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Fundamental solutions of boundary problems

and resolvents of differential operators

Vadim Mogilevskii

(Presented by M. M. Malamud)

Abstract. The main objects of our considerations are differential op-
erators generated by a formally selfadjoint differential expression of an
even order. The coefficients of this expression are operator valued func-
tions defined on the interval [0, b〉 (b ≤ ∞) with values in the set of all
linear bounded operators in a separable Hilbert space H. Our approach
is based on the concept of a decomposing D-boundary triplet, which
enables to describe various properties of (regular and singular) differen-
tial operators immediately in terms of boundary conditions. First we
complement and generalize known results on fundamental solutions of
boundary problems with the boundary condition at the singular end b.
Next by using Krein type formula for resolvents we obtain the represen-
tation of the resolvent (Ã−λ)−1 (Ã is a proper extension of the minimal
operator L0) in a form of the integral operator

((Ã − λ)−1
f)(x) =

b∫

0

G(x, t, λ)f(t) dt f = f(·) ∈ H

with the operator valued Green function G(x, t, λ). Unlike classical
methods our approach enables to characterize spectrum of the extension
Ã and represent the Green function immediately in terms of boundary
conditions for Ã and fundamental solutions of the corresponding bound-
ary problems. The above results are proved for differential operators with
arbitrary (possibly unequal) deficiency indices in the case dim H ≤ ∞.

2000 MSC. 34B05, 34B27, 34B40, 47E05.

Key words and phrases. Differential operator, decomposing D-
boundary triplet, boundary conditions, boundary problem, fundamental
solution, Green function, resolvent.

1. Introduction

Let H be a separable Hilbert space, let [H1, H2]([H]) be the set of all
bounded linear operators from H1 to H2 (in H) and let
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l[y] = lH [y] =
n∑

k=1

(−1)k((pn−ky
(k))(k) − i

2 [(q∗n−ky
(k))(k−1)

+ (qn−ky
(k−1))(k)]) + pny (1.1)

be a formally selfadjoint differential expression of an even order 2n with
operator-valued coefficients pk(·), qk(·) : ∆ → [H] defined on an interval
∆ = [0, b〉 (b ≤ ∞). Denote by L0 and L minimal and maximal operators
respectively, induced by the expression (1.1) in the Hilbert space H :=
L2(∆; H) and let D be the domain of L. As is known L0 is a closed densely
defined symmetric operator with not necessarily equal deficiency indices
n±(L0) and L∗

0 = L. Moreover functions y, z ∈ D obey the Lagrange’s
identity

(Ly, z)H − (y, Lz)H = [y, z](b) − [y, z](0), y, z ∈ D

where
[y, z](t) = (y(1)(t), z(2)(t))Hn − (y(2)(t), z(1)(t))Hn ,

[y, z](b) = lim
t↑b

[y, z](t).

and y(1)(t), y(2)(t) (∈ Hn) are vectors of the quasi-derivatives (see (3.2)).
Next recall that a closed operator Ã with the domain D(Ã) is called a

proper extension of L0 (and is referred to the class ExtL0
) if L0 ⊂ Ã ⊂ L.

As is known an important problem in the spectral theory of differential
operators is a description of all selfadjoint boundary conditions or, equiv-
alently, all selfadjoint extensions Ã ∈ ExtL0

. For a regular expression l[y]
(i.e., in the case ∆ = [0, b], b < ∞) this problem was solved in a compact
form by F. S. Rofe-Beketov in [18]. In particular, it was shown in this
paper that the set of all selfadjoint decomposing boundary conditions is
described by the relation

cos B1 y(1)(0) + sinB1 y(2)(0) = 0, cos B2 y(1)(b) + sinB2 y(2)(b) = 0,

(1.2)
where B1, B2 ∈ [Hn] is a pair of selfadjoint operators obeying −π

2 I <

B1, B2 ≤ π
2 I. Afterwards in [9] this result was extended to the case of a

quasi-regular expression l[y].
Next, in [19,20] for an arbitrary expression l[y] the concept of a selfad-

joint boundary condition at the singular end b was introduced as follows.
Let U : D → K be a linear map with values in a Hilbert space K and let
Lb, L′

b ∈ ExtL0
be extensions with domains

D(Lb) = {y ∈ D : y(1)(0) = y(2)(0) = 0, Uy = 0},

D(L′
b) = {y ∈ D : Uy = 0}.

(1.3)
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Then the equality
Uy = 0 (1.4)

is called a selfadjoint boundary condition at the point b if: (i) (1.4) holds
for each function y ∈ D finite at the point b; (ii) Lb is a symmetric
operator and L∗

b = L′
b.

In the scalar case (dimH = 1) for the operator L0 with equal defi-
ciency indices m = n±(L0) each selfadjoint boundary condition (1.4) can
be represented as

Uy :=
(
[y, z1](b), [y, z2](b), . . . , [y, zp](b)

)
= 0, (1.5)

where p = m − n and zj ∈ D, j = 1 ÷ p are linearly independent

modulo D(L0) functions obeying z
(1)
j (0) = z

(2)
j (0) = 0, j = 1 ÷ p and

[zj , zk](b) = 0, j 6= k (cf. [17, §18], [3, ch13.2]). In this connection note
that formulas (1.4) and (1.5) are not convenient for applications, because
unlike (1.2) they do not define explicit parametrization of all selfadjoint
boundary conditions. This statement is especially evident in the case
dimH = ∞, when the finite representation (1.5) becomes impossible.

An attempt to extend the results of [18] to singular differential op-
erators with arbitrary (possibly unequal) deficiency indices was carried
out in our paper [16]. The method of [16] is based on the concept of a
decomposing D-triplet for L, which is defined as follows. Let H′

1 be a
subspace in a Hilbert space H′

0 and let Γ′
j : D → H′

j , j ∈ {0, 1} be linear

maps such that Γ′ = (Γ′
0 Γ′

1)
⊤ is a surjective linear map onto H′

0 ⊕ H′
1

and the following identity holds

[y, z](b) = (Γ′
1y, Γ′

0z) − (Γ′
0y, Γ′

1z) + i(P ′
2Γ

′
0y, P ′

2Γ
′
0z), y, z ∈ D.

