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Removable isolated singularities for solutions
of quasilinear parabolic equations

FrRANCEScO Nicorosi, IGOR I. SKRYPNIK,
IGOR V. SKRYPNIK

Abstract. We have obtained the best possible conditions for removable
singularity at the point for solutions of quasilinear parabolic equations of
divergent form. Cases of interior singular point (zo,t0) € Q7 C R"! we
have established a removability result for a solution u(z,t) € V;2(Qr)\

(z0,to) under a condition u(z,t) = o([|x —xzo|+ |t—to|m]7”), Asa
particular case we have a precise removability condition for p-Laplacian
evolution equation. The proof is based on a new approach connected
with point-wise estimates of solutions in puncturated domains.
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1. Introduction

The paper is devoted to the study of conditions for removable isolated
singularities for solutions of quasilinear parabolic equations of divergent
form

in Q7 )\ (zo,t0) where Qr = Q x [0, T}, 2 is bounded open set in R", xy €
Q, to € [0,7]. It means that we study conditions for the behavior of
u(z,t) near singular point (zg,%9) which guarantees that the extension
u(zx,t) of u(x,t) to Qr satisfies the equation (1.1) in Q7.

We will distinguish two cases: tg = 0 or tg > 0. In the first case we
assume additionally an initial condition

u(z,0) =0 for ze€Q\ {xo}. (1.2)
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We consider the equation (1.1) with nonlinear growth of coefficients
a] ($7 t’ u’ 5)’
7 =0,1,...,n with respect to u, . In particular a parabolicity condition
is formulated in the form

Zaj(:E?tv U,f)fj > Vl‘ﬂp - gl(xvt)‘uv) - fl(x’t) (13)
j=1

with p > 2, positive constant v; and some integrability conditions for
functions g1 (x,t), fi(z,t). It means that p-Laplace evolution equation is
involved in our consideration.

We formulate the removability result for the problem (1.1), (1.2) in
the form of the behavior of the function

M(r) = sup{|u(z,t)| : (z,t) € D(Ry,z0) \ D(r,z0)} (1.4)

where

| — zo|\P t
— n .
D(r, ) = {(z,t) € R" x [0, 00) : ( - ) ey < 1}
and Ry is some fixed number.

We prove in the Theorem 2.2 that the singularity of the solution
u(z,t) of the problem (1.1), (1.2) is removable if

lig(l) M(r)r™ =0 (1.5)
and the function r™ is best possible in (1.5) for removable singularity
condition.

This type result is well-known for heat equation. It is known for non-
negative solutions for linear parabolic equations with measurable coeffi-
cients that follows from the paper [1] of D. G. Aronson. For nonnegative
solutions of general quasilinear parabolic equations of the type (1.1) with
p = 2in (1.2) an analogous result follows from the paper of D. G. Aronson
and J. Serrin [2] where it is proved an inequality

M(r)yr > K (1.6)

with positive constant K for non-removable singularity.
Preciseness of our condition (1.5) confirms well known Barenblatt’s
singular solution [3]

P

[

p—

n P
u(z,t) =t pr-2 max r—2 {Kl - Ky <+‘) ’ ,O} (1.7)

tp+n(p—2)
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of the p-Laplacian evolution equation

?9_1; — div(|Vu|P2Vu) = 0.
In (1.7) Ky and K3 are some positive numbers. It is clear that for the
solution (1.7) an inequality 0 < Cy < M(r)r™ < Cy < 400 is satisfied.

Remark that properties of solutions of the equation (1.1) for p > 2
essentially different from corresponding properties for p = 2. It is simple
to see by the analysis of the behavior of the solution u(z,t) given by the
formula (1.7).

Many authors studied problems of singularities of solutions of special
form parabolic equations with Laplace of p-Laplace operators in principle
part. Review of these results can be found in monograph of L. Veron [12].

The study is based on precise point-wise estimates of solutions in
puncturated domains. This method was developed by I. V Skrypnik
(see, for example, [11]) and it was applied in [8] for the proof of precise
removability condition for elliptic equations.

Our approach gives a possibility to prove a non-existence of singular
solution for quasilinear parabolic equations with absorption term. For
model p-Laplacian parabolic equations the results are in papers |5, 6].
Precise results for general quasilinear elliptic equations are published in
[10]. We are planning to publish these results and results on solutions
with singularities on smooth manifolds in forthcoming papers.

The paper is organized as follows. In Section 2 assumptions and main
results are formulated. The boundedness of a singular solution satisfying
an inequality

M@r) < Kr"™ for 0<r <Ry (1.8)

with positive constants K, is proved in Section 3. This result is analo-
gous to known Serrin’s result [9] for elliptic case. Auxiliary integral esti-
mates for solutions with isolated singularity are established in Section 4.
We prove the fundamental point-wise estimate of singular solution in Sec-
tion 5. We establish in this section that the condition (1.5) implies the
inequality (1.8). The theorem on the removability of the singularity is
proved in Section 6.

