of the system are to be reset. Since impulsive systems can involve impulses
at variable times, they are in general time-varying systems wherein the resetting events are both a function of time
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and the system’s state. In the case where the resetting events are defined by a prescribed sequence of times which are
independent of the system state, the equations are known as time-dependent differential equations [3,4,11,17,19,30].
Alternatively, in the case where the resetting events are defined by a manifold in the state space that is independent of
time, the equations are autonomous and are known as state-dependent differential equations [3,4,11,17,19,30].

Consider the system of time-dependent differential equations with impulse effect at fixed moments of time:

dx

dt
= X (t, x), t 6= τi , t ∈ R+ (1.1)

x(τ+

i )− x(τi ) = Ji (x), i ∈ N (1.2)

where t ∈ R+ := [0,∞) is time, x ∈ Rn , 0 = τ0 < τ1 < τ2 < · · · , τi → ∞,N is the set of positive integers, x(τ+

i )

means the right-hand limit of x at τi .
Let Φ(t, t0, x0) be any solution of system (1.1) and (1.2) starting at (t0, x0) where t0 ∈ (τ0, τ1). The explanation of

the behavior of solutions of an system of impulsive differential equations one can find in [3,22,30,45]. It is assumed
that a solution Φ(t, t0, x0) of a system of differential equations with impulse effect is a left continuous function at the
instants of impulse effect, i.e. Φ(τ−

k , t0, x0) = Φ(τk − 0, t0, x0) = Φ(τk, t0, x0).
One of the main problems in the investigation of dynamical systems (in particular, systems with impulse effect) is

the stability problem. If one needs to study the stability of some solution Φ(t, t0, x0) of system (1.1) and (1.2), this
problem can be reduced to the problem of the stability investigation of the zero solution of the system of perturbed
motion. So we can assume that X (t, 0) ≡ 0, Ji (0) = 0, and system (1.1) and (1.2) has the trivial solution

x = 0. (1.3)

The problem of the stability of solution (1.3) of system (1.1) and (1.2) was investigated by many authors [3,6,16,18,
22,26–32,45,49].

Gurgula and Perestyuk [16] proposed to use Lyapunov’s direct method for stability investigation of solution (1.3) of
system (1.1) and (1.2). They obtained sufficient conditions of asymptotic stability of the zero solution of system (1.1)
and (1.2) by means of a Lyapunov function V (t, x). Bainov and Simeonov [3] proved that for some classes of systems
of form (1.1) and (1.2) there exists a Lyapunov function V which satisfies conditions of the Gurgula–Perestyuk
theorem.

One of the most basic issues in system theory is stability of dynamical systems. System stability is characterized by
analysing the response of a dynamical system to small perturbations in the system states. Specifically, an equilibrium
point of a dynamical system is said to be stable if, for small values of initial distubances, the perturbed motion remains
in an arbitrarily prescribed small region of the state space. Nowadays one can observe a growing interest among
researchers in problems of the property of perturbed motions to remain near multidimentional geometric objects (goal
sets, submanifolds) and the relevant phenomena of invariance and attractivity of these multidimentional geometric
objects. This is reflected in the development of the new sections of nonlinear control theory, nonlinear mechanics,
theory of oscillating processes and robotics. Lyapunov’s direct method can be applied to the investigation of the
stability of invariant and integral sets of impulsive differential systems. Note that in certain cases, the investigation
of the stability of invariant or integral sets of impulsive systems of general form (where τi depend on x in (1.1) and
(1.2)) can be reduced to the investigation of the stability of an invariant or integral set of a certain system with fixed
sequence of times of impulse influence [34,41].

The set M ⊂ R+ × Rn is an integral set of system (1.1) and (1.2) if, for any point (t0, x0) ∈ M , it follows that
(t,Φ(t, t0, x0)) ∈ M for t ≥ t0 where Φ(t, t0, x0) is a solution of (1.1) and (1.2). Let M(t) = {x ∈ Rn

: (t, x) ∈ M}.
In [27,34,39,41] system (1.1) and (1.2) has been considered. It is assumed that there is a continuously differentiable
function V (t, x) defined in the domain {(t, x) : t ∈ R+, x ∈ D ⊂ Rn

} and possessing the properties

V (t, x) = 0, (t, x) ∈ M, (1.4)

V (t, x) ≥ a(ρ(x,M(t))) (1.5)

where a(s) is a continuous increasing function, a(0) = 0. The typical results obtained in [17,27,29,34,39,41] are the
following.



A.O. Ignatyev / Nonlinear Analysis 69 (2008) 53–72 55

• If
dV

dt
=
∂V

∂t
+ 〈gradx V, X〉 ≤ 0,

V (τi , x + Ji (x)) ≤ V (τi , x), i = 1, 2, . . . ,

then M is a stable integral set of system (1.1) and (1.2).
• Suppose that, for system (1.1) and (1.2) there exists a continuously differentiable function V (t, x) satisfying

conditions (1.4) and (1.5) and such that

dV

dt
=
∂V

∂t
+ 〈gradx V, X〉 ≤ −φ(V (t, x)),

V (τi , x + Ji (x)) ≤ ψ(V (τi , x)), i = 1, 2, . . .

where φ and ψ are continuous functions R+ → R+ with certain properties. Then M is an asymptotically stable
integral set of system (1.1) and (1.2).

If M(t) = M0 ⊂ Rn for all t ≥ t0, then M0 is an invariant set of system (1.1) and (1.2) and the above conditions are
the sufficient conditions of stability and asymptotic stability of M0 [11,17,19,27,35,34,39,51]. Note that the stability
of integral and invariant sets of ODE was investigated in [5,24,25,36,44].

In [11,19,34,40] the system of state-dependent differential equations with impulse effect

dx

dt
= f (x) for x 6∈ Γ , ∆x |x∈Γ = I (x) (1.6)

is considered. Here x ∈ D ⊂ Rn ; D is a bounded domain in Rn , Γ is a surface without contact for the system
dx/dt = f (x),Γ ⊂ D. It has been proved that if there exists a function V (x) which satisfies conditions

V (x) = 0 for x ∈ M0,M0 ⊂ D,

V (x) > 0 for x ∈ D \ M0,

and, futhermore,

〈gradx V, f 〉 ≤ 0, x 6∈ Γ ,
V (x + I (x)) ≤ V (x), x ∈ Γ ,

then the set M0 is the stable invariant set of system (1.6). If, in addition

〈gradx V, X〉 ≤ −ϕ(V (x)), x 6∈ Γ ,

where ϕ(s) is a continuous function, s ≥ 0, ϕ(0) = 0, and ϕ(s) > 0 for s > 0, then M0 is an asymptotically stable
invariant set of system (1.6).

Assume that x = (y, z) in (1.1) and (1.2) where y ∈ Rl , z ∈ Rm, (l + m = n). Unlike in the above papers where
the stability of the bounded invariant set M0 ⊂ Rn of system (1.1) and (1.2) is studied, papers [35,47] deal with partial
stability (y-stability) of the zero solution of (1.1) and (1.2). Roughly speaking, this means that ‖x0‖ is small implies
that ‖y(t)‖ is small. The goal of this paper is to investigate the stability of the set y = 0 which is an unbounded
set of Rn (roughly speaking, this means that ‖y0‖ is small implies that ‖y(t)‖ is small). The paper is organized as
follows. In Section 2, we introduce the main definitions and prove the theorem on uniform asymptotic stability. Then
in Section 3, we state and prove a fundamental result (Theorem 3.1) on the conversion of the theorem about uniform
asymptotic stability. Section 4 deals with stability of invariant sets of perturbed systems. Finally, in Section 5, the
stability of invariant sets of periodic systems is considered.

2. Preliminaries and main definitions. Theorem on uniform asymptotic stability

The notions of the invariance of multidimensional sets and attractivity of smooth submanifolds (hypersurfaces) are
closely connected with the concepts of partial stability. The latter implies that only a part of the system variables or
a certain function of the state coordinates tends to a desired (partial, or relative) equilibrium. The concepts of partial
stability, going back to famous works by A.M. Lyapunov, E.J. Routh and V. Volterra, were developed in [12,13,23,35,
36,38,42,43,46,50].
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The concepts of partial stability and set stability, being very similar, are not, in general, identical. Consider system
with impulse effect (1.1) and (1.2) where x = (y, z), y = (y1, y2, . . . , yl) ∈ Rl , z = (z1, z2, . . . , zm) ∈ Rm (l +m =

n). Denote X = (Y, Z), Y = (Y1, Y2, . . . , Yl) ∈ Rl , Z = (Z1, Z2, . . . , Zm) ∈ Rm , Ji = (Jyi , Jzi ), Jyi =

(J 1
yi , J 2

yi , . . . , J l
yi ) ∈ Rl , Jzi = (J 1

zi , J 2
zi , . . . , J m

zi ) ∈ Rm , and rewrite system (1.1) and (1.2) in the form

dy

dt
= Y (t, y, z), t 6= τi , t ∈ R,

y(τ+

i )− y(τi ) = Jyi (y, z), i ∈ N,
(2.1)

dz

dt
= Z(t, y, z), t 6= τi , t ∈ R,

z(τ+

i )− z(τi ) = Jzi (y, z), i ∈ N.
(2.2)

Denote x0 = (y0, z0), Φ(t, t0, x0) = (F(t, t0, x0), E(t, t0, x0)) (F ∈ Rl , E ∈ Rm) is a solution of system (2.1) and
(2.2) satisfying the identities F(t0, t0, x0) = y0, E(t0, t0, x0) = z0 where x0 ∈ Rn if t0 ∈

⋃
∞

i=1(τi−1, τi ). If, however,
t0 = τi , i ∈ N, then we denote by Φ(t, t0, x0) = (F(t, t0, x0), E(t, t0, x0)) for t > t0 the solution of system (2.1) and
(2.2) such that

F(t+0 , t+0 , x0 + Ji (x0)) = y0 + Jyi (x0),

E(t+0 , t+0 , x0 + Ji (x0)) = z0 + Jzi (x0).