(here P2 is the orthoprojector in H′
0 onto H′

0⊖H′
1). Then a decomposing

D-triplet for L is a collection Π = {H0 ⊕ H1, Γ0, Γ1}, in which Hj =
Hn ⊕H′

j and Γj : D → Hj , j ∈ {0, 1} are linear maps given by

Γ0y = {y(2)(0), Γ′
0y} (∈ Hn ⊕H′

0),

Γ1y = {−y(1)(0), Γ′
1y} (∈ Hn ⊕H′

1),
y ∈ D. (1.6)

In the case H′
0 = H′

1 =: H′ ( ⇐⇒ H0 = H1 =: H) a decomposing
D-triplet Π = {H, Γ0, Γ1} is called a decomposing boundary triplet for
L.

Associated with the decomposing D-triplet Π for L is the Weyl func-
tion M+(·) defined by

Γ1fλ = M+(λ)Γ0fλ, fλ ∈ Nλ(L0) := Ker(L∗ − λ), λ ∈ C+.
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It turns out that a decomposing boundary triplet is a boundary triplet
(boundary value space) in the sense of [8], while the function M(λ) =
M+(λ) coincides with the Weyl function introduced by V. A. Derkach
and M. M. Malamud [4] (see also [5] and references there in).

In the paper [16] we also defined defect numbers nb± of the expression
(1.1) at the point b. In the case dimH < ∞ this numbers obey the
equalities

nb+ = n+(L0) − n dimH, nb− = n−(L0) − n dimH.

Moreover, a decomposing D-triplet (boundary triplet) for L satisfies the
relation dimH′

1 = nb− ≤ nb+ = dimH′
0 (respectively, nb− = nb+ =

dimH′).
A decomposing D-triplet enables to describe various properties of

differential operators in terms of boundary conditions. In particular it
was shown in [16] that selfadjoint decomposing boundary conditions exist
if and only if nb+ = nb−. Moreover if this criterium is satisfied and
Π = {Hn ⊕H′, Γ0, Γ1} is a decomposing boundary triplet (1.6), then the
set of all selfadjoint decomposing conditions is described by the relations

cos B1 y(1)(0) + sinB1 y(2)(0) = 0, (1.7)

cos B2 Γ′
0y + sin B2 Γ′

1y = 0, (1.8)

where B1 ∈ [Hn], B2 ∈ [H′] is a pair of selfadjoint operators. This
implies that a selfadjoint boundary condition at the point b is defined
by formula (1.8), which gives a parametrization of all such conditions by
means of the selfadjoint parameter B2 (cf. (1.4)). In this connection note
that for the regular expression one can put Γ′

0y = y(2)(b), Γ′
1y = y(1)(b),

in which case (1.7) and (1.8) turn into the boundary conditions (1.2).
Moreover, for a singular expression l[y] the boundary operators Γ′

0 and
Γ′

1 can be explicitly defined in terms of limits of some regularizations
of quasi-derivatives y[k](t) at the point b (see Proposition 3.10 in [16]).
Hence (1.8) defines a boundary condition in terms of boundary values
Γ′

0y and Γ′
1y of the function y ∈ D at the singular end b.

Observe also that a decomposing boundary triplet (1.6) enables to
define in a compact form boundary conditions of other classes. For ex-
ample, an accumulative boundary condition at the point b is defined by
the relation

N0Γ
′
0y + N1Γ

′
1y = 0 (1.9)

with operators N0, N1 ∈ [H′] generating an accumulative operator pair
(linear relation) θ = {(N0, N1);H

′} or, equivalently, obeying ImN1N
∗
0 ≤

0 and 0 ∈ ρ(N0 + iN1). This observation can be useful in the theory of
generalized resolvents of differential operators.
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The present paper contains further investigations of differential op-
erators by means of decomposing D-triplets. Here we first comple-
ment and generalize known results on fundamental solutions of bound-
ary problems [19,20] and then obtain the representation of the resolvent
(Ã − λ)−1 (Ã ∈ ExtL0

) in a form of the integral operator

((Ã − λ)−1f)(x) =

b∫

0

G(x, t, λ)f(t) dt f = f(·) ∈ H. (1.10)

Moreover we show that the operator valued kernel G(x, t, λ)(∈ [H]) in
(1.10) can be explicitly defined in terms of boundary conditions for Ã

and fundamental solutions of the corresponding boundary problems.
Recall that in [19,20] a selfadjoint boundary problem is given by the

equation
l[y] − λy = 0 (1.11)

and the selfadjoint boundary condition (1.4). Moreover, an n-component
operator function v(·, λ) : ∆ → [Hn, H] is called a fundamental solution
of this problem if: (i) the equality

y = y(t, λ) := v(t, λ) ĥ, ĥ ∈ Hn

gives all vector solutions of (1.11) obeying the boundary condition (1.4);
(ii) the operator

ṽ(0, λ) := (v(1)(0, λ) v(2)(0, λ))⊤ : Hn → Hn ⊕ Hn

is an injection, that is Ker ṽ(0, λ) = {0}; (iii) the range ṽ(0, λ)Hn is a
closed subspace in Hn ⊕ Hn. A fundamental solution v(t, λ) is said to
be holomorphic on the set E ⊂ C if there is an open set Λ ⊃ E such
that v(t, λ) id defined for all λ ∈ Λ and the operator function ṽ(0, λ) is
holomorphic on Λ. It was proved in [19] that there exists a fundamental
solution of the selfadjoint problem (1.11), (1.4) holomorphic on the set
ρ̂r(Lb) of all real regular type points of of the operator Lb (see (1.3)).

In the present paper by using a decomposing D-triplet we comple-
ment this result and extend it to other classes of boundary problems.
In particular, we show that the condition (iii) in the above definition is
implied by (i) and (ii), so that it can be omitted. Moreover, the following
statements are proved in the paper: 1) there exists a fundamental so-
lution of the selfadjoint boundary problem (1.11), (1.8) holomorphic on
ρ̂r(Lb)∪C+. Moreover, for every λ0 ∈ ρ̂r(Lb) there exists a fundamental
solution of the same problem holomorphic on (λ0 − δ, λ0 + δ) ∩ C+ ∩ C−

with some δ > 0; 2) the accumulative boundary problem (1.11), (1.9)
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has a fundamental solution holomorphic on C+; 3) the “free” boundary
problem (1.11), (1.9) with N0 = N1 = 0 has fundamental solutions with
the same properties as in the statement 1), but with ρ̂r(L0) instead of
ρ̂r(Lb).