2. Formulation of assumptions and main results

We assume that functions a;(z,t,u,§), j =0,1,...,n in the equation
(1.1) satisfy the following conditions:

ar) aj(z,t,u,§), j=0,1,...,n are defined for (z,t,u,&) € Q x (0,T) x
R! x R™) and they are measurable functions of z,¢ for all (u,§) €
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R! x R™ and continuous functions of u, ¢ for almost all points z,t €
Q% (0,7);

az) there exist numbers p € [2,n), 1,2 > 0 such that for all values of
x,t,u, & inequalities (1.3) and

Jaj(@,t,u,€)] < wl€PH + go(@, Ol + falx,t), j=1,....n
Jao(z, t,u, )] < v3(z, )P + ga(w, ) ulP ™" + f3(x, 1)

(2.1)
hold with nonnegative functions vs(x,t), g1(x,t), fi(x,t) and such
that

H(z,t) € L'"(0,T; L?()),
ptnlp—2) n

+ — =p(1-9);
7o q0 p( )

70,40 2 17

H(z,t) =1+ A, t) + fi(z,t) + [fo(z, )] T + f3(, )
_p
+ g1(x,t) + [go(, t)]7~T + g3(x,1).
Let us consider a solution u(x,t) of the equation (1.1) that has isolated
singularity at the point (0,0) and satisfies the initial condition (1.2). By

a solution of the problem (1.1), (1.2) we mean a function u(z, t) satisfying
a including

u(z, t)¢(x,t) € V*P(Qr) = C(0,T; L*(Q)) N LP(0,T; WP ()

and an integral identity

I(u,¢) = /u(x,r)go(x,t) dx

n
+//{—u%—f%—Zai(w,t,u,%)ngLao(w,t,u,%)go}dxdt:0,
0 Q

(2.2)

with ¢(z,t) = ¥(x,t)((z,t) where 1 € VZP(Qr) is an arbitrary function
such that %—f € L*(Qr). Here 7 is a number satisfying an iIEquality
0 <7 < T, (is a arbitrary function such that {(z,t) € C*(Qp) and
((x,t) is equal to zero near (0,0) U {0 x (0,T")}.
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We will say that the singularity at the point (0,0) of the solution
u(x,t) of the problem (1.1), (1.2) is removable if the integral identity
(2.2) is satisfied for all functions ¢ = ¥ and all 7 € (0,7) where
is the same function as above and ¢ is an arbitrary function such that
¢ € C*(Qy) and ¢ us equal to zero near 952 x (0, 7).

Introduce the Steklov averaging of w € L*(Qr)

t+h

[w(x,t)]hzl/w(x,s)ds te (0,7 —hl,

h (2.3)

t
[w(z,t)], =0 fort>T—h.

Standard argument (see, for example, [7]) implies that the identity (2.2)
can be equivalently formulated as

//{agghwzﬁ; [ (.t %)}hgz

+ [ao (m,t, u, %)Lﬁp}dm dt =0 (24)

with ¢ = 1 where ( is the same function as in (2.1), h, t1, t2 are numbers
satisfying an inequality 0 < h < t; < te < T — h, ¢ € LP(0,T; W1P(Q))
is an arbitrary function.

Let Ry be some number satisfying a condition

D(Ry) € @ x [0,T) (2.5)

where D(r) = D(r,0) and D(r,0) is the same as in (1.4) and let M (r) be
defined by the equality (1.4) with zo = 0. It follows from [4] that u(z,t)
is Holder function on D(Ry)\ D(r) and therefore M (r) is a finite number.
We omit Ry in the notation of M (r) since main results formulated below
do not depend on the choice of Ry and the number Ry will be fixed later.

We will understand numbers vy, v9, n, p, qo, 0, 0, Ro, norm of the func-
tions H (z,t) in respective spaces as known parameters.

The first result on the behavior of the solution near isolated singularity
is the following theorem.

Theorem 2.1. Let conditions a1), az) be satisfied and suppose that
u(x,t) is the solution of the equation (1.1) in Qr satisfying the condition
(1.2) and the inequality

K,

rhm

M(r) <

for 0<r <Ry (2.6)
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with some positive constants Ky,~v1. Then there exists a constant M;
depending only on known parameters and Ki,v1 such that an inequality

RO) (2.7)

lu(z,t)| < My for (x,t) € 7,)(7

holds.

We will see that the inequality (2.7) implies the removability of the
singularity at (0,0) immediately.

This theorem is analogous to the well-known Serrin’s result on remov-
able singularity at the point for quasilinear elliptic equations [9].

Using Theorem 2.1 and precise analysis of the behavior of u(x,t) near
(0,0) we establish the best condition on removable singularity.

We will formulate the following result in the form

}iir(l) M(r)R(r)=0 (2.8)
where R such positive function that R(r) — 0 as r — 0. We will say that
the function R is the best possible for the removability of the singularity
at the point (0,0) if the assumption (2.8) implies the removability of the
singularity at (0,0) an it is not possible to find another function R such
that the assumption

lim M (1) R(r) = 0

guarantees the removability of the singularity at (0,0) and lim,_ % =

0.

Theorem 2.2. Let conditions a1), az) be satisfied and suppose that
u(z,t) is the solution of the equation (1.1) in Qr satisfying the condition
(1.2) and the equality

}i_r% M(r)r" = 0. (2.9)
Then the singularity of u at the point (0,0) is removable and the function
r™ is the best possible for the removability of the singularity at the point
(0,0).