According to the existing tradition [3,30,45], the solution x(t) is assumed to be continuous from the left at the points
τi : Φ(τi , t0, x0) = Φ(τ−

i , t0, x0) i ∈ N.
Suppose that Y (t, 0, z) ≡ 0, Jyi (0, z) ≡ 0. Under these assumptions, system (2.1) and (2.2) has the invariant set

M which is described by the equality

y = 0. (2.3)

This means that y0 = 0 implies F(t, t0, x0) ≡ 0.
Denote ‖y‖ = max1≤s≤l |ys

|, ‖z‖ = max1≤ j≤m |z j
|,

BH = {x ∈ Rn
: ‖y‖ ≤ H, ‖z‖ < ∞}, G =

∞⋃
i=1

(τi−1, τi )× BH .

Let us make the following assumptions.

(P1) A function X = (Y, Z) is continuous in each domain (τi−1, τi )× BH (i ∈ N), Y (t, 0, z) ≡ 0,

‖Y (t, y1, z1)− Y (t, y2, z2)‖ ≤ L‖y1 − y2‖,

and for any k ∈ N there exist the finite limits

lim
t→τ−

k

X (t, x) = X (τk, x), lim
t→τ+

k

X (t, x) = X (τ+

k , x).

(P2) Functions Ji = (Jyi , Jzi )(i ∈ N) are continuous, Jyi (0, z) = 0, i ∈ N, z ∈ Rm , and

‖Jyi (y1, z1)− Jyi (y2, z2)‖ ≤ L‖y1 − y2‖, (y1, z1) ∈ BH , (y2, z2) ∈ BH , i ∈ N.

(P3) Constants τi (i ∈ N) satisfy conditions 0 = τ0 < τ1 < τ2 < · · ·, limi→∞ τi = +∞, and in each segment
[t, τ ] ⊂ R+, there are no more than p points τi where p depends on the length of the segment [t, τ ].

Let us introduce some necessary definitions.

Definition 2.1. The invariant set (2.3) of system (2.1) and (2.2) is said to be stable if for any ε > 0 and t0 ∈ R+ there
exists δ = δ(ε, t0) > 0 such that ‖y0‖ < δ implies ‖F(t, t0, x0)‖ < ε for t ≥ t0. If δ can be chosen independent
of t0 (i.e. δ = δ(ε)), then the invariant set (2.3) is called uniformly stable.

Definition 2.2. The invariant set M of system (2.1) and (2.2) is said to be attractive if for any t0 ∈ R+ there exists an
η = η(t0) > 0, and for any ε > 0 and x0 ∈ Bη there exists a σ = σ(ε, t0, x0) > 0 such that ‖F(t, t0, x0)‖ < ε for all
t ≥ t0 + σ . We say that Bη is contained in the domain of attraction of M at the moment t0.
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In other words, M is an attractive set if

lim
t→∞

‖F(t, t0, x0)‖ = 0. (2.4)

Definition 2.3. The set M is said to be uniformly attractive one for system (2.1) and (2.2) if for some η > 0 and any
ε > 0 there exists a σ = σ(ε) > 0 such that ‖F(t, t0, x0)‖ < ε for all t0 ∈ R+, x0 ∈ Bη and t ≥ t0 + σ .

In other words, M is a uniformly attractive set if the limit relation (2.4) holds uniformly with respect to
t0 ≥ 0, x0 ∈ Bη.

Definition 2.4. The invariant set M of system (2.1) and (2.2) is said to be:

• asymptotically stable if it is stable and attractive;
• uniformly asymptotically stable if it is uniformly stable and uniformly attractive.

Let K denote the class of Hahn functions [42], that is g ∈ K if g : R+ → R+ is a continuous increasing function
such that g(0) = 0. Note that in [9,7,8,20] these functions are called wedges.

Definition 2.5. We say that a function V : R+ × BH → R belongs to the class V0 if it is continuous on the set G,
satisfies the condition |V (t, x1) − V (t, x2)| ≤ L‖y1 − y2‖, x1 = (y1, z1), x2 = (y2, z2) uniformly with respect to
t ∈ R+, z1 ∈ Rm , z2 ∈ Rm ; V (t, 0, z) ≡ 0 for t ∈ R+, z ∈ Rm , and for any k ∈ N there exist the finite limits

lim
t→τ−

k

V (t, x) = V (τk, x), lim
t→τ+

k

V (t, x) = V (τ+

k , x).

We say that a function V ∈ V0 belongs to the class V1 if it is a C1 function on G. For (t, x) ∈ G we define the
derivative of the function V ∈ V1 as

dV

dt
=
∂V

∂t
+
∂V

∂x
· X (t, x).

Theorem 2.1. Let system (2.1) and (2.2) be such that there exists a function V ∈ V0 such that

V (t, x) ≥ g(‖y‖), t ∈ R+, x ∈ BH , g ∈ K, (2.5)

V (t, x) ≤ b(‖y‖), t ∈ R+, x ∈ BH , b ∈ K, (2.6)

D+V (t, x) ≤ −c(‖y‖), t ∈ R+, x ∈ BH , t 6= τi (i ∈ N), c ∈ K (2.7)

where D+V (t, x) is the right upper Dini derivative of the function V along the solution x(t), and

V (τ+

i , x + Ji (x)) ≤ V (τi , x), i ∈ N, x ∈ BH . (2.8)

Then M is an invariant and uniformly asymptotically stable set of system (2.1) and (2.2) and there exists an
H0 > 0 (H0 < H) such that the domain of attraction of M contains the set BH0 . The identities

Y (t, 0, z) ≡ 0, Jyi (0, z) ≡ 0, i ∈ N (2.9)

are also valid.

Proof. If x0 ∈ M , then V (t,Φ(t, t0, x0)) ≡ 0 in view of (2.6)–(2.8), whence it follows from (2.5) that ‖F(t, t0, x0)‖ =

0 for t ≥ t0, and this proves the invariance of M . Note that conditions ‖F(t, t0, x0)‖ = 0 and (2.9) are equivalent if
x0 ∈ M .

Pick any ε1 > 0 (ε1 < H), and choose δ = b−1(g(ε1)). If ‖y0‖ < δ, then from properties (2.5)–(2.8) we have

g(‖F(t, t0, x0)‖) ≤ V (t,Φ(t, t0, x0)) ≤ V (t0, x0)

≤ b(‖y0‖) < b(b−1(g(ε1))) = g(ε1),

whence it follows ‖F(t, t0, x0)‖ < ε1 for t > t0. This proves the uniform stability of M .
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The uniform stability of M implies that for every positive ε2 (ε2 < H) there exists H0 = H0(ε2) > 0 such that for
any t0 ∈ R+, x0 ∈ BH0 the inequality ‖F(t, t0, x0)‖ < ε2 holds for t > t0. Consider the solution Φ(t, t0, x0) of Eqs.
(2.1) and (2.2) with x0 ∈ BH0 . Since x0 ∈ BH0 , then ‖y0‖ ≤ H0, whence

V (t0, x0) ≤ b(‖y0‖) ≤ b(H0). (2.10)

Let ε be any sufficiently small positive number. Denote T (ε) :=
b(H0)

c(b−1(g(ε)))
. Let us show that there exists σ ∈ [0, T ]

such that

V (t0 + σ,Φ(t0 + σ, t0, x0)) < g(ε). (2.11)

Suppose the opposite: for any σ ∈ [0, T ] the inequality V (t0 + σ,Φ(t0 + σ, t0, x0)) ≥ g(ε) holds, whence we have

‖F(t, t0, x0)‖ ≥ b−1(V (t,Φ(t, t0, x0))) ≥ b−1(g(ε)) (2.12)

for t0 ≤ t ≤ t0 + T . From inequalities (2.12) we derive that

dV (t,Φ(t, t0, x0))

dt
≤ −c(b−1(g(ε))), t ∈ R+, x0 ∈ Bε2 , t 6= τi (i ∈ N), c ∈ K.