By using a decomposing D-triplet (1.6) one can characterize various
classes of proper extensions [16]. In particular, the extension Ã ∈ ExtL0

is defined by decomposing boundary conditions (see definition in [7]) if
and only if its domain is given by

D(Ã) = {y ∈ D : N̂1y
(1)(0) + N̂2y

(2)(0) = 0, N0Γ
′
0y + N1Γ

′
1y = 0}

(1.12)
with operators N̂1, N̂2 ∈ [Hn] and Nj ∈ [Hj ,K], j ∈ {0, 1}.

Let v(·, λ) be a fundamental solution of the boundary problem (1.11),
(1.9) with N0 and N1 taken from (1.12). We show in the paper that
the extension (1.12) has the same spectral properties as the operator
N̂1v

(1)(0, λ)+ N̂2v
(2)(0, λ) (in the particular case of selfadjoint boundary

conditions (1.7), (1.8) this result was obtained in [19,20]). Next by using
the Krein type formula for resolvents [15] we obtain the representation
(1.10) with the operator-valued Green function G(·, ·, λ) : ∆ × ∆ → [H]
given by

G(x, t, λ) =

{
v(x, λ)ϕ∗(t, λ), x > t

ϕ×(x, λ) v∗(t, λ), x < t
, λ ∈ ρ(Ã). (1.13)

Here ϕ(t, λ) is the operator solution of the equation l[y] − λy = 0 with
the initial data

(ϕ(1)(0, λ) ϕ(2)(0, λ))⊤ = (−N̂∗
2 N̂∗

1 )⊤(N̂1v
(1)(0, λ) + N̂2v

(2)(0, λ))−1∗

(1.14)
and v(t, λ), ϕ×(x, λ) are similar operator solutions for the adjoint bound-
ary problem.

In the scalar case the representation (1.10) is a well known classical re-
sult [1, 3, 17]. Moreover, in [2, 13] formula (1.10) were partially extended
to the case dimH = ∞. In this connection note that unlike classical
methods our approach enables to characterize spectrum of the extension
Ã ∈ ExtL0

and represent its resolvents immediately in terms of boundary
conditions (1.12) and the fundamental solutions v(t, λ), v(t, λ) of the cor-
responding boundary problems (see (1.10), (1.13) and (1.14)). Moreover,
similar results are obtained in the paper for extensions Ã ∈ ExtL0

defined
by general (not necessarily decomposing) boundary conditions. Empha-
size also that the above statements are proved for a differential expression
(1.1) with dimH ≤ ∞ and arbitrary deficiency indices n±(L0).
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In conclusion note that in the forthcoming paper the mentioned re-
sults will be applied to the theory of generalized resolvents and spectral
functions of differential operators.

The author is grateful to M. M. Malamud for his attention to this
paper.

2. Preliminaries

2.1. Notations

The following notations will be used throughout the paper: H, H
denote Hilbert spaces; [H1,H2] is the set of all bounded linear operators
defined on H1 with values in H2; [H] := [H,H]; A ↾ L is the restriction of
an operator A onto the linear manifold L; PL is the orthogonal projector
in H onto the subspace L ⊂ H; C+ (C−) is the upper (lower) half-plain
of the complex plain.

Recall that a closed linear relation from H0 to H1 is a closed subspace
in H0 ⊕H1. The set of all closed linear relations from H0 to H1 (from H
to H) will be denoted by C̃(H0,H1) (C̃(H)). A closed linear operator T

from H0 to H1 is identified with its graph grT ∈ C̃(H0,H1).
For a relation T ∈ C̃(H0,H1) we denote by D(T ), R(T ) and KerT the

domain, range and the kernel respectively. The inverse T−1 and adjoint
T ∗ are relations defined by

T−1 = {{f ′, f} : {f, f ′} ∈ T}, T−1 ∈ C̃(H1,H0)

T ∗ = {{g, g′} ∈ H1 ⊕H0 : (f ′, g) = (f, g′), {f, f ′} ∈ T},

T ∗ ∈ C̃(H1,H0).

In the case T ∈ C̃(H0,H1) we write:

0 ∈ ρ(T ) if KerT = {0} and R(T ) = H1, or equivalently if T−1 ∈
[H1,H0];

0 ∈ ρ̂(T ) if Ker T = {0} and R(T ) is a closed subspace in H1;

0 ∈ σc(T ) if KerT = {0} and R(T ) = H1 6= R(T );

0 ∈ σp(T ) if KerT 6= {0}; 0 ∈ σr(T ) if KerT = {0} and R(T ) 6=
H1.

For a linear relation T ∈ C̃(H) we denote by ρ(T ) = {λ ∈ C : 0 ∈
ρ(T−λ)} and ρ̂(T ) = {λ ∈ C : 0 ∈ ρ̂(T−λ)} the resolvent set and the set
of regular type points of T respectively. Next, σ(T ) = C\ρ(T ) stands for
the spectrum of T. The spectrum σ(T ) admits the following classification:
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σc(T ) = {λ ∈ C : 0 ∈ σc(T − λ)} is the continuous spectrum; σp(T ) =
{λ ∈ C : 0 ∈ σp(T − λ)} is the point spectrum; σr(T ) = σ(T ) \ (σp(T ) ∪
σc(T )) = {λ ∈ C : 0 ∈ σr(T − λ)} is the residual spectrum.

Let T ∈ C̃(H) be a densely defined operator. For any λ ∈ C we put

Nλ(T ) := Ker(T ∗ − λ) (= H⊖R(T − λ)).

If λ ∈ ρ̂(T ), then Nλ(T ) is a defect subspace of the operator T .

2.2. Operator pairs and linear relations

Let K,H0,H1 be Hilbert spaces and let Cj ∈ [Hj ,K], j ∈ {0, 1} be a
pair of operators. In what follows we identify such a pair with an operator

C = (C0 C1) : H0 ⊕H1 → K. (2.1)

A pair (2.1) will be called admissible if R(C) = K. In the sequel all pairs
(2.1) are admissible unless otherwise stated.

Definition 2.1. Two operator pairs

C(j) = (C
(j)
0 C

(j)
1 ) : H0 ⊕H1 → Kj , j ∈ {1, 2}

are said to be equivalent if C(2) = XC(1) with an isomorphism X ∈
[K1,K2].