This theorem is analogous to the precise result on removable singu-
larity at the point for quasilinear elliptic equations that was published by
authors in [8|.

Our results on the removable singularity at the point (0,%p), to >
0, are analogous to Theorems 2.1, 2.2. By a solution of the equation
(1.1) with the singularity at the point (0,%p) we mean a function u(x,t)
satisfying an including u¢ € V2P(Qr) and an integral identity I(u, @) = 0
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with ¢ = ¢ where I(u, ) is defined by (2.2), 1 € LP(0,T; WiP(Q)) is
an arbitrary function such that 88—1? € L*(Qr), ¢ is an arbitrary function
such that £ € C°°(Qr) and ( is equal to zero near (0,t9)U{dQ x (0,T)}U
{Q x {0}}. Removable singularity at (0,tp) is understood analogously as
for the point (0,0).

Define for r > 0

D.(r); {(x,t) cR" x R! : (@)’# % < 1}

and let R be some number satisfying a condition Dy (Rf) C Q7. Denote
for 0 <r < R

M. (r) = sup{|u(z,t)| : (z,t) € Du(Rp) \ Ds(r)}. (2.10)

Theorem 2.3. Let conditions a1), az) be satisfied and suppose that
u(xz,t) is the solution of the equation (1.1) in Qr with the singularity
at (0,t9), to > 0. Assume that the inequality

M, (r) <

= =2

for 0<r <R, (2.11)

1s satisfied with some positive constants Ko,vo. Then there exists a con-
stant Mo depending only on known parameters and R(, Ko2,7v2 such that
the estimate

(e, )| < My for (1) ep*(%k’) (2.12)

holds.

Theorem 2.4. Let conditions a1), az) be satisfied and suppose that
u(z,t) is the solution of the equation (1.1) in Qr with the singularity
at (0,t9). Assume that the condition

lim M, (r)r" =0 (2.13)

r—0

is satisfied. Then the singularity of u at the point (0,ty) is removable and
the function r™ s the best possible for the removability of the singularity
at the point (0,to).

Remark 2.1. For a fixed solution u(z,t) we have from the assumption
(2.9) the following estimate

Ju(z, )| < Kofla| + t7e=27 )" (2.14)

for (x,t) € D(Rp) with some constant K¢ dependent on u(z,t).
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Remark 2.2. Equations with more strong growth of coefficients
a;(x,t,u, &) can be considered as a special case of introduced above class
of equations. Let us suppose that conditions (1.3), (2.1) are replaced by
the following inequalities

> aj(@,tu,8)& > v lEfP — volul? — fi(x,1),
! (2.15)

p—

1
laj(2,t,u, &) < valéP + ualulTF + fo(a, ),
lao(z, t,u, &) < vs(x,t) | + volu|! + f3(, t)

with ¢ < p+ £ and the same functions v3(x,t), fi(z,t) as in (2.1).
We consider the removability of a isolated singularity for a fixed so-
lution satisfying the assumption (2.9). Denoting

g1(2,t) = gs(a,t) = volu(a, )|7P,  galz,t) = valu(x, t)| s~ DEY

and using the inequality (2.14) we check that such functions g;(z,t) sat-
isfy assumption ag). Thus the assertions of formulated above theorems
remain true for coefficients satisfying inequalities (2.15).

3. Proof of Theorem 2.1

We fix the notation n,(z,t) for a function w((@)p + m), r >0
where w is a function of the space C*°(R!) satisfying conditions

w(s)=0 fors<1, w(s)=1 fors>2P
3.1
ogdj—(s)gL 0<w(s) < L. (3.1)
s

Define for k,1 > 0, u € R!
Fra(u) = (1 4+ u})' 1+ “u (3.2)
where u? = min{u?, k*} and a number « is defined by the equality

_1+1 {
a_4 4max

n— 2y 2”*’71}?}

) 3.3
n—7y 2n-m (3:3)

with the number 7, from the condition (2.6).
We substitute in the integral identity (2.4) a test function

¥1 (l'a t) = Fkl([u(xa t)]h)@bm(% t)ﬁln(ffa t)
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where u(x,t) is the solution of the problem (1.1), (1.2) satisfying con-
ditions of the Theorem 2.1, ¥(x,t) is a fixed function such that ¢ €
C*™®(Qr), 0 < (x,t) < 1,1 is equal to one on ’D(%) and to zero outside
D(Rp), m < p, [u(x,t)] is the Steklov average of u(x,t).

Evaluating the term of (2.4) with the derivative of [u];, on ¢ and the
indicated choice of the test function we have for t1 = 0 > h, to = 7 <
T—h

//Fkl([u]h)wmn 8[8] dedt = I (Ju Z (3.4)

=i/GuGMwﬁﬂw¢m@%ﬂ¢Wwﬁwmj

L[l /Gm (2, 6))0 )™, 0" (. )
(3.5)
I = G dz dt,
30([u]p, // ki ( hatm@“
0
Lip([u / / Gra([uln)yp™ S 777“ dz dt.
The function G;(u) is defined by equalities
Cu(t) = ——— [ +u2 for |u <k
20— a+1)
1 kQ l
Gri(u) = Gii(k) + (1+ ) {(1 + u2) (1+ k2)1 a} for |u| >k
2(1 - «)
and satisfies the following estimate
le(u) < Cl(l + uz)(l + u2)1—a < CQ(Z + 1)le(u) (3.6)
Here and further we denote by Cj, j = 1,2,... positive constants de-

pending only on known parameters, v, K.
Letting h — 0 in (3.4) we obtain for an arbitrary 6 > 0

m O !
hm //Fkl " [E)t]h dedt = I (u) + jZ:;IjG(U) (3.7)
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and then passing to the limit 6 — 0 we get