This inequality together with (2.5) and (2.8) imply

0 < g(‖F(t, t0, x0)‖) ≤ V (t,Φ(t, t0, x0)) ≤ V (t0, x0)− c(b−1(g(ε)))(t − t0).

For t − t0 = T we have V (t0, x0) − b(H0) > 0, but this contradicts relations (2.10). This proves the existence
of σ ∈ [0, T ] such that inequality (2.11) is valid. Since V does not increase along the solution Φ(t, t0, x0), then
V (t,Φ(t, t0, x0)) < g(ε) for t ≥ t0 + σ . This implies ‖F(t, t0, x0)‖ < ε for t ≥ t0 + σ . Hence M is uniformly
attractive, and its domain of attraction contains the set BH0 . This completes the proof. �

Definition 2.6. System (1.1) and (1.2) is said to be periodic with respect to t with the period ω if there exists a q ∈ N,
such that

Ji+q(x) ≡ Ji (x), τi+q = τi + ω (i = 1, 2, . . .); X (t + ω, x) ≡ X (t, x). (2.13)

3. The converse theorem

Lemma 3.1. Assume that there are p points of impulse effect in (t0, t1], the function Y satisfies condition (P1) in the
domain R+ × BH , and Jyi (i ∈ N) satisfy conditions (P2) in BH , and solutions Φ(t, t0, x1) and Φ(t, t0, x2), where
x1 = (y1, z1), y1 = (y1

1 , . . . , yl
1), z1 = (z1

1, . . . , zm
1 ), and x2 = (y2, z2) = (y1

2 , . . . , yl
2, z1

2, . . . , zm
2 ), lie in BH for

t ∈ (t0, t1]. Then

‖F(t, t0, x1)− F(t, t0, x2)‖ ≤ (1 + L)p
‖y1 − y2‖eL(t1−t0). (3.1)

Proof. First assume that p = 1, i.e. there is one point of impulse effect t = τ1 in (t0, t1]. We have

F s(τ−

1 , t0, x1)− F s(τ−

1 , t0, x2) = (ys
1 − ys

2)

+

∫ τ1

t0
[Ys(t,Φ(t, t0, x1))− Ys(t,Φ(t, t0, x2))]dt, s = 1, 2, . . . , l,

whence using property (P1) we obtain

|F s(τ−

1 , t0, x1)− F s(τ−

1 , t0, x2)| ≤ ‖y1 − y2‖

+ L
∫ τ1

t0
‖F(t, t0, x1)− F(t, t0, x2)‖dt, s = 1, 2, . . . , l,

‖F(τ−

1 , t0, x1)− F(τ−

1 , t0, x2)‖ = sup
1≤s≤l

|F s(τ−

1 , t0, x1)− F s(τ−

1 , t0, x2)|

≤ ‖y1 − y2‖ + L
∫ τ1

t0
‖F(t, t0, x1)− F(t, t0, x2)‖dt.
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Using the Gronwall–Bellman lemma we obtain

‖F(τ−

1 , t0, x1)− F(τ−

1 , t0, x2)‖ ≤ ‖y1 − y2‖eL(τ1−t0). (3.2)

From property (P2) and inequality (3.2) we have

‖F(τ+

1 , t0, x1)− F(τ+

1 , t0, x2)‖ ≤ ‖F(τ−

1 , t0, x1)− F(τ−

1 , t0, x2)‖

+ ‖Jy1(F(τ
−

1 , t0, x1), E(τ−

1 , t0, x1))− Jy1(F(τ
−

1 , t0, x2), E(τ−

1 , t0, x2))‖

≤ (1 + L)‖y1 − y2‖eL(τ1−t0). (3.3)

Indeed,

‖F(t1, t0, x1)− F(t1, t0, x2)‖ ≤ ‖F(τ+

1 , t0, x1)− F(τ+

1 , t0, x2)‖

+ L
∫ t1

τ1

‖F(t, t0, x1)− F(t, t0, x2)‖dt

whence from (3.3) by the Gronwall–Bellman lemma we get

‖F(t1, t0, x1)− F(t1, t0, x2)‖ ≤ ‖F(τ+

1 , t0, x1)− F(τ+

1 , t0, x2)‖eL(t1−τ1)

≤ (1 + L)‖y1 − y2‖eL(t1−t0).

For p > 1 by means of induction it is possible to show the truth of estimate (3.1). �

Corollary 3.1. If initial conditions x1 = (y1, z1) and x2 = (y2, z2) of two solutions Φ(t, t0, x1) and Φ(t, t0, x2) of
system (1.1) and (1.2) are such that y1 = y2, then F(t, t0, x1) ≡ F(t, t0, x2) for t ≥ t0.

Lemma 3.2. Suppose that ψ(τ) : R+ → R+ is a non-negative bounded piecewise continuous function approaching
zero as τ → ∞, with discontinuity points of the first kind τ1, . . . , τn, . . ., such that 0 < τ1 < τ2 < · · · and
limi→∞ τi = +∞. Suppose that ψ(τi ) = ψ(τ−

i ), i ∈ N, and on the set
⋃

∞

i=1(τi−1, τi ) the function ψ(τ) has a
derivative ψ ′(τ ), satisfying the inequality |ψ ′(τ )| ≤ P. Then the function f (t) = supt≤τ<∞ ψ(τ) at any value of
t ∈ R+ has one-sided derivatives such that

−P ≤ f ′(t−) ≤ 0, −P ≤ f ′(t+) ≤ 0. (3.4)

Proof. Note that the curve y = f (t) for t ∈ R+ consists of alternating parts of the curve y = ψ(t), whereψ(t) is non-
increasing and segments where the function f (t) is constant; that is f (t) is a piecewise continuous monotonically non-
increasing function approaching zero as t → ∞. The discontinuity points can occur only at the points t = τi (i ∈ N).
For t ∈ R+ this function has the one-sided derivatives f ′(t±) = f ′(t ±0) satisfying conditions (3.4), as required. �

Lemma 3.3. Suppose that f1 : R+ → R+, and f2 : R+ → R+ are two bounded nonnegative piecewise continuous
functions having one-sided limits at the discontinuity points and such that

lim
t→∞

f1(t) = 0, lim
t→∞

f2(t) = 0.

Then ∣∣∣∣∣ sup
t∈R+

f1(t)− sup
t∈R+

f2(t)

∣∣∣∣∣ ≤ sup
t∈R+

| f1(t)− f2(t)|.

Proof. Lemma 3.3 is obviously true in the case supt∈R+
f1(t) = supt∈R+

f2(t). Suppose that supt∈R+
f1(t) 6=

supt∈R+
f2(t). Without loss of generality we assume that supt∈R+

f1(t) > supt∈R+
f2(t). Since the functions

f1(t), f2(t), being non-negative and bounded, approach zero as t → ∞, there exist finite values t1, t2, t3 such
that supt∈R+

f1(t) = f1(t
±

1 ), supt∈R+
f2(t) = f2(t

±

2 ), and supt∈R+
| f1(t) − f2(t)| = | f1(t

±

3 ) − f2(t
±

3 )|. Here
fk(t

±

i ) (k = 1, 2; i = 1, 2, 3) denotes either the value or the one-sided limit of the function fk at the point ti .
Consequently, f1(t

±

1 )− f2(t
±

2 ) ≤ f1(t
±

1 )− f2(t
±

1 ) ≤ | f1(t
±

3 )− f2(t
±

3 )|, which proves Lemma 3.3. �
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Theorem 3.1. Suppose that property (P1)–(P3) hold, the invariant set (2.3) of system (2.1) and (2.2) is uniformly
asymptotically stable, and its domain of attraction contains the set BH∗

(0 < H∗ < H). Then there exist constants
P > 0, L1 > 0 and functions g ∈ K, b ∈ K, c ∈ K, V : R+ × BH∗

→ R+ such that V ∈ V0,

|V (t, x1)− V (t, x2)| ≤ L1‖y1 − y2‖ (3.5)

for t ∈ R+, x1 = (y1, z1) ∈ BH∗
, x2 = (y2, z2) ∈ BH∗

, |V (t1, x) − V (t2, x)| ≤ L1|t1 − t2| for x ∈ BH∗
, t1 ∈

(τi−1, τi ), t2 ∈ (τi−1, τi ), (i ∈ N), conditions (2.5)–(2.8) are satisfied, and D+V (t, x) ≥ −P.
If system (2.1) and (2.2) is periodic with period ω, then the function V can also be chosen to be periodic in t with

the period ω.