It is clear that the set of all operator pairs (2.1) falls into nonintersect-
ing classes of equivalent pairs. Moreover each operator pair (2.1) generate
a linear relation θ ∈ C̃(H0,H1) by

θ = {(C0, C1);K} := {{h0, h1} ∈ H0 ⊕H1 : C0h0 + C1h1 = 0} (2.2)

Formula (2.2) gives a bijective correspondence between all θ ∈ C̃(H0,H1)
and all equivalence classes of operator pairs (2.1). Therefore we will
denote by C̃(H0,H1) both the set of all closed linear relations from H0 to
H1 and the set of all equivalence classes of operator pairs (2.1) identifying
them by means of (2.2).

The following lemma is immediate from Lemma 2.1 in [12].

Lemma 2.1. Let θ = {(C0, C1);K} ∈ C̃(H0,H1), let θ∗ = {(C1∗, C0∗);
K∗} ∈ C̃(H1,H0) be the adjoint operator pair (linear relation) and let
B ∈ [H1,H0]. Then 0 ∈ ρ(C1∗ + C0∗B) ⇐⇒ 0 ∈ ρ(C∗

0 + BC∗
1 ) and the

following equality holds

C∗
1 (C∗

0 + BC∗
1 )−1 = (C1∗ + C0∗B)−1C0∗(= −(τ∗ − B)−1).
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Next recall some results and definitions from our paper [14].

Let H1 be a subspace in a Hilbert space H0, let H2 := H0 ⊖ H1

and let Pj be the orthoprojector in H0 onto Hj , j ∈ {1, 2}. With every

linear relation θ ∈ C̃(H0,H1) we associate a ×-adjoint linear relation
θ× ∈ C̃(H0,H1), which is defined as the set of all vectors k̂ = {k0, k1} ∈
H0 ⊕H1 such that

(k1, h0) − (k0, h1) + i(P2k0, P2h0) = 0, {h0, h1} ∈ θ

Using this definition and the correspondence (2.2) we introduce the
notion of a ×-adjoint operator pair (or more precisely a class of ×-adjoint
operator pairs) θ× = {(C0×, C1×);K×} ∈ C̃(H0,H1) corresponding to an
operator pair θ = {(C0, C1);K} ∈ C̃(H0,H1). As was shown in [14]
(θ×)× = θ. Moreover Proposition 3.1 in [14] implies that the adjoint
operator pair θ∗ admits the representation θ∗ = {(C1∗, C0∗);K×} with

C1∗ = C0× ↾ H1, C0∗ = C1×P1 − iC0×P2. (2.3)

It follows from (2.3) that θ× = θ∗ in the case H0 = H1 := H.

Definition 2.2 ([14]). A linear relation θ ∈ C̃(H0,H1) belongs to the
class Dis(H0,H1) (Ac(H0,H1)) if ϕθ(ĥ) := 2 Im(h1, h0) + ‖P2h0‖

2 ≥ 0
(resp. ϕθ(ĥ) ≤ 0) for all ĥ = {h0, h1} ∈ θ and there are no extensions
θ̃ ⊃ θ, θ̃ 6= θ with the same property.

A linear relation θ ∈ C̃(H0,H1) belongs to the class Self(H0,H1) if
θ = θ×

Note that in the case H0 = H1 =: H the classes Dis(H,H), Ac(H,H)
and Self(H,H) coincide with the sets of all maximal dissipative, maximal
accumulative and selfadjoint linear relations in H respectively. Moreover
a description of above classes immediately in terms of the corresponding
operator pairs (2.2) is contained in [14].

2.3. Dual pairs if linear operators

Definition 2.3 ([11,12]). Closed densely defined operators A and B in
a Hilbert space H form a dual pair {A, B} if A ⊂ B∗.

A closed operator Ã in H is called a proper extension of a dual pair
{A, B} and it is put in the class Ext{A, B} if A ⊂ Ã ⊂ B∗

For a dual pair {A, B} we write λ ∈ ρ̂{A, B} if λ ∈ ρ̂(A) and λ ∈ ρ̂(B).

Definition 2.4 ([11]). Let H0 and H1 be Hilbert spaces and let ΓB =
(ΓB

0 ΓB
1 )⊤ : D(B∗) → H0⊕H1 and ΓA = (ΓA

0 ΓA
1 )⊤ : D(A∗) → H1⊕H0
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be linear maps. A collection Π = {H0 ⊕H1, Γ
B, ΓA} is called a boundary

triplet for a dual pair {A, B} if

ΓBB∗ = H0 ⊕H1, ΓAA∗ = H1 ⊕H0 (2.4)

and the following Green identity holds

(B∗f, g)−(f, A∗g) = (ΓB
1 f,ΓA

0 g)−(ΓB
0 f,ΓA

1 g), f ∈ D(B∗), g ∈ D(A∗).
(2.5)

Proposition 2.1 ( [12]). Let Π = {H0 ⊕ H1, Γ
B, ΓA} be a boundary

triplet for a dual pair {A, B} and let D(B∗)+ be a Hilbert of all elements
f ∈ D(B∗) with the inner product

(f, g)+ = (f, g)H + (B∗f, B∗g)H, f, g ∈ D(B∗).

Then ΓB ∈ [D(B∗)+,H0 ⊕H1].

The following lemma will be useful in the sequel.