4 7
+) Lig(u) + Y Ij(u) =0. (3.8)
j=2 J=5

where

n

0
= Z//a x,t,u, a$iFkl(u)¢m77;”dxdt,

=1

0
= /Q/a :L‘tu Fkl()mz

[ "] e dt, (3.9)
=1 0

I7(u) :/T/a()(x t,u, g )sz( )" dx dt.
Q

We estimate terms in (3.8) using inequalities (2.1), (3.6) and Young’s
inequality and we obtain

3

o

1

[+1
Q

1+ wd @, DL+ (e, 7)™, r ) da
" / [+t ol o) 32 v do e

< Cs(l+m)P {1+//1+uk [1+u?)2 = H (z, )™ P (z, t)n" (z, t) do dt

//1—|—uk 1+ 2]t-a )zpmmpd:cdt}

(3.10)

where @, = Qx (0, 7) and the function H(x,t) is defined by the condition
ag).

Direct calculations and conditions asz), (2.6), (3.3) imply that the
integral

877T
Ox

8?7T
ot

+[1+u?2

//1+u H(z, )™ P (x,t) da dt

is finite and the mtegral

Jf o

[1+u?)ie

82" )d dt
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tends to zero as 7 — 0. Then we may pass to the limit in (3.10) as r — 0
and we get an inequality

sup / 1+ 2z, )L+ (e, 7)™ (2, 7) da

0<r<T
//1+uk:ﬁt [1+u?(z,t)]”

< C3(1 + m)P+1{1 + //[1 + uj ()] + u?(x, )] 2
Qr

) ™ (, t) da dt

H(x,t)y" P(x,t)dx dt}. (3.11)
Now we will show that the integral

I(l,m) = //[1 + uz(:c,t)]Hg*aH(x,t)dJm*p(x,t) dx dt (3.12)

is finite for an arbitrary positive [ with a suitable choice of m. This
assertion follows for

1 n—2y 2n—yp
l {1 - [ ’ } }7 - .1
0= 15 max | —— R P mo =p (3.13)

by using the inequality (2.6), conditions a2), (3.3) and direct calculation.

Let assume that for some numbers [, > Iy, m, > p the integral
I(l.,my) is finite. Then from (3.11) and monotone convergence theorem
we have

sup /[1 + u2(x, T)]Z*H_ad}m* (z,7)dx
o<r<T
Q
+ /[1 + u2(:v,t)}l*_a‘% T (2, 1) da dt
T
Qr
< Cylly + m PP + I(l,,my)}. (3.14)

Define
1 —-pl 1
rr (l+1—a)[—, n p—,}+<l*+z—9—a)—,—2+a,
do n 2 o
: L
m :m*<—+—>—|—p
ql nT'/
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I _ _qo /I _ _ro
where ¢, = -1 "0 = moo1

condition ag).
Using Holder’s inequality and the embedding theorem we have

and numbers ¢ ro were introduced in the

/ / 1+ w2z, )] 50 H (z, )™ P (2, ) da dt

Qr
T N
* 7 90 "o
§C5{/{/[1+uk(m £)] 520 ) (m _p)q(](x,t)dx} dt}
0 Q
T Té)fu
qO n
<05{ / { / [0+ w2z, )] o™ (2, 1) dx}
0 Q
n—p
" {/ [+ u} (w, )] T E Ty (2, ) df’?} dt}
Q

t

{//{1+ukxt e 2 | v ot

F 1+ ud(, 1))y P (¢ )}dxdt} . (3.15)

1
q’0 A
< Cg(ls + my)P sup { /[1 4wl ()T (1 ) dm} ’

o\|"‘

Now the assumption on the finiteness of I(l., m,) and the inequality
(3.14) imply that the right hand side of (3.15) is estimated by a con-
stant independent on k. Then using monotone convergence theorem we
conclude from (3.15) that the integral I(l*,m*) is finite and estimate

[un

1

™ (3.16)

ah+

3k

I(I*,m*) < Crfle +ma )PP + 1L, my)}

holds.
Remark that the assumption on g, rg implies the following equality
ps  p—2

1 p D
— =14= , 4= — :<l* ——)1 k) —
0 +n+ T0 +2 @ +2 a)d+k)-p

Whereﬁ:(g—l)(%é+lj;l)’k:%5+lj;2.
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Let us define sequences {l;},{m;} by the equalities

p B p_,_"8 j

l]—|—2 a k—(lo+2 ! k)(l—i—k), 317)
p p ; .

mi+ 2= (p+2)a+kY, j=12...