Proof. Let ϕ(t) be a monotonically decreasing function satisfying the inequality

‖F(t, t0, x0)‖ ≤ ϕ(t − t0) for t ≥ t0 (3.6)

for any x0 ∈ BH∗
, and such that limt→∞ ϕ(t) = 0. The existence of such function ϕ(t) follows from the property

of uniform asymptotic stability of the invariant set M in the sense of Definition 2.4. (It suffices to choose for ϕ(t)
any continuous positive function that is monotonically decreasing to zero and satisfies the inequality ϕ(t) > ε for
t ∈ [σ(ε), σ ( ε2 )]).

Let Q(t) : R+ → R+ be a monotonically increasing continuous function such that limt→∞ Q(t) = +∞. In [33,
p. 452–458] it is shown that there exists a continuously differentiable function g = g(ϕ) : R+ → R+, such that

g ∈ K, g′
∈ K, (3.7)∫

∞

0
g(ϕ(τ ))dτ = N1 < +∞, (3.8)∫

∞

0
g′(ϕ(τ ))Q(τ )dτ = N2 < +∞, (3.9)

g′(ϕ(τ ))Q(τ ) < N3 for all τ ≥ 0, (3.10)

where N1, N2, N3 are positive constants.
Let us show that the function

V (t, x) =

∫
∞

t
g(‖F(τ, t, x)‖)dτ + sup

t≤τ<∞

g(‖F(τ, t, x)‖) (3.11)

where x = (y, z) satisfies all the conditions of the theorem.
Integral (3.8) converges; hence by estimate (3.6) the integral in the right-hand side of (3.11) converges.

Consequently, the function V is defined in the domain

R+ × BH∗
. (3.12)

Note that supt≤τ<∞ ‖F(τ, t, x)‖ ≥ ‖y‖. By (3.7) we obtain∫
∞

t
g(‖F(τ, t, x)‖)dτ ≥ 0, sup

t≤τ<∞

g(‖F(τ, t, x)‖) ≥ g(‖y‖),

that is, the function V satisfies inequality (2.5).
From estimate (3.6) we obtain that ‖F(t, t0, x0)‖ ≤ ϕ(0) for all t0, x0 from domain (3.12); hence

V (t, x) ≤

∫
∞

0
g(ϕ(τ ))dτ + g(ϕ(0)) = N4 = const.

Consequently, the function V is uniformly bounded in domain (3.12). Let us show that the function V satisfies
inequality (3.5). Using Lemma 3.3 we obtain

|V (t, x1)− V (t, x2)| =

∣∣∣∣∫ ∞

t
[g(‖F(τ, t, x1)‖)− g(‖F(τ, t, x2)‖)]dτ

+

[
sup

t≤τ<∞

g(‖F(τ, t, x1)‖)− sup
t≤τ<∞

g(‖F(τ, t, x2)‖)

] ∣∣∣∣
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≤

∫
∞

t
g′
ϕ(sup(‖F(τ, t, x1)‖, ‖F(τ, t, x2)‖)‖F(τ, t, x1)− F(τ, t, x2)‖)dτ

+ sup
t≤τ<∞

|g(‖F(τ, t, x1)‖)− g(‖F(τ, t, x2)‖)|. (3.13)

According to Lemma 3.1 we have

‖F(τ, t, x1)− F(τ, t, x2)‖ < Q(τ − t)‖y1 − y2‖, (3.14)

where Q : R+ → R+ is monotonically increasing positive continuous function satisfying the inequality

Q(τ − t) > (1 + L)peL(τ−t)
;

here p is the number of points τi in the segment [t, τ ]. By property (P3) such a function does exist. Taking into
account inequality (3.13), applying to the second summand in the right-hand side of (3.13) the Mean Value Theorem,
and using estimates (3.9) and (3.10) we obtain

|V (t, x1)− V (t, x2)| ≤ ‖y1 − y2‖

[∫
∞

t
g′
ϕ(sup(‖F(τ, t, x1)‖, ‖F(τ, t, x2)‖))Q(τ − t)dτ

+ sup
t≤τ<∞

(g′
ϕ(ϕ(τ − t)))Q(τ − t)

]
≤ (N2 + N3)‖y1 − y2‖ (3.15)

which proves that V satisfies condition (3.5). This implies that there exists a function b ∈ K such that inequality (2.6)
holds. One can choose b(‖y‖) = (N2 + N3)(‖y‖).

We now verify that |V (t1, x)− V (t2, x)| ≤ L1|t1 − t2| for x ∈ BH∗
, t1 ∈ (τi−1, τi ), t2 ∈ (τi−1, τi ), i ∈ N, where

L1 is a constant that does not depend on i . Indeed, this follows from the fact that the first summand on the right-hand
side of (3.11) is a continuous function with respect to t for t ∈ R+ and a differentiable function with respect to t for
t 6= τi with the absolute value of the derivative uniformly bounded, while the second summand is continuous with
respect to t for t 6= τi , has bounded non-positive left and right derivatives with respect to t for t ∈ R+ by Lemma 3.2,
and the absolute values of these derivatives are also uniformly bounded.

We consider D+V (t, x) along solutions of system (2.1) and (2.2). We have D+V = D+V , where V is the result
of substituting an arbitrary solution Φ(t, t0, x0) of system (2.1) and (2.2) into the function V . But

V =

∫
∞

t
g(‖F(τ, t,Φ(t, t0, x0))‖)dτ + sup

t≤τ<∞

g(‖F(τ, t,Φ(t, t0, x0))‖)

=

∫
∞

t
g(‖F(τ, t0, x0)‖)dτ + sup

t≤τ<∞

g(‖F(τ, t,Φ(t, t0, x0))‖),

since F(τ, t,Φ(t, t0, x0)) ≡ F(τ, t0, x0). Hence for t = t0 we obtain

D+V (t,Φ(t, t0, x0))
∣∣
t=t0

=
d
dt

∫
∞

t
g(‖F(τ, t0, x0)‖)dτ

∣∣∣∣
t=t0

+ lim
ξ→0+

sup
1
ξ

(
sup

t0+ξ≤τ<∞

g(‖F(τ, t0, x0)‖)− sup
t0≤τ<∞

g(‖F(τ, t0, x0)‖)

)
.

The second summand in the right-hand side of the last equality is non-positive; hence

D+V (t,Φ(t, t0, x0))
∣∣
t=t0

≤ −g(‖F(t0, t0, x0)‖) = −g(‖y0‖),

that is, D+V satisfies relation (2.7).
For y = F(τk, t0, x0) we have y + Jyk(x) = F(τ+

k , t0, x0), whence, bearing in mind that the second summand in
(3.11) is a non-increasing function, we get that inequality (2.8) holds along the solution Φ(t, t0, x0) of system (2.1)
and (2.2).

Now suppose that system (2.1) and (2.2) is periodic with respect to t with the period ω. We shall prove that in this
case the function V (t, x) defined by equality (3.11) has the property V (t + ω, x) ≡ V (t, x). Indeed,
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V (t + ω, x) =

∫
∞

t+ω
g(‖F(τ, t + ω, x)‖)dτ + sup

t+ω≤τ<∞

g(‖F(τ, t + ω, x)‖).

Introducing a new variable s by the formula τ = s + ω we obtain

V (t + ω, x) =

∫
∞

t
g(‖F(s + ω, t + ω, x)‖)ds + sup

t≤s<∞

g(‖F(s + ω, t + ω, x)‖). (3.16)

Using the obvious property of solutions of periodic systems

F(t + ω, t0 + ω, x0) = F(t, t0, x0) (3.17)

by equalities (3.16) and (3.17) we obtain V (t + ω, x) ≡ V (t, x), as required. The theorem is proved. �

4. Stability of invariant sets of perturbed systems

We now demonstrate one of the possible applications of Theorem 3.1. Suppose that system (2.1) and (2.2) has the
uniformly asymptotically stable invariant set M described by equality (2.3). Along with system (1.1) and (1.2) we
consider the system

dx

dt
= X (t, x)+ X∗(t, x), t ∈ R+, t 6= τi , (4.1)

x(τ+

i )− x(τi ) = Ji (x)+ J ∗

i (x) = Ii (x), i ∈ N, (4.2)

where X, X∗ = (Y∗, Z∗), Ji , J ∗

i = (J ∗

yi , J ∗

zi ) satisfy properties (P1), (P2) respectively, and system (4.1) and (4.2) has
the same invariant set M as system (1.1) and (1.2). The following theorem holds.

Theorem 4.1. If the invariant set (2.3) of system (1.1) and (1.2) is uniformly asymptotically stable,

lim
t→∞

Y∗(t, x) = 0 (4.3)

uniformly with respect to x ∈ BH (0 < H < ∞), and the series
∑

∞

i=1 ‖J ∗

yi (x)‖ converges uniformly with respect to
x ∈ BH , then the invariant set M of system (4.1) and (4.2) is also uniformly asymptotically stable.