Lemma 2.2. Assume that Π = {H0 ⊕ H1, Γ
B, ΓA} is a boundary

triplet for a dual pair {A, B}, θ = {(C0, C1);K} ∈ C̃(H0,H1) and
Ã ∈ Ext{A, B} is an extension given by

D(Ã) = {f ∈ D(B∗) : C0Γ
B
0 f + C1Γ

B
1 f = 0}. (2.6)

Moreover let λ ∈ ρ̂{A, B}, let F ∈ [K′, Nλ(B)] be an isomorphism of a
Hilbert space K′ onto Nλ(B) and let T ∈ [K′,K] be an operator given by

T = (C0Γ
B
0 + C1Γ

B
1 )F = C0(Γ

B
0 F ) + C1(Γ

B
1 F ). (2.7)

Then the following relations hold

λ ∈ ρ(Ã) ⇐⇒ 0 ∈ ρ(T ), λ ∈ σj(Ã) ⇐⇒ 0 ∈ σj(T ), j = p, c, r,

(2.8)

λ ∈ ρ̂(Ã) ⇐⇒ 0 ∈ ρ̂(T ), R(Ã − λ) = R(Ã − λ) ⇐⇒ R(T ) = R(T ).
(2.9)

Proof. As was shown in [12] (see [12, Proposition 3.17] and the proof
of [12, Proposition 5.2]) the following equalities are valid

R(Ã − λ) = R(Ã − λ) ⇐⇒ D(Ã) + Nλ(B) = D(Ã) + Nλ(B), (2.10)

R(Ã − λ) = H ⇐⇒ D(B∗) = D(Ã) + Nλ(B), (2.11)

Ker(Ã − λ) = {0} ⇐⇒ D(Ã) ∩ Nλ(B) = {0} (2.12)
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where D(Ã) + Nλ(B) denotes the closure of the set D(Ã) + Nλ(B) in
D(B∗)+. Next, in view of Proposition 2.1 the equality

S = C0Γ
B
0 + C1Γ

B
1

defines a bounded operator S ∈ [D(B∗)+,K]. Moreover the equalities
(2.6) and (2.4) imply that KerS = D(Ã) and R(S) = K. Therefore the
following relations hold

D(Ã) + Nλ(B) = D(Ã) + Nλ(B) ⇐⇒ SNλ(B) = SNλ(B), (2.13)

D(B∗) = D(Ã) + Nλ(B) ⇐⇒ SNλ(B) = K, (2.14)

D(Ã) ∩ Nλ(B) = {0} ⇐⇒ Ker(S ↾ Nλ(B)) = {0}. (2.15)

Observe also that in view of (2.7) one has

T = SF = S ↾ Nλ(B) · F (2.16)

where F is an isomorphism of K′ onto Nλ(B). Now combining (2.10)-
(2.12) with (2.13)- (2.15) one obtains (2.8) and (2.9) with S ↾ Nλ(B)
in place of T . This and the equality (2.16) give the relations (2.8) and
(2.9).

Remark 2.1. Lemma 2.2 generalizes [12, Proposition 5.2]. Namely, let
A0 ∈ Ext{A, B} be an extension with the domain D(A0) = Ker Γ0, let
γΠ(λ) := (ΓB

0 ↾ Nλ(B))−1 be the γ-field and let MΠ(λ) := ΓB
1 γΠ(λ) (λ ∈

ρ(A0)) be the Weyl function for the triplet Π (see [12] for the precise
definitions). Then letting in Lemma 2.2 F := γΠ(λ), one obtains that
the relations (2.8) and (2.9) hold with T = T (λ) := C0 + C1M(λ). This
statement was established by another way in [12] (see also [5] for the case
of a symmetric operator A, that is for the dual pair {A, A}).

2.4. Boundary triplets for symmetric operators

Let A be a closed densely defined symmetric operator in H with de-
ficiency indices n±(A) := dimNλ(A) (λ ∈ C±). Denote by ExtA the set
of all proper extensions of A, i.e., the set of all closed operators Ã in H

such that A ⊂ Ã ⊂ A∗.
Let H0 be a Hilbert space, let H1 be a subspace in H0 and let H2 :=

H0 ⊖H1. Assume also that Pj is the orthoprojector in H0 onto Hj , j ∈
{1, 2}.

Definition 2.5 ([15]). A collection Π = {H0⊕H1, Γ0, Γ1}, where Γj are
linear mappings from D(A∗) to Hj (j ∈ {0, 1}), is called a D-boundary
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triplet (or briefly D-triplet) for A∗, if Γ = (Γ0 Γ1)
⊤ : D(A∗) → H0 ⊕H1

is a surjective linear mapping onto H0 ⊕ H1 and the following Green’s
identity holds

(A∗f, g) − (f, A∗g) = (Γ1f,Γ0g) − (Γ0f,Γ1g) + i(P2Γ0f, P2Γ0g),

f, g ∈ D(A∗). (2.17)

Proposition 2.2 ([15]). Let Π = {H0 ⊕ H1, Γ0, Γ1} be a D-triplet for
A∗. Then:

1) the operators Γ̂A = (Γ̂A
0 Γ̂A

1 )⊤ : A∗ → H0 ⊕H1, ΓA = (ΓA
0 ΓA

1 )⊤ :
A∗ → H1 ⊕H0 with

Γ̂A
0 = Γ0, Γ̂A

1 = Γ1, ΓA
0 = P1Γ0, ΓA

1 = Γ1 + iP2Γ0. (2.18)

form a boundary triplet Π̂ = {H0 ⊕ H1, Γ̂
A, ΓA} for the dual pair

{A, A}. Therefore by Proposition 2.1 Γj ∈ [D(A∗)+,Hj ], j ∈
{0, 1};

2) the relation dimH1 = n−(A) ≤ n+(A) = dimH0 is valid;

3) the equalities

D(A0) := Ker Γ0 = {f ∈ D(A∗) : Γ0f = 0}, A0 = A∗ ↾ D(A0)
(2.19)

define a maximal symmetric extension A0 ∈ ExtA with n−(A0) =
0.

It turns out that for every λ ∈ C+ (z ∈ C−) the map Γ0 ↾

Nλ(A) (P1Γ0 ↾ Nz(A)) is an isomorphism. This makes it possible to
introduce the operator functions (γ-fields) γ+(·) : C+ → [H0, H], γ−(·) :
C− → [H1, H] and the Weyl functions M+(·) : C+ → [H0,H1], M−(·) :
C− → [H1,H0] by

γ+(λ) = (Γ0 ↾ Nλ(A))−1, λ ∈ C+;

γ−(z) = (P1Γ0 ↾ Nz(A))−1, z ∈ C−,
(2.20)

Γ1 ↾ Nλ(A) = M+(λ)Γ0 ↾ Nλ(A), λ ∈ C+, (2.21)

(Γ1 + iP2Γ0) ↾ Nz(A) = M−(z)P1Γ0 ↾ Nz(A), z ∈ C−. (2.22)

According to [15] all functions γ± and M± are holomorphic on their
domains and M∗