It is simple to check that o+ 2 —a — 2 > 0. The inequality (3.16) with
ly =1j—1, my = mj_1 implies an estimate

I(1j,my) < Cs(1+ k)Y PPELL 4 I(1jm1,my1)} 0 (3.18)

Starting from j = 1 and repeating the application of the inequality (3.18)
we obtain that I(l;,m; ) is finite for an arbitrary j. Now the Moser
iteration process gives us the boundedness of the function u(z,t) and the
estimate (2.7). This is the end of the proof of Theorem 2.1.

4. Integral estimates of the singular solution

We will assume further that

}ii% M(r) = oo. (4.1)
We fix some number R; from the interval (0, Rp) such that
M(Ry)>1
and denote for r € (0, Ry]
M*(r) = rinmax{M(p)p” r<p<Ri}+1L (4.2)

Define the function ug(z,t) for R € (0, R;) and the set E(R) by equalities
ug(z,t) = max{u(z,t) — M(R),0} for (z,t) € D(R),
ugp(x,t) =0 for (z,t) € Qr\D(R), (4.3)
E(R) = {(z,t) € D(R) : u(x,t) > M(R)}.

Lemma 4.1. Assume that conditions of Theorem 2.2 are satisfied. Then
there exists a constant K3 depending only on known parameters such that
an estimate

sup /U%(SL‘,T)T]?(.T,T)CLT
O<T<TQ

+//‘%‘pnf(aj,t) da dt < KsM(r)[M*(r)r"P~" (4.4)
E(R)

holds with 0 < r < R < Ry and the same function n, as in Section 3.
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Proof. We substitute in the identity (2.4) witht; =60 > h, ta =7 <T—h
a test function

oz, t) = [[u(z, t)]p — M(R)]4nP(xz,t) with 0<r <R < Rj.

Here [[u(z, t)]n — M(R)]+ = max{[u(z, )], — M(R),0}.
Evaluating the term of (2.4) with the derivative of [u], on ¢ and the
test function @92 we have

Q/TQ/ 8E;Lt]hg02(:):, t)dxdt

= 5 [l = MR 2w, ) o
Q

1

—§/M@0H—AMMK%@ﬂMw

wlﬁ

// u(z, T) (R)]inf_laazr dxdt. (4.5)

Letting h — 0 we obtain for all § € (0,7), 7 € (0,T)

lim / /
h—0

1 1
:§/u z, T)nk $7‘)d$—§/u2(.’ﬂ Ot (z,0) dx

Q
—g//qut )a”’“a(t D gwar, (4.6)

using the inequalities (1.3) and (2.1) and Young’s inequality, we get

. ou\1 Opa ou

] ol ao(wt,u, 57 )| w2 pdwat
hli%//{ ;13 u@x h@xi+a0x u@x hSD2 v

gog x,t) dxdt

777« x,t) — Cou? (z, t) H (x, t)ny (x, t)

ony(z,t) P

—Cguff(a:,t)‘ = ’}X(E(R))dxdt (4.7)
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where x(E(R)) is a characteristic function of the set E(R) and the func-
tion H(z,t) was introduced in the condition as).
Letting 6 — 0 we deduce from (4.6), (4.7)

sup /uR(anrdex+//‘ ‘nrmtdacdt
0<r<T

< clo// 2.t 8777“ z t ‘+ (&, ) H (, )P (i, 1)
o (2, t
+u%(a:7t)‘%‘p}dxdt. (4.8)

Using the notation (4.2) and the condition ay) on the function H(z,t)
we obtain

/ / =Y, ) H (@, )0 (2, 8) d dt < O [MP ()P~ (4.9)
E(R)
with the constant C7; independent on 7.
Now estimating u(x,t) by M (r) under the integral on the right-hand

side of (4.8) and using the inequality (4.9) we deduce the estimate (4.4)
and the proof of the lemma is completed. O

We will assume further that numbers r, p, R satisfy conditions

O<r<p<R< % M(p) > 2M(R) (4.10)

and introduce notations
®,p(u) = min{max[u — M(R),0], M(p) — M(R)} for u € R,
E(p,R) = {(z,t) € Qr : 0 < ug(x,t) < M(p) — M(R)}, (4.11)
F(p) ={(z,t) € Qr : u(z,t) > M(p)}.

It is clear from the definition of M(p) that F'(p) C D(p).

Lemma 4.2. Assume that conditions of Theorem 2.2 are satisfied. Then

there exists a positive constant Ky depending only on known parameters
such that the estimate

sup / B2 (e, )P (e, 7) e + / / %)pnf(x,wdxdt

o<r<T
Q E(p,R)

1

< Ky[M(p) - M(R)]{[M(T)T”[1\4"(7")7“”]”_1]pT
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+[M(p) = MOR) M ()t
—i—//ug(:c,t)‘%’p_lnf(az,t) dxdt} (4.12)
F(p)

holds with Ay = g—g, the same function n,(x,t) as in (4.4) and numbers
r, p, R satisfying conditions (4.10).

Proof. We substitute in the integral identity (2.4) with t; =0 > h, t3 =
T <T — h a test function

p3(z,t) = min{([[u(z, t)]n — M(R)]y, M(p) — M(R)}m; (2, t).