Proof. Since the invariant set M of system (1.1) and (1.2) is uniformly asymptotically stable, there exist a function
V (t, x) and Hahn functions g, b, c, satisfying the conditions of Theorem 3.1. Using Yoshizawa theorem [52] we first
estimate D+V (t, x) along a solution x(t) of system (4.1) and (4.2) for t 6= τi , x ∈ BH∗

where H∗ < H :

D+V (t, x)
∣∣
(4.1), (4.2) = lim

ξ→0+
sup

V (t + ξ, x + ξ X (t, x)+ ξ X∗(t, x))− V (t, x)

ξ

≤ lim
ξ→0+

sup
V (t + ξ, x + ξ X (t, x)+ ξ X∗(t, x))− V (t + ξ, x + ξ X (t, x))

ξ

+ lim
ξ→0+

sup
V (t + ξ, x + ξ X (t, x))− V (t, x)

ξ

≤ L1‖Y∗(t, x)‖ + D+V (t, x)
∣∣
(1.1), (1.2). (4.4)

In similar fashion we estimate the value of the jump of the function V along the trajectory x(t) of system (4.1) and
(4.2) at the instant τi :

∆Vi = V (τ+

i , x + Ji (x)+ J ∗

i (x))− V (τi , x)

= [V (τ+

i , x + Ji (x)+ J ∗

i (x))− V (τ+

i , x + Ji (x))] + [V (τ+

i , x + Ji (x))− V (τi , x)]

≤ V (τ+

i , x + Ji (x)+ J ∗

i (x))− V (τ+

i , x + Ji (x)) ≤ L1‖J ∗

yi (x)‖. (4.5)

Recall that L1 denotes the constant for the function V appearing in inequality (3.5).
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Let us show that the set M of system (4.1) and (4.2) is uniformly stable. Pick an arbitrary ε1 > 0 (ε1 < H∗).
Let t1 ∈ R+ be sufficiently large. Let us show that there exists δ1 = δ1(ε1) > 0 such that the solution
x(t) = x(t, t1, x1) = (y(t), z(t)) of system (4.1) and (4.2) satisfies the condition ‖y(t)‖ < ε1 for t > t1 as soon
as x1 ∈ Bδ1 . We set δ1 = b−1( 1

2 g(ε1)). We assume that the value t1 satisfies the inequality t1 ≥ T1 where T1 is so
large that L1‖Y∗(t, x)‖ < γ1 =

1
2 c(δ1) for t ≥ T1, x ∈ Bε1 and L1

∑
i ‖J ∗

yi (x)‖ <
1
2 g(ε) for x ∈ Bε1 (here the

summation is extended to those values of i , where τi ≥ T1). Since (4.3) holds uniformly with respect to x ∈ BH ,
the series

∑
∞

i=1 ‖Jyi (x)‖ converges uniformly with respect x , and δ1 depends only on ε1, one can choose T1 to be
dependent only on ε1. Using estimates (2.5) we obtain that

g(‖y(t)‖) ≤ V (t, x(t)) ≤ V (t1, x1)+

∫ t

t1
D+V (s, x(s))

∣∣∣∣
(4.1), (4.2)

ds +

∑
i

∆Vi , (4.6)

where the summation on the right-hand side of (4.6) is extended to those values of i , where τi ≥ t1. Bearing in mind
that V (t1, x1) <

1
2 g(ε1),

∑
i ∆Vi <

1
2 g(ε1) and D+V (t, x)

∣∣
(4.1), (4.2) < −

1
2 c(δ1) for ‖y‖ > δ1 we obtain that at an

arbitrary instant t > t1 either the inequality ‖y(t)‖ ≤ δ1 < ε1 holds or

g(‖y(t)‖) ≤ V (t, x(t)) ≤ g(ε1)−
1
2

c(δ1)(t − t1) < g(ε1),

whence ‖y(t)‖ ≤ ε1. Thus, it is proved that for any ε1 > 0 there exists a value T1 = T1(ε1) > 0 such that for any
t1 ≥ T1 there is δ1 = δ1(ε1) > 0 such that the inequality ‖y1‖ < δ1 implies that ‖y(t)‖ = ‖y(t, t1, x1)‖ < ε1 for
t > t1. From Lemma 3.1 and property (P3) we deduce that there exists δ > 0 such that for any t0 ∈ [0, T1] and x0 ∈ Bδ
the solution x(t, t0, x0) satisfies the inequality ‖y(T1, t0, x0)‖ < δ1 and therefore the inequality ‖y(t, t0, x0)‖ < ε1
for t > t0. Since δ1 and T1 depend only on ε1, we conclude that δ also depends only on ε1, which proves the uniform
stability of the set M of system (4.1) and (4.2).

We now show that the set M of system (4.1) and (4.2) is uniformly attracting. For that we choose an arbitrary
ε1 > 0 (ε1 < H∗) and the correspondent value δ = δ(ε1) > 0 in the definition of uniform stability. Let us show that
for any ε2 > 0 (ε2 < ε1) there exists a σ = σ(ε2) > 0 such that ‖y(t, t0, x0)‖ < ε2 for all ‖y0‖ < δ, t0 ∈ R+ and
t ≥ t0 +σ . For that we choose δ2 = δ2(ε2) > 0 such that if the solution x(t, t0, x0) of system (4.1) and (4.2), gets into
Bδ2 at some instant, then it stays in Bε2 for all t . It is possible to choose such δ2 by the property of uniform stability of
the invariant set M of system (4.1) and (4.2) proved above. So we have the inequality ‖y(t, t0, x0)‖ < ε1 for t > t0.
We estimate the period of time during which the solution x(t, t0, x0) can belong to the set

δ2 ≤ ‖y‖ ≤ ε1. (4.7)

Let t2 denotes an instant such that L1‖Y∗(t, x)‖ < γ2 =
1
2 c(δ2) for t ≥ t2, x ∈ Bε1 and L1‖J ∗

yi (x)‖ <
1
2 g(ε1) for

τi ≥ t2, x ∈ Bε1 . Since (4.3) holds uniformly with respect to x ∈ BH , the series
∑

∞

k=1 ‖J ∗

yi (x)‖ converges uniformly
with respect to x ∈ BH , and γ2 depends only on ε2, one can choose t2 to be dependent only on ε2. We show that
the invariant set M of system (4.1) and (4.2) reaches set (4.7) no later than at t3 = (b(ε1) +

1
2 g(ε1))/γ2. For that we

estimate the value V (t, x(t)) for t > t2:

0 < g(δ2) ≤ V (t, x(t)) ≤ V (t2, x(t2))− γ2(t − t2)+

∑
i

∆Vi

≤ b(ε1)+
1
2

g(ε1)− γ2(t − t2). (4.8)

We obtain the required estimate from inequalities (4.8). Thus, the value σ can be chosen in the form σ = t2+t3, where
t2 and t3 depend only on ε2. This proves that the invariant set M of system (4.1) and (4.2) is uniformly attracting and
its domain of attraction contains the set Bδ . The theorem is proved. �

Theorem 4.2. Suppose that systems (1.1), (1.2) and (4.1), (4.2) are such that the property (P1)–(P3) hold and there
exists a positive constant h such as τi+1 − τi ≥ 8h for i ∈ N. If the invariant set M of system (1.1) and (1.2) is
uniformly asymptotically stable, the function Y∗(t, x) satisfies the limit relation

lim
t→∞

∫ t+Ω

t
Y∗(s, x)ds = 0 (4.9)
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uniformly with respect to Ω > 0, x ∈ BH , and the sequence {J ∗

yi (x)} satisfies the condition

lim
i→∞

‖J ∗

yi (x)‖ = 0 (4.10)

uniformly with respect to x ∈ BH , then the invariant set M of system (4.1) and (4.2) is also uniformly asymptotically
stable.

Proof. Let Φ(t, t0, x0) = (F(t, t0, x0), E(t, t0, x0)), F = (F1, . . . , F l), E = (E1, . . . , Em), and x(t) =

(x1, . . . , xn) = x(t, t0, x0) = (y(t, t0, x0), z(t, t0, x0)), y = (y1, . . . , yl), z = (z1, . . . , zm) denote, respectively,
the solutions of systems (1.1), (1.2) and (4.1), (4.2) satisfying the identities Φ(t0, t0, x0) = (y0, z0) = x0 and
x(t0, t0, x0) = x0. Since the invariant set M of system (1.1) and (1.2) is uniformly asymptotically stable, there exists
a function V (t, x), having the properties listed in Theorem 2.1.

First we show that M is uniformly stable with respect to system (4.1) and (4.2). Let ε be an arbitrary sufficiently
small positive number (ε < H∗ < H). We set

ξ = min
{

b−1
(

1
2

g(ε)

)
,

ε

(1 + L)3e16Lh

}
.