+(λ) = M−(λ), λ ∈ C+.
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Lemma 2.3. Assume that {H0 ⊕ H1, Γ0, Γ1} is a D-triplet for A∗,
θ = {(C0, C1);K} ∈ C̃(H0,H1) is an operator pair (2.1), θ× =
{(C0×, C1×);K×} ∈ C̃(H0,H1) is the ×-adjoint pair and C1∗, C0∗ are
operators (2.3). Then

(C0Γ0 + C1Γ1)γ+(λ) = C0 + C1M+(λ), λ ∈ C+ (2.23)

(C0×Γ0 + C1×Γ1)γ−(z) = C1∗ + C0∗M−(z), z ∈ C−. (2.24)

Proof. It follows from (2.20)–(2.22) that

Γ0γ+(λ) = IH0
, Γ1γ+(λ) = M+(λ), λ ∈ C+ (2.25)

P1Γ0γ−(z) = IH1
, P2Γ0γ−(z) = −iP2M−(z),

Γ1γ−(z) = P1M−(z), z ∈ C−.
(2.26)

The equality (2.23) is immediate from (2.25). Moreover (2.26) yields

(C0×Γ0 + C1×Γ1)γ−(z)

= C0×P1Γ0γ−(z) + C0×P2Γ0γ−(z) + C1×Γ1γ−(z)

= C0× ↾ H1 + (C1×P1 − iC0×P2)M−(z)

= C1∗ + C0∗M−(z), z ∈ C−.

Combining [15, Proposition 4.1] with [15, Theorem 4.2] we arrive at
the following theorem.

Theorem 2.1. Suppose that Π = {H0 ⊕ H1, Γ0, Γ1} is a D-triplet for
A∗, θ = {(C0, C1);K} ∈ C̃(H0,H1) is an operator pair and Ã ∈ ExtA is
an extension defined by the abstract boundary condition

D(Ã) = {f ∈ D(A∗) : C0Γ0f + C1Γ1f = 0}, Ã = A∗ ↾ D(Ã) (2.27)

Then λ ∈ ρ(Ã)∩C+ ⇐⇒ 0 ∈ ρ(C0 +C1M+(λ)) and the following Krein
type formula for canonical resolvents holds

(Ã − λ)−1 = (A0 − λ)−1 − γ+(λ)(C0 + C1M+(λ))−1C1γ
∗
−(λ),

λ ∈ ρ(Ã) ∩ C+. (2.28)

Remark 2.2. 1) If a D-triplet Π = {H0⊕H1, Γ0, Γ1} satisfies the relation
H0 = H1 := H (⇔ A0 = A∗

0), then it is a boundary triplet. More
precisely this means that the collection Π = {H, Γ0, Γ1} is a boundary
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triplet (boundary value space) for A∗ in the sense of [8]. In this case the
relations

γ(λ) = (Γ0 ↾ Nλ(A))−1, Γ1 ↾ Nλ(A) = M(λ)Γ0 ↾ Nλ(A), λ ∈ ρ(A0)
(2.29)

define the operator function (γ-field) γ(·) : ρ(A0) → [H, H] and the
Weyl function M(·) : ρ(A0) → [H] introduced by V. A. Derkach and
M. M. Malamud [4] (see also [5] and the references therein). It is
clear that γ(·) and M(·) are connected with the operator functions
(2.20)–(2.22) by means of the following relations γ(λ) = γ±(λ) and
M(λ) = M±(λ), λ ∈ C±.

2) In the case of a symmetric operator A with n+(A) = n+(A) and
an ordinary boundary triplet Π = {H, Γ0, Γ1} for A∗ formula (2.28) co-
incides with [5, Proposition 2.2]. In turn, if Ã = Ã∗ (hence the corre-
sponding linear relation θ = {(C0, C1);K} ∈ C̃(H) is selfadjoint), then
(2.28) coincides with the known Krein–Naimark formula for canonical
resolvents of the operator A (see for instance [10]). Note also that a
simple proof of the Krein–Naimark formula as well as its connection
with a boundary triplet Π = {H, Γ0, Γ1} for A∗ (and, in particular, with
boundary conditions (2.27)) has been discovered in [5] (for other proofs of
the Krein–Naimark formula see also recent publication [6] and references
there in).

3. Differential operators and

decomposing boundary triplets

3.1. Differential operators

Let ∆ = [0, b〉 (b ≤ ∞) be an interval on the real axis (in the case
b < ∞ the point b may or may not belong to ∆), let H be a separable
Hilbert space with dimH ≤ ∞ and let

l[y] = lH [y] =
n∑

k=1

(−1)k((pn−ky
(k))(k)

−
i

2
[(q∗n−ky

(k))(k−1) + (qn−ky
(k−1))(k)]) + pny, (3.1)

be a differential expression of an even order 2n with smooth enough
operator-valued coefficients pk(·), qk(·) : ∆ → [H] such that pk(t) = p∗k(t)
and 0 ∈ ρ(p0(t)) for all t ∈ ∆ and k = 0÷n. Denote by y[k](·), k = 0÷2n

the quasi-derivatives of a vector-function y(·) : ∆ → H, corresponding to
the expression (3.1). Moreover for every operator function Y (·) : ∆ →
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[K, H] (K is a Hilbert space) introduce quasi-derivatives Y [k](·) by the
same formulas as y[k] (see [17,18]).

Let D(l) be the set of all functions y(·) such that y[k](·), k = 0÷(2n−
2) has a continuous derivative on ∆ and y[2n−1] is absolutely continuous
on ∆. Furthermore for a given Hilbert space K denote by DK(l) the set
of all operator-functions Y (·) with values in [K, H] such that Y [k](·), k =
0÷ (2n− 1) has a continuous derivative on ∆. Clearly for every y ∈ D(l)
and Y ∈ DK(l) the functions y[k](·) : ∆ → H, k = 0 ÷ (2n − 1) and
Y [k](·) : ∆ → [K, H], k = 0 ÷ 2n are continuous on ∆, the function
y[2n](t)(∈ H) is defined almost everywhere on ∆ and

l[y] = y[2n](t), y ∈ D(l); l[Y ] = Y [2n](t), Y ∈ DK(l).