Evaluating the term of (2.4) with the derivative [u], on ¢t and ¢ = @3
and letting h — 0 we obtain for all § € (0,7), 7 € (0,T)

lim / /
h—0

= /Gp,R(U(w,T))nf(fc,T) diﬂ—/Gp,R(U(wﬁ))nf(%G) da

onr(z,1)
—p//GpR (o) ) D d e (4.13)

<,03 x,t)dx dt

with the function G, g(u) defined by the equality

— L min{ud, [M(p) - MOR)2) + [M(p) — M(R)Jug. (4.14)

Using the inequalities (1.3), (2.1) and Young’s inequality we obtain

| {35 o ) 52 ¢ ot )]s

29/ Q/ {22 o)~ a1 3 o, )

~ CualM(p) ~ M(R)]| ?!

xnflxt’

+ [H(z, t)] P up N, t)}

(R))}dg; dt

Oz
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1
— C2[M // vg(z,t ‘&L " H(z,t)uP " (z,t)

xonp (@, )x(F(p)) dedt - (4.15)

where x(E(p, R)), x(F(p)) are characteristic functions of sets E(p, R),
F(p) and H(x,t) is the function introduced in the condition as).

Letting # — 0 and estimating terms of (4.13) we obtain from (4.13),
(4.15)

sup / B2 (u(x, 7))k (x, 7) do + / / ‘%)pnf(x,t) dz dt
Q E(p,R)

§C’13{[M(p)—M( ( )T —I—//l/;:,:vt’a ‘ nP(z,t) dx dt

F(p)

+I(1) + I(2)> + 1(3)} (4.16)

where

- [ / PP 4t )5 = ) o )| 2
E(R

dx dt,
/ H (z, t)uP~ (z, )0k (z,t) dz dt,

/ H(z,t)uP(z,t)nk(x,t) dx dt.

Next estimates follow form the condition as), the notation (4.2) and
direct calculation
/ H (z, t)uP ™12 (2, 1) da dt < Crg[M* ()P~ 12 (4.17)
D(Ro)

/ / (1 (2,0)]7 | %) d dt < CyarmHHE=D+1 (4.18)

with the constant c¢i4 independent on r and A\; = g‘—g. Using (4.17) we
have immediately

1(2) < Ci5[M(p) — M(R)] ™M [M*(r)rmP~1+7

I(3) < Ci5[M(p) — M(R)]l—)q [M*(T)r"]p_1+>‘1_ (4.19)
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The term I(1) can be estimated by using Holder inequality together
with Lemma 4.1 and the inequalities (4.18). Thus
dx dt}

{//‘ ‘mxt dxdt} {//‘m

4 CreMP=L ()@= < O (M Py (M (r)r P} 7. (4.20)

If the three previous estimates are inserted into the right-hand side
of (4.16) we have the inequality (4.12) an Lemma 4.2 is therefore proved.
O

Lemma 4.3. Assume that conditions of Theorem 2.2 are satisfied. Then
there exists a positive constant K5 depending only on known parameters
such that the estimate

// uéq(w,t)’%‘pnf(w,t) dx dt
F(p)
< Ks[M(p) — M(R)] 2 {[M(r)r" [M* (r)r"P~1] 5
+ [M(p) — M(R)] "M [M*(r)r P~ XY (4.21)

holds with ¢ = 1+ Ao, Ao = 2p2,
and numbers r, p, R satisfying conditions (4.10).

the same function n,(x,t) as in (4.4)

Proof. We substitute in the integral identity (2.4) with t; =6 > h, ty =
T < T}, a test function

pa(z,t) = {[M(p) = M(R)]'""* — max{[[u(z,t)]n — M(R)]+,
M(p) = M(R)}'~}nf (x,1).

Evaluating the term of (2.4) with the derivative of ¢ and ¢ = ¢4 and
letting h — 0 we obtain for all € (0,7), 7 € (0,T)

t)dx dt > —CigM(r)[M(p) — M(R)]*"%". (4.22)

h—>0

The remaining terms of (2.4) with ¢ = ¢4 are then estimated as follows

flg%]/{zn; [ai<w,t,u, %)h?)ﬁj * {a()(;c,t,u,%)]hm}da:dt
b o =
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f . P
> //{[%URQ(%@]@—Z Ol (e, 1) H ()
6 Q

— C1g[M(p) = M(R)PPP1ut®~D (2, 1) H (a, f)} (2, 1)

~ Cualnt(p) - mer) | 2

o,
ox

It is simple to continue to estimation of terms on the right-hand side of
(4.23) by using inequalities (4.17), (4.18). In particular we have

+ [H(a, 0] v o, t) | (o, )|

}X(F(p)) drdt. (4.23)

/ / wI®V (@ ) H (2, )P (2, t) da dt
(p)

_ / / WP (3 0 F ()P (2, 8) d it
F(p)
< CualM(p) = MR 2 ()P (4.24)

Letting 6 — 0 in (4.22), (4.23) and using inequalities (4.20), (4.24) we
obtain the estimate (4.21). This is the end of the proof of Lemma 4.3. [

The main result of the integral estimate of the solution with isolated
singularity is given in the following theorem.