We shall show that any solution that starts at a sufficiently late instant at a point x1 = (y1, z1) satisfying the condition
‖y1‖ < ξ does not leave Bε for all t . Assume the opposite: suppose that there exist a solution x(t) of system (4.1) and
(4.2) and instants t1, t2 such that 0 < t∗ ≤ t1 < t2, ‖y(t1)‖ ≤ ξ, ‖y(t+2 )‖ ≥ ε and

ξ < ‖y(t)‖ ≤ ε (4.11)

for t1 < t ≤ t2. Here t∗ is some fixed sufficiently large instant. With regard to the mutual disposition of the points
t1, t2 and the instants of impulse effect the following cases are possible:

(1) there are no instants of impulse effect in the interval (t1, t2);
(2) there is one point τk in (t1, t2);
(3) there are at least two points of impulse effect in (t1, t2).

First we consider the case, where there are no impulses in (t1, t2). From Lemma 3.1, by the choice of ξ we
obtain that t2 − t1 > 16h. We divide the segment [t1, t2] into r equal segments by the points θk = t1 + kθ (k =

1, 2, . . . , r − 1), θ0 = t1, θr = t2. On (θ j−1, θ j ] we set Φθ j−1 = xθ j−1 = x(θ+

j−1, t0, x0). At the same time we set
Φθ j = Φ(θ j , θ j−1,Φθ j−1) for the value of the solution of system (1.1) and (1.2) with the initial data (θ j−1,Φθ j−1) at
the instant θ j ; we also set xθ j = x(θ j , t0, x0).

We find

V (t2, x(t2))− V (t+1 , x(t+1 )) =

r∑
j=1

[V (θ j , x(θ j ))− V (θ+

j−1), x(θ+

j−1)]

= R1 + R2 +

r∑
j=1

[V (θ+

j−1,Φ(θ
+

j−1, t0, x0))− V (θ+

j−1, x(θ+

j−1))],

where

R1 =

r∑
j=1

[V (θ j ,Φ(θ j , t0, x0))− V (θ+

j−1,Φ(θ
+

j−1, t0, x0))],

R2 =

r∑
j=1

[V (θ j , x(θ j ))− V (θ j ,Φ(θ j , t0, x0))].

We estimate the quantities R1 and R2:

R1 ≤

r∑
j=1

∫ θ j

θ j−1

D+V

∣∣∣∣∣
(1.1), (1.2)

dt ≤ −rθc(ξ) = −(t2 − t1)c(ξ), (4.12)
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|R2| ≤

r∑
j=1

|V (θ j , x(θ j ))− V (θ j ,Φ(θ j , t0, x0))|, (4.13)

|V (θ j , x(θ j ))− V (θ j ,Φ(θ j , t0, x0))| ≤ L1‖y(θ j )− F(θ j )‖ = L1 max
1≤k≤l

(|yk(θ j )− Fk(θ j )|), (4.14)

yk(θ j )− Fk(θ j ) =

∫ θ j

θ j−1

[Y k(t, x(t))− Y k(t,Φ(t, t0, x0))]dt +

∫ θ j

θ j−1

Y k
∗ (t, x(t))dt,

|yk(θ j )− Fk(θ j )| ≤

∫ θ j

θ j−1

∣∣∣Y k(t, x(t))− Y k(t,Φ(t, t0, x0))

∣∣∣ dt

+

∣∣∣∣∣
∫ θ j

θ j−1

Y k
∗ (t, x(θ j−1))dt

∣∣∣∣∣+
∫ θ j

θ j−1

∣∣∣Y k
∗ (t, x(t))− Y k

∗ (t, x(θ j−1))

∣∣∣ dt, (4.15)

|Y k(t, x(t))− Y k(t,Φ(t, t0, x0))| ≤ L‖y(t)− F(t)‖ ≤ L · 2L · θ = 2L2θ for t ∈ (θ j−1, θ j ],∫ θ j

θ j−1

∣∣∣Y k(t, x(t))− Y k(t,Φ(t, t0, x0))

∣∣∣ dt ≤ 2L2θ2
; (4.16)

∫ θ j

θ j−1

∣∣∣Y k
∗ (t, x(t))− Y k

∗ (t, x(θ j−1))

∣∣∣ dt ≤ L
∫ θ j

θ j−1

‖y(t)− y(θ j−1)‖dt ≤ L2θ2. (4.17)

Since (4.9) holds uniformly with respect to Ω > 0, x ∈ BH , there exists a positive continuous function u(t)
monotonically decreasing to zero as t → +∞ and such that∣∣∣∣∣

∫ t+Ω

t
Y k

∗ (s, x)ds

∣∣∣∣∣ ≤ u(t) (x ∈ BH ,Ω > 0, 1 ≤ k ≤ l),

whence∣∣∣∣∣
∫ θ j

θ j−1

Y k
∗ (s, x(θ j−1))ds

∣∣∣∣∣ ≤ u(θ j−1) ≤ u(t∗).

Using estimates (4.12)–(4.17) we obtain

V (t2, x(t2))− V (t+1 , x(t+1 )) ≤ −rθc(ξ)+ r L1(2L2θ2
+ L2θ2

+ u(t∗))

= −
15
16
(t2 − t1)c(ξ)+ 3L1L2r(θ2

− 2βθ + γ ), (4.18)

where

β =
c(ξ)

96L1L2 , γ =
u(t∗)

3L2 .

Using (4.5) and (4.18) one can estimate the quantity ∆V = V (t+2 , x(t+2 )) − V (t1, x(t1)) irrespective of whether
the instants t1 and t2 are points of impulse effect or not:

∆V ≤ −
15
16
(t2 − t1)c(ξ)+ 3L1L2r(θ2

− 2βθ + γ )+ L1(‖J ∗

yi (x(t1))‖ + ‖J ∗

yi (x(t2))‖).

We assume τ∗ to be so large that

L1‖J ∗

yi (x)‖ < θc(ξ) <
1
16
(t2 − t1)c(ξ) for τi ≥ τ∗, x ∈ Bε. (4.19)

Since (4.10) holds, such τ∗ exists.
We choose θ to satisfy the quadratic inequality

θ2
− 2βθ + γ < 0. (4.20)
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This inequality is valid if θ ∈ (θ (1), θ (2)), where θ (1) = β −

√
β2 − γ and θ (2) = β +

√
β2 − γ . We assume t∗ to be

so large that

u(t∗) <
c2(ξ)

3072L2
1L2

. (4.21)

This ensures that β2
− γ > 0 and θ (2) > θ (1) > 0. Let us show that there exist a positive integer r and θ ∈ (θ (1), θ (2))

such that

rθ = t2 − t1. (4.22)

The inequalities θ (1) < θ < θ (2) under condition (4.22) can be written in the form

θ (1) <
t2 − t1

r
< θ (2),

or

t2 − t1
θ (1)

> r >
t2 − t1
θ (2)

. (4.23)

For the existence of a positive integer r satisfying inequalities (4.23) it is sufficient that

t2 − t1
θ (1)

−
t2 − t1
θ (2)

> 1,

which holds if

h

(
1

θ (1)
−

1

θ (2)

)
> 1. (4.24)

It is easy to verify that inequality (4.24) holds for 0 < γ < −2h2
+ 2

√
h4 + β2h2, that is, for

t∗ > u−1
(

3L2
(

−2h2
+ 2h

√
h2 + β2

))
. (4.25)

Thus, for any

t∗ > max

{
τ∗,

c2(ξ)

3072L2
1L2

, u−1
(

3L2
(

−2h2
+ 2h

√
h2 + β2

))}
inequalities (4.19), (4.21) and (4.25) are satisfied, and we have

V (t+2 , x(t+2 ))− V (t1, x(t1)) ≤ −
13
16
(t2 − t1)c(ξ). (4.26)

We now consider the second case where on interval (t1, t2) there is one point τk of impulse effect: t1 < τk < t2.
We assume that t∗ > τ∗. In this case simirlarly to (4.18) and (4.19) we obtain

V (t+2 , x(t+2 ))− V (t1, x(t1)) ≤ [V (t2, x(t2))− V (τ+

k , x(τ+

k ))]

+ [V (τk, x(τk))− V (t+1 , x(t+1 ))] + 3hc(ξ)

irrespective of whether t1 and t2 are points of impulse effect or not. In this case the inequality t2 − t1 > 16h also
holds; hence the length of at least one of the intervals (t1, τk), (τk, t2) is greater than 8h. Without loss of generality we
assume that t2 − τk ≥ τk − t1, that is, t2 − τk ≥

1
2 (t2 − t1) > 8h. Similarly to (4.26) one can show that

V (t+2 , x(t+2 ))− V (τk, x(τk)) ≤ −
15
16
(t2 − τk)c(ξ)+ 2hc(ξ) < −

5
16
(t2 − t1)c(ξ) (4.27)

for t∗ satisfying conditions t∗ > τ∗ and (4.25).
The right-hand side of system (4.1) and (4.2) satisfies property (P1). Consequently, by Theorem 3.1 there exists

L2 > 0 such that

|V (τk, x(τk))− V (t+1 , x(t+1 ))| ≤ L2(τk − t1), (4.28)
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where the constant L2 does not depend on the solution, but depends only on the constants L , L1. In the case
τk − t1 < hc(ξ)/L2 by (4.19), (4.25), (4.27) and (4.28) we have