This makes it possible to introduce the vector functions y(j)(·) : ∆ →
Hn, j ∈ {1, 2} and ỹ(·) : ∆ → Hn ⊕ Hn,

y(1)(t) := {y[k−1](t)}n
k=1(∈ Hn), y(2)(t) := {y[2n−k](t)}n

k=1(∈ Hn),
(3.2)

ỹ(t) = {y(1)(t), y(2)(t)}(∈ Hn ⊕ Hn), t ∈ ∆, (3.3)

which correspond to every y ∈ D(l). Similarly with each Y ∈ DK(l) we
associate the operator-functions Y (j)(·) : ∆ → [K, Hn] and Ỹ (·) : ∆ →
[K, Hn ⊕ Hn] given by

Y (1)(t) = (Y (t) Y [1](t) · · ·Y [n−1](t))⊤,

Y (2)(t) = (Y [2n−1](t) Y [2n−2](t) · · ·Y [n](t))⊤,

Ỹ (t) = (Y (1)(t) Y (2)(t))⊤ : K → Hn ⊕ Hn, t ∈ ∆.

Next for a given λ ∈ C consider the equation

l[y] − λy = 0. (3.4)

As is known this equation has the unique vector solution y ∈ D(l) (op-
erator solution Y ∈ DK(l)) with the given initial data yj0 = y(j)(0)
(respectively, Yj0 = Y (j)(0)), j ∈ {1, 2}. We distinguish the two "canon-
ical" operator solutions c(·, λ) and s(·, λ) : ∆ → [Hn, H], λ ∈ C of the
equation (3.4) with the initial data

c(1)(0, λ) = IHn , c(2)(0, λ) = 0,

s(1)(0, λ) = 0, s(2)(0, λ) = IHn ,
λ ∈ C. (3.5)

The following lemma is well known (see for instance [9, 17]).
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Lemma 3.1. Let f ∈ L1,loc(∆; H) and let Y (·) : ∆ → [K, H] be an
operator solution of (3.4). Next assume that an absolutely continuous
function C(·) : ∆ → K satisfies

Ỹ (x)C ′(x) = f̂(x) ( mod µ), (3.6)

where the vector function f̂(·) : ∆ → Hn ⊕ Hn is given by f̂(x) =
{0, . . . , 0,︸ ︷︷ ︸

n

−f(x), 0, . . . , 0︸ ︷︷ ︸
n−1

} and µ is the Lebesgue measure on ∆. Then the

vector function y(x) := Y (x)C(x) belongs to D(l) and obeys the relations

l[y] − λy = f, ỹ(x) = Ỹ (x)C(x). (3.7)

In what follows we denote by H(= L2(∆; H)) the Hilbert space of

all measurable functions f(·) : ∆ → H such that
∫ b

0 ‖f(t)‖2 dt < ∞.
Moreover, L′

2[K, H] stands for the set of all operator-functions Y (·) :
∆ → [K, H] such that Y (t)h ∈ H for all h ∈ K.

It is known [17, 18] that the expression (3.1) generate the maximal
operator L in H, defined on the domain D = D(L) := {y ∈ D(l) ∩ H :
l[y] ∈ H} by the equality Ly = l[y], y ∈ D. Moreover the Lagrange’s
identity

(Ly, z)H − (y, Lz)H = [y, z](b) − [y, z](0), y, z ∈ D (3.8)

holds with

[y, z](t) = (y(1)(t), z(2)(t))Hn − (y(2)(t), z(1)(t))Hn ,

[y, z](b) = lim
t↑b

[y, z](t).

The minimal operator L0 is defined as a restriction of L onto the domain
D0 = D(L0) of all functions y ∈ D such that ỹ(0) = 0 and [y, z](b) = 0 for
all z ∈ D. As is known [17, 18] L0 is a closed densely defined symmetric
operator in H and L∗

0 = L. Moreover the subspace Nλ(L0) (= Ker(L−λ))
is the set of all solutions of (3.4) belonging to H.

Definition 3.1 ([7, 20]). An extension Ã ∈ ExtL0
is said to be defined

by decomposing boundary conditions if for every y ∈ D(Ã) there exists
z ∈ D(Ã) such that z̃(0) = 0 and z(t) = y(t) on some interval (η, b) ∈ ∆.

3.2. Decomposing boundary triplets

Assume that H′
1 is a subspace in a Hilbert space H′

0, H′
2 := H′

0 ⊖
H′

1, Γ′
0 : D → H′

0 and Γ′
1 : D → H′

1 are linear maps and P ′
j is the

orthoprojector in H′
0 onto H′

j , j ∈ {1, 2}. Moreover let H0 = Hn ⊕
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H′
0, H1 = Hn ⊕H′

1 and let Γj : D → Hj , j ∈ {0, 1} be linear maps given
by

Γ0y = {y(2)(0), Γ′
0y} (∈ Hn ⊕H′

0),

Γ1y = {−y(1)(0), Γ′
1y} (∈ Hn ⊕H′

1),
y ∈ D. (3.9)

Definition 3.2 ([16]). A collection Π = {H0 ⊕ H1, Γ0, Γ1}, where Γ0

and Γ1 are linear maps (3.9), is said to be a decomposing D-triplet for L

if the map Γ′ = (Γ′
0 Γ′

1)
⊤ : D → H′

0 ⊕H′
1 is surjective and the following

identity holds

[y, z](b) = (Γ′
1y, Γ′

0z) − (Γ′
0y, Γ′

1z) + i(P ′
2Γ

′
0y, P ′

2Γ
′
0z), y, z ∈ D. (3.10)

In the case H′
0 = H′

1 =: H′ ( ⇐⇒ H0 = H1 =: H) a decomposing
D-triplet Π = {H, Γ0, Γ1} is called a decomposing boundary triplet for
L. For such a triplet the identity (3.10) takes the form

[y, z](b) = (Γ′
1y, Γ′

0z) − (Γ′
0y, Γ′

1z), y, z ∈ D. (3.11)

As was shown in [16, Lemma 3.4] a decomposing D-triplet (a decomposing
boundary triplet) for L is a D-triplet (a boundary triplet) in the sense
of Definition 2.5 and Remark 2.2. Moreover a decomposing D-triplet
(boundary triplet) for L exists if and only if nb− ≤ nb+ (respectively,
nb− = nb+), where nb± are deficiency indices of the expression (3.1) at
the point b [16]. Therefore in the sequel we suppose (without loss of
generality) that nb− ≤ nb+ and, consequently, n−(L0) ≤ n+(L0).