Theorem 4.1. Assume that conditions of Theorem 2.1 are satisfied.
Then there exist a positive constant Kg, A depending only on known
parameters such that the estimate

sup /@f}R(u(x,T))nf(:c,T)dm—i—//‘%)pnf(x,t)dxdt
E(p,R)

o<r<T
Q

p—1
P

< Ks[M(p) = M(R){[M ()" [M* ()P 5
+[M(p) — MR M ()"~ (4.25)

holds with ®,r(u), E(p, R) defined by (4.11), the same function ot as
in (4.4) and r, p, R satisfying condition (4.10).

Proof. We estimate the integral on the right-hand side of (4.12) by using
Young’s inequality and inequalities (4.21), (4.24). We have with ¢ =
1+ 2%

P
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-1
//Vg(l‘,t)’%‘p nP(z,t) dx dt
F(p)

< /( { (M) - MRz 0)| 5]
F(p

+ [M(p) — MR H (z, )u" ™ (a, t)}ngz(x, t) dz dt
< Coo{[M ()M ()P
+ [M(p)M(R)) M [M*(r)r" P~ 1A} (4.26)

Now the estimate (4.25) follows from inequalities (4.12), (4.26) and the
proof of Theorem 4.1 is completed. O

Remark 4.1. Changing in the equation (1.1) the function u(x,t) on the
function v(z,t) = —u(x,t) we obtain immediately that all estimates of
this section are true for v(z,t) instead of u(z,t).

Corollary 4.1. Taking into account the condition (2.9) and Remark 2.1
we can pass to the limit in (4.25) as r — 0 and we get an estimate

sup /@,%R(u(x,f)) dz + // ]@]p d dt < K7[M(p) — M(R)]|\
0<r<T Ox
Q E(p,R) ( )
4.27
with the same positive X as in (4.25).

5. Point-wise estimate of singular solution

In this section we prove the fundamental result on the behavior of the
solution of the equation (1.1) with the singularity at the point.

Theorem 5.1. Let conditions of the Theorem 2.2 be satisfied. Then there
exist a positive constants Kg,y depending only on known parameters such
that the estimates

1
u(z,t)| < Ks{|z| + trnt==2} 707,

sup /u%(ww)dw—i—//’%‘pdxdt < Kg (5.1)

o<r<T
Q E(R)

holds for (x,t) € D(R).
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Proof. Let r,p, R be numbers satisfying conditions (4.10). We can as-
sume additionally that p > 4r since the inequality (5.1) is trivial in the
opposite case.

We define numerical sequences {p;}, {o;}

p 27171
Fi1490- ;=
pi=g (1427, ai= o
and a sequence of functions {y;(z,t)}
e =w (D) + - menl. 6
) ) 2 pl pf+”(p_2) I . .

Here ng is the function introduced in Section 3, the function w; : R! — R!
is defined by the equality w;(s) = o; " min{[s — (1 — a;)P]4,1}. Such
defined function ¢; has following properties: ¢;(z,t) = 0 for (z,t) €
Opi ¢ i g
D(p), pi(x,t) = Lfor (z,t) € D(R\D(py), | %] < 2%, | %] < %

We substitute in the identity (2.4) with t1 =60 >h, t2 =7>T—h
a test function

ps(x,t) = {[[ulz, )l — MR + 1} [[ulz, )] — M(R)] 4" (=, 1)

where [, m are arbitrary nonnegative numbers.
Evaluating the term of (2.4) with the derivative on ¢t and ¢ = ¢5 and
letting h — 0 we obtain for 0 < 0 <7< T

lim / /
h—0

905 x,t) dx dt

1 2 I+1, m+p
>
Q

1 m
m/[u%(iﬁﬁ) + 1) P (2,0) da
o)

—021(m+1)//[u§(x,t)+ I o, )| 92 . (5.3

Letting h — 0 in the remaining terms of (2.4) with ¢ = 5 and estimating
these terms we have

flbli%//{ x b, ?)hgij + [ao(x’t’u’%ﬂh%}dxdt
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>%//qut+1’ O P (2, t) da dt

—022<l+1>P//[u e.1) + 4| 247

ox
Qr
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n H(x,t)}gp;n(x,t) dz d.

(5.4)
Inserting estimates (5.3), (5.4) into (2.3) yields

sup / iy, 7) + P (2, 7) da
o<r<T

//qut—f—l‘ ‘cpmﬂgazt)dazdt

0p;
< Cos(l+m+1) P+1// + 1]+ a—i

+ e, )+ 1775 opip

X

+ H(z, t)) }cp;n(af, t)dzdt. (5.5)

Now consider the term that appears in the right-hand side of (5.5)
Using Holder inequality and the notation (4.2) we obtain

// {[“%%(ﬂv,t) s Opi
Qr

ot

4 [ud(z, ) + 1] (]%‘? v H(a, ))}@Z (z,t) dz di

< 027 [M* { [ [u%(x, t) + 1]

dt} (5.6)

ENSS
o \‘ =

X " (x, 1))% dw]

with numbers 6, go, 79 given by the condition az)
We denote

T
{/ [/ up(e, t) + 1] (1)) % dx]
0 Q

ENSN
cﬂ\l =

d:c} (5.7)