V (t+2 , x(t+2 ))− V (t1, x(t1)) ≤ [V (t+2 , x(t+2 ))− V (τk, x(τk))] + [V (τk, x(τk))− V (t+1 , x(t+1 ))] + hc(ξ)

≤ −
5
16
(t2 − t1)c(ξ)+ 2hc(ξ) < −

1
8
(t2 − t1)c(ξ). (4.29)

If, however, τk − t1 ≥ hc(ξ)/L2, then dividing the interval (t1, τk] into r∗ equal segments of length θ∗ one can show
similarly to (4.26) that for

t∗ > u−1
(

3L2
(

−2(hc(ξ)/L2)
2
+ 2hc(ξ)

/
L2

√
(hc(ξ)/L2)2 + β2

))
(4.30)

we have the inequality V (τk, x(τk))− V (t+1 , x(t+1 )) < 0. Consequently, in this case estimate (4.29) is also true.
We now consider the third case, where on (t1, t2) there are d points of impulse effect τk, τk+1, . . . , τk+d−1. In the

case when τk − t1 ≥ h, t2 − τk+d−1 ≥ h, dividing each of the intervals (t1, τk], (τk, τk+1], . . . , (τk+d−1, t2] into r
segments of length θ (here the values of r and θ are, generally speaking, different for each of the segments) one can
show similarly to the first case that for t∗, satisfying conditions t∗ > τ∗ and (4.25), estimate (4.26) holds. If, however,
one of the values (τk − t1), (t2 − τk+d−1) or both are less than h, then one can apply the arguments similar to those
used in the first and second cases to show that for t∗ = t∗(ε) satisfying conditions (4.19), (4.25) and (4.30) estimate
(4.29) is also true.

From inequalities (2.5) and (2.6) we have

inf
‖y‖≥ε

V (t, x) ≥ g(ε), sup
‖y‖≤ξ

V (t, x) ≤ b(ξ) ≤
1
2

g(ε). (4.31)

On the other hand, for t∗ satisfying relations (4.19), (4.25) and (4.30) under the assumption that there exist instants
t2 > t1 ≥ t∗ such that y(t1) ≤ ξ and y(t+2 ) ≥ ε we have

V (t+2 , x(t+2 ))− V (t1, x(t1)) ≤ −
1
8
(t2 − t1)c(ξ). (4.32)

Inequalities (4.32) contradict relations (4.31). The contradiction thus obtained shows that for any system of the form
(4.1) and (4.2) there exist no instants t1, t2 such that t2 > t1 ≥ t∗(ε), ‖y(t1)‖ ≤ ξ, ‖y(t2)‖ ≥ ε. By Lemma 3.1, there
exists δ > 0 such that ‖y(t∗, t0, x0)‖ < ξ for any t0 ∈ [0, t∗], x0 ∈ Bδ . Since ξ and t∗ depend only on ε, δ > 0 also
depends only on ε. This proves the uniform stability of the invariant set M of system (4.1) and (4.2).

We now show that the invariant set M of system (4.1) and (4.2) is uniformly asymptotically stable. Let λ be some
fixed number such that (0 < λ < H∗). We proved the uniform stability of the invariant set M of system (4.1) and
(4.2), so there exists an η = η(λ) > 0 such that any solution x(t) = x(t, t0, x0) of system (4.1) and (4.2) satisfying
the condition x0 ∈ Bη satisfies the condition x(t) ∈ Bλ for any t > t0 ≥ 0. We shall show that for any ρ > 0 (ρ < λ)

one can find a σ = σ(ρ) > 0 such that ‖y(t)‖ < ρ for arbitrary x0 ∈ Bη, t0 ∈ R+, t ≥ t0 + σ .
Suppose that 0 < ρ < λ. According to the uniform stability of the invariant set M of system (4.1) and (4.2), there

exists a δ = δ(ρ) > 0 such that the condition x(T0) ∈ Bδ implies that x(t) ∈ Bρ for any t ≥ T0 ≥ 0. We estimate the
time during which the trajectory can be in the domain Bλ \ Bδ . Similarly to (4.32) one can show that

V (t, x(t))− V (T1, x(T1)) < −
1
8
(t − T1)c(δ) (4.33)

for t ≥ T1 where T1 depends only on δ(ρ), that is T1 = T1(ρ). Then inequality (4.33) implies that

t − T1 <
8[V (T1, x(T1))− V (t, x(t))]

c(δ)
≤

8[b(λ)− g(δ)]

c(δ)
= T2(ρ).

Setting σ(ρ) = T1(ρ) + T2(ρ) we obtain that ‖y(t, t0, x0)‖ < ρ for any t0 ∈ R+, x0 ∈ Bη, t ≥ t0 + σ . This
means precisely that the integral set M of system (4.1) and (4.2) is uniformly asymptotically stable and its domain of
attraction contains the set Bη. �
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5. On the stability of invariant sets of periodic systems

Further, we assume that system (1.1) and (1.2) is periodic in t with the period to ω.

Theorem 5.1. If the invariant set M of system (1.1) and (1.2) is stable, then it is uniformly stable.

Proof. Conditions (2.13) imply that

Φ(t + ω, t0 + ω, x0) ≡ Φ(t, t0, x0), (5.1)

hence it suffices to prove that for any ε > 0 there exists a δ = δ(ε) > 0 such that the inequality ‖F(t, t0, x0)‖ ≤ ε

holds for t ≥ t0 and for all t0 ∈ [0, ω), x0 ∈ Bδ . By assumption, for any ε > 0 there exists δ1 > 0 such that
if xω = Φ(ω, t0, x0) satisfies the condition xω ∈ Bδ1 , then Φ(t, ω, xω) ∈ Bε for t ≥ ω. If the condition x0 =

Φ(t0, t0, x0) ∈ Bδ holds at any time t0 ∈ [0, ω), then Lemma 3.1 implies that if one choose δ = (1 + L)−qe−Lωδ1,
then Φ(t, t0, x0) ∈ Bε. This completes the proof of the theorem. �

Theorem 5.2. If the invariant set M of Eqs. (1.1) and (1.2) is asymptotically stable, then it is uniformly asymptotically
stable.

Proof. By the assumptions, M is asymptotically stable; hence (2.4) holds in the domain

t0 ∈ R+, x0 ∈ Bλ, (5.2)

where λ is a sufficiently small positive number. Now, let us prove that this limit relation holds uniformly in t0, x0
from (5.2), i.e. for every ε > 0 there exists σ = σ(ε) > 0 such that the inequality ‖F(t, t0, x0)‖ ≤ ε holds for all
t ≥ t0 + σ . Since the system is periodic, we assume that t0 belongs to the segment [0, ω]. First, let us define the
number η = η(ε) > 0 from the condition

‖F(t, t0, x0)‖ ≤ ε for x0 ∈ Bη, t > t0. (5.3)

This is possible because of the uniform stability of M . Arguing by contradiction, assume that the number σ = σ(ε)

does not exist. Then, for an arbitrary large integer m, there exists a tm > mω, initial values t0m ∈ [0, ω] and
x0m = (y0m, z0m) ∈ Bλ such that

‖F(tm, t0m, x0m)‖ > ε. (5.4)

Since the sequence of points {t0m × y0m} belongs to a compact set, one can choose a subsequence of this sequence
which converges to some point t∗ × y∗ where t∗ ∈ [0, ω], ‖y∗‖ ≤ λ. Hence (2.4) holds for the initial values
t0 = t∗, x0 = x∗ = (y∗, z∗) where z∗ ∈ Rm is arbitrary. Then there exists large enough k = k(ε) such that

‖F(t∗ + kω, t∗, x∗)‖ <
1
2
η(ε). (5.5)

Corollary 3.1 implies

‖F(t∗ + kω, t∗, x0m)‖ ≡ ‖F(t∗ + kω, t∗, x∗)‖ <
1
2
η(ε), m ∈ N.

Denote x (k) = (y(k), z(k)) where x (k) = Φ(t0m + kω, t0m, x0m). Since t0m → t∗, x0m → x∗, there exist an arbitrary
large values of m for which we have the inequality

‖y(k)‖ < η(ε), (5.6)

where y(k) = F(t0m +kω, t0m, x0m). Estimates (5.6) and (5.3)imply that for all t > t0m we have ‖F(t, t0m, x (k))‖ ≤ ε,
hence identity (5.1) and the uniqueness property of the solution imply the estimate

ε ≥ ‖F(t, t0m, x (k))‖ ≡ ‖F(t + kω, t0m + kω, x (k))‖ ≡ ‖F(t + kω, t0m, x0m)‖.

The obtained inequality contradicts assumption (5.4), because there exists an instant tm , such that tm > kω. The
contradiction proves that (2.4) is uniform in t0 and x0. This completes the proof of the theorem. �



A.O. Ignatyev / Nonlinear Analysis 69 (2008) 53–72 69

Next, we apply the ideas of Barbashin–Krasovskii to the stability analysis of the invariant set of a system of
impulsive differential equations by using Lyapunov’s second method.