230 REMOVABLE ISOLATED SINGULARITIES...

and estimate the last integral by using embedding theorem and Holder
inequality. Define

k’1:<p5+7n(pr0_ 1))[n+pé+7n(p_2)}1=(i - n_p>(ﬁ+£)l,

70 4 n @ n
p—2 p—2
lh=00+1k ———k L=00+1(1-k& —k
1=+ 1)k o 1, l=(+1) 1)+27“6 1
/
D2 nr{
p1 = , DP2=———7—, mi=mk;, mo=m(l—Fk).
p2 — 1 gh(n—p) ( )

Then we have

1
, P14}
X sup { / {[um,t)+1]llso;"1<x,t>}modx} '

8“ p mgro

(z,1)

o~"“

+ plp[ B, ) + 12000 (2,1) Lo dt} . (5.8)
Estimating the two last integrals by virtue of inequalities (5.5), (5.6) we
get
Ii(l,m) < Cag(l +m + 1)P
{[ ( ﬂp 5 S i(lipigo — Lmapag —p)}m+% (5.9)
]

with pg = &+ (p+ V)55 + ).

Define k = rj(1 — k1) =

W and sequences {l;}, {m;} by

equalities
-j b — 2 L
2rl 1—k

l;

~
o
_I._

—_
+

‘w
[I—"

gl

_1,
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Then we rewrite the inequality (5.9) with { =1;, m = m; as follows

Li(lj,my) < 057058{ [M*(g)r_:—(lgph(lj—hmj—l)}k-

The iteration by j of the last inequality yields the estimate

(M (o) — M(R)] 5

<t (] ) it

pop

(5.11)
Now we estimate I;(ly, mp) by using Holder inequality, embedding theo-
rem and the inequality (4.27). We have for

(5.10)

vip1(x,t) = minfup(z,t), M(piy1) — M(R)}

the following estimate

I’i(l()am(])
T -2 N
p p p 2 p—i—P 6—&—’”[; / 90 L)
0 Q

1 n—p

< sup{ / w2, (2, 1) + 1) (z, 1) dx} s
8vz+1 a()oz p
{// + (L4 vin) | S }dmdt}

2
o =N+
< Coo2 b [M(pier) - MR) VG (512)
Inequalities (5.11), (5.12) and Remark 2.1 imply

oi‘ =

2(1 +1+” )
[M(ps) = M(R)]" " 20

n(p— 2)+6p

(=N (g +:2r)
< CorpTF [ M(pisn) - M(R) T (5.13)
Rewrite this inequality in the form

M(p;) — M(R) < Cipp™" [M(pir1) — M(R)]* (5.14)
with

o [n(p — 2) + dp]rg
Yoo+ (1= k) + (p— 2)k
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a—ﬁ<i+p>(l+1+ 2L>_1
27 g q@  nrh 0 2ry 1—k/

Direct calculations show that

2 k S p—-2 p-2 1
lo+1+2 ,—,—1+p—+p P—=_-_
2rg 1 -k o 2rg 1 -k (5.15)
1 5 p—2 '
SR R L

and therefore aa < 1. Iterating the inequality (5.14) by ¢ and using
bondedness of the sequence {M (p;) — M (R)} we obtain from (5.14)

aj

M(p1) = M(R) < C33p T=°2. (5.16)
Denote A = %‘5 + pr;o and calculate ‘111()\ a) Using equalities (5.15)
we get
1—y) )( +4)
all =N _ o =n. (5.17)

It means that

<n-—~ (5.18)

with the constant v depending only on known parameters, Now inequal-
ities (5.16), (5.18) imply the first estimate in (5.1).

The second inequality in (5.1) follows now from the proof of Theo-
rem 2.1. The inequality (5.1) implies that the condition (2.6) is satisfied.
Then the second inequality in (5.1) follows from the estimate (3.14) that
is true for an arbitrary positive l,. Therefore the proof of Theorem 5.1
is completed. O

6. Proof of Theorem 2.2

The inequality (5.1) and Theorem 2.1 implies the boundedness un
D(RO) of the solution u(x,t) satisfying the conditions of Theorem 2.2.

We need to establish an equality (2.2) for an arbitrary function ¢(x,t)
= p(z,t) = Y(z,t){(z, t) where ¢ € LP(0, T} WLP(€)) is such function
that ‘%’ € L?(Qr) and ¢ € C™(Qy) and ( is equal to zero near 9§ x
0,7).

Let us substitute in (2.2) p(z,t) = @(z,t)n.(x,t) where 7, is the
function defined at the beginning of Section 3. We obtain
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[ wtarrete, (o, 7) do
[ 07 o~ duy 0 duy
+//{ —ua%—;al(m,t,u,%)axi +ao<$,t,u,%><p}nrdxdt
37%« ‘ ou\ on,
//{ laz(x,t,u, 83:)8@} (x,t)dxdt. (6.1)

Taking into account estimates (5.1) we can estimate the integral on the
right of (6.1) as follows

//{uaéZ; _Zn:az(x t,u, gZ)gZT} (z,t)dzdt
i=1 v

SC'34//{
Qr

Let us assume at first that ¢ € L*°(Qr). Applying direct calculation we

have 3
lim / / i
r—0

and therefore the right—hand side of (6.1) tends to zero as r — 0 for
founded function 1. Approximating the function v (z,t) by the sequence
of bounded functions we end the proof of Theorem 2.2.

)

\+]

e t)\p}dasdt (6.2)

3m P
ox

}dwdtzO
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