Let us introduce the following definition.

Definition 5.1. We say that the function g : R+ → Rs, s ∈ N is not eventually vanishing if for any M > 0 there
exists a t > M such that g(t) 6= 0. We say that the sequence of numbers {uk}

∞

k=1 is not eventually vanishing if for
any positive integer M there exists a k > M such that uk 6= 0.

Theorem 5.3. Suppose that every solution of system (1.1) and (1.2) with initial data (t0, x0) ∈ R+×BH is z- bounded,
there exists a function V (t, x) ∈ V1 which is periodic in t with period ω and satisfies the conditions

a(‖y‖) ≤ V (t, x) ≤ b(‖y‖), a ∈ K, b ∈ K, (5.7)

and
dV

dt
≤ 0 for (t, x) ∈ G,

∆Vi (x) = V (τ+

i , x + Ji (x))− V (τi , x) ≤ 0, i ∈ N.

If along any eventually vanishing solution of Eqs. (1.1) and (1.2), at least one of the following conditions holds:

(i) the function dV/dt is not eventually vanishing,
(ii) the sequence {∆Vi } is not eventually vanishing,

then the invariant set M of system (1.1) and (1.2) is uniformly asymptotically stable.

Proof. The stability property of M can be proved just as in Theorem 2.1. Theorem 5.1 implies that M is uniformly
stable, i.e. for any ε > 0 there exists δ = δ(ε) > 0 such that for all t0 ∈ R+ and x0 ∈ Bδ the inequality
‖F(t, t0, x0)‖ ≤ ε holds for all t > t0. Let us prove that any trajectory Φ(t, t0, x0) with such initial conditions
possesses property (2.4).

Consider the function v(t) = V (t,Φ(t, t0, x0)). It is not increasing and is bounded below; hence the limit

lim
t→∞

v(t) = η ≥ 0

exists. Let us prove that η = 0. Suppose that the converse is true:

η = lim
t→∞

V (t,Φ(t, t0, x0)) > 0. (5.8)

Consider the sequence of points {xk} = {(yk, zk)} where xk = Φ(t0 + kω, t0, x0). Taking into account the fact that
‖yk‖ ≤ ε < H , and {zk} is bounded, one can conclude that there exists a subsequence converging to the point
x∗ ∈ Bε. Without loss of generality, we shall assume that the sequence {xk} itself converges to the point x∗ 6= 0.
Since the function V is continuous in x and periodic in t , the equality V (t0, x∗) = η must be satisfied. Consider
the semitrajectory Φ(t, t0, x∗) for t ≥ t0 and the function V∗(t) = V (t,Φ(t, t0, x∗)) along the trajectory. By the
assumptions of the theorem, the function V∗(t) is not increasing; moreover, there exists either an instant t1 where the
trajectory is continuous such that

dV (t1,Φ(t1, t0, x∗))/dt < 0

or a discontinuity point τs such that

V (τ+
s ,Φ(τ

+
s , t0, x∗))− V (τs,Φ(τs, t0, x∗)) < 0.

This means that there exists an instant t∗ > t0 such that

V (t∗,Φ(t∗, t0, x∗)) = η1 < η.

Since the sequence {xk} converges to the point x∗, by Lemma 3.1 the following inequality holds:

‖Φ(t∗, t0, x∗)− Φ(t∗, t0, xk)‖ < γ

for all k > k0(γ ), for an arbitrary number γ > 0. Hence

lim
k→∞

V (t∗,Φ(t∗, t0, xk)) = η1. (5.9)
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Taking into account the periodicity of system (1.1) and (1.2), we can write

Φ(t∗, t0, xk) = Φ(t∗, t0,Φ(t0 + kω, t0, x0)) = Φ(t∗ + kω, t0, x0). (5.10)

Indeed, the trajectories of system (1.1) and (1.2) starting at time t0 and t0 + kω at the point xk , respectively, will move
to the points Φ(t∗, t0, xk) and Φ(t∗ + kω, t0, x0) respectively during time ∆t = t∗ − t0; this proves relation (5.11).
The periodicity of the function V (t, x) in t yields the equality V (t∗, x) = V (t∗ + kω, x). Hence taking into account
(5.10), condition (5.9) can be rewritten as follows:

lim
k→∞

V (t∗ + kω,Φ(t∗ + kω, t0, x0)) = η1. (5.11)

But since η1 < η, relation (5.11) contradicts the inequality V (t, x(t, t0, x0)) ≥ η. This contradiction proves that
assumption (5.8) was incorrect, i.e. η = 0. Condition (5.7) justifies (2.4), which proves the asymptotic stability of the
trivial solution. By using Theorem 5.2, we conclude that the invariant set M of system (1.1) and (1.2) is uniformly
asymptotically stable. �

Theorem 5.4. Suppose that every solution of system (1.1) and (1.2) with initial data (t0, x0) ∈ R+×BH is z- bounded,
there exists a function V (t, x) which is periodic in t with the period ω, continuously differentiable on the domain G,
and satisfies the conditions

|V (t, x)| ≤ b(‖y‖), b ∈ K; (5.12)

dV

dt
≥ 0 for (t, x) ∈ G, (5.13)

∆Vi (x) = V (τ+

i , x + Ii (x))− V (τi , x) ≥ 0. (5.14)

Moreover, suppose that, along any eventually vanishing solution of Eqs. (1.1) and (1.2), at least one of the following
conditions holds:

(i) the function dV/dt is not eventually vanishing,
(ii) the sequence {∆Vi } is not eventually vanishing.

If any arbitrary small neighborhood of the origin for any t > 0 contains a point x such that V (t, x) > 0, then the
invariant set M of system (1.1) and (1.2) is unstable.

Proof. Suppose that ε < H is a positive number. Let us choose an arbitrary t0 ∈ R+ and an arbitrary small δ > 0.
We shall prove that there exist x0 ∈ Bδ and t > t0 such that ‖F(t, t0, x0)‖ > ε. To this end, take x0 ∈ Bδ so that
V (t0, x0) = V0 > 0. Suppose the converse:

‖F(t, t0, x0)‖ ≤ ε (5.15)

for all t > t0. Condition (5.12) implies

|V (t, x)| < V0 for ‖y‖ < b−1(V0) = η, t ∈ R+.

Taking into account assumptions (5.13)–(5.15), we conclude that the semitrajectory Φ(t, t0, x0) satisfies the conditions

η ≤ ‖F(t, t0, x0)‖ ≤ ε.

Consider the sequence of points {x j } given by x j = Φ(t0 + jω, t0, x0) ( j = 1, 2, . . .). Taking into account the
fact that this sequence belongs to a compact set, we can choose a subsequence converging to the point x∗ = (y∗, z∗)

satisfying conditions η ≤ ‖y∗‖ ≤ ε. Without loss of generality, we assume that the sequence {x j } converges to the
point x∗.

The function v(t) = V (t,Φ(t, t0, x0)) is monotone nondecreasing and bounded above by a constant b(ε); hence
the limit

lim
t→∞

v(t) = lim
t→∞

V (t,Φ(t, t0, x0)) = v0 = V (t0, x∗)

exists and we have

V (t,Φ(t, t0, x0)) ≤ v0. (5.16)
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Now, let us consider the semitrajectory Φ(t, t0, x∗) and t > t0. By the assumption of the theorem, there exists a
point t1 such that

dV (t1,Φ(t1, t0, x∗))/dt > 0

or a point τs such that

∆Vs = V (τ+
s ,Φ(τs, t0, x∗))+ Js(Φ(τs, t0, x∗))− V (τs,Φ(τs, t0, x∗)) > 0.

This means that there exists an instant t∗ > t0 such that

V (t∗,Φ(t∗, t0, x∗)) = v1 > v0.

Since the sequence {x j } converges to the point x∗, Lemma 3.1 implies the inequality

‖x(t∗, t0, x∗)− x(t∗, t0, x j )‖ < γ

for all j > N (γ ), for an arbitrary constant γ > 0. Hence

lim
j→∞

V (t∗,Φ(t∗, t0, x j )) = v1. (5.17)

Taking into account the periodicity of system (1.1) and (1.2), we can write

Φ(t∗, t0, x j ) = Φ(t∗ + jω, t0, x0). (5.18)

The periodicity in t of the function V (t, x) yields the equality V (t∗, x) = V (t∗ + jω, x), hence, by taking (5.18) into
account, condition (5.17) can be rewritten as

lim
j→∞

V (t∗ + jω,Φ(t∗ + jω, t0, x0)) = v1. (5.19)

On the other hand, relation (5.19) contradicts inequality (5.16), because v1 > v0. This contradiction proves that
asuumption (5.15) was incorrect, i.e. the invariant set M of system (1.1) and (1.2) is unstable; this proves the
theorem. �
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