Theorem 3.1 ( [16]). Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing
D-triplet (3.9) and let

M+(λ) =

(
m(λ) M2+(λ)

M3+(λ) M4+(λ)

)
: Hn ⊕H′

0 → Hn ⊕H′
1, λ ∈ C+,

(3.12)

M−(z) =

(
m(z) M2−(z)

M3−(z) M4−(z)

)
: Hn ⊕H′

1 → Hn ⊕H′
0, z ∈ C−,

(3.13)

be the block-matrix representations of the Weyl functions (2.21), (2.22)
for Π. Then:

1) the maximal symmetric extension A0 ∈ ExtL0
(see (2.19)) has the

domain

D(A0) = {y ∈ D : y(2)(0) = 0, Γ′
0y = 0}; (3.14)
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2) for every λ ∈ C+ ∪ C− there exists the unique operator function
v0(·, λ) ∈ L′

2[H
n, H], satisfying the equation (3.4)and the boundary

conditions

v
(2)
0 (0, λ) = IHn , λ ∈ C+ ∪ C− (3.15)

Γ′
0(v0(t, λ)ĥ) = 0, λ ∈ C+;

P ′
1Γ

′
0(v0(t, z)ĥ) = 0, z ∈ C−, ĥ ∈ Hn.

(3.16)

Moreover, for every λ ∈ C+ (z ∈ C−) there exists the unique opera-
tor function u+(·, λ) ∈ L′

2[H
′
0, H] (u−(·, z) ∈ L′

2[H
′
1, H]), satisfying

(3.4) and the boundary conditions

u
(2)
+ (0, λ) = 0, Γ′

0(u+(t, λ)h′
0) = h′

0, λ ∈ C+, h′
0 ∈ H′

0; (3.17)

u
(2)
− (0, z) = 0, P ′

1Γ
′
0(u−(t, z)h′

1) = h′
1, z ∈ C−, h′

1 ∈ H′
1. (3.18)

3) let Z+(·, λ) ∈ L′
2[H0, H] and Z−(·, z) ∈ L′

2[H1, H] be operator solu-
tions of (3.4) defined by the block-matrix representations

Z+(t, λ) = (v0(t, λ) u+(t, λ)) : Hn ⊕H′
0 → H, λ ∈ C+, (3.19)

Z−(t, z) = (v0(t, z) u−(t, z)) : Hn ⊕H′
1 → H, z ∈ C−. (3.20)

Then

Z̃+(0, λ) =

(
v

(1)
0 (0, λ) u

(1)
+ (0, λ)

v
(2)
0 (0, λ) u

(2)
+ (0, λ)

)

=

(
−m(λ) −M2+(λ)

IHn 0

)
, λ ∈ C+ (3.21)

Z̃−(0, z) =

(
v

(1)
0 (0, z) u

(1)
− (0, z)

v
(2)
0 (0, z) u

(2)
− (0, z)

)

=

(
−m(z) −M2−(z)
IHn 0

)
, z ∈ C−. (3.22)

and the γ-fields (2.20) for Π obey the relations

(γ+(λ)h0)(t) = Z+(t, λ)h0, λ ∈ C+, h0 ∈ H0 (3.23)

(γ−(z)h1)(t) = Z−(t, z)h1, z ∈ C−, h1 ∈ H1 (3.24)

This implies that Z+(·, λ) and Z−(·, λ) are holomorphic fundamen-
tal solutions of (3.4) (see Definition 4.3 below).
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4. Fundamental solutions and spectra

of proper extensions

4.1. Boundary conditions

Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (3.9) for L,
let θ = {(C0, C1);K} ∈ C̃(H0,H1) be an operator pair and let θ× =
{(C0×, C1×);K×} ∈ C̃(H0,H1) be a ×-adjoint operator pair (this means
that K and K× are Hilbert spaces and Cj ∈ [Hj ,K], Cj× ∈ [Hj ,K×], j ∈
{0, 1}). Since Hj = Hn ⊕ H′

j , the operators Cj and Cj× admit the
block-matrix representations

C0 = (Ĉ2 C ′
0) : Hn ⊕H′

0 → K,

C1 = (−Ĉ1 C ′
1) : Hn ⊕H′

1 → K,
(4.1)

C0× = (Ĉ2× C ′
0×) : Hn ⊕H′

0 → K×,

C1× = (−Ĉ1× C ′
1×) : Hn ⊕H′

1 → K×

(4.2)

The description of all proper extensions of the minimal operator L0 in
terms of boundary conditions is contained in the following theorem.

Theorem 4.1 ( [16]). Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing
D-triplet (3.9) for L. Then:

1) the equalities (the boundary conditions)

D(Ã) = {y ∈ D : Ĉ1y
(1)(0) + Ĉ2y

(2)(0) + C ′
0Γ

′
0y + C ′

1Γ
′
1y = 0},

Ã = L ↾ D(Ã)
(4.3)

establish a bijective correspondence between all proper extensions
Ã ∈ ExtL0

and all operator pairs θ = {(C0, C1);K} ∈ C̃(H0,H1)
defined by (4.1). Moreover the adjoint Ã∗ to the extension (4.3)
has the domain

D(Ã∗) = {y ∈ D : Ĉ1×y(1)(0)+Ĉ2×y(2)(0)+C ′
0×Γ′

0y+C ′
1×Γ′

1y = 0}
(4.4)

where the operators Ĉ1×, Ĉ2×, C ′
0× and C ′

1× are defined by (4.2)

2) the equalities

D(Ã) = {y ∈ D : N̂1y
(1)(0) + N̂2y

(2)(0) = 0,

N0Γ
′
0y + N1Γ

′
1y = 0}, Ã = L ↾ D(Ã) (4.5)
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give a bijective correspondence between all extensions Ã ∈ ExtL0

defined by decomposing boundary conditions (see Definition 3.1)
and all all collections of two operator pairs θ0 = {(N̂2,−N̂1);K0} ∈
C̃(Hn) and θ′ = {(N0, N1);K1} ∈ C̃(H′

0,H
′
1).

Remark 4.1. It is clear that the boundary conditions (4.3) can be writ-
ten as

D(Ã) = {y ∈ D : C0Γ0y + C1Γ1y = 0}, (4.6)

while the decomposing boundary conditions (4.5) are equivalent to (4.6)
with

C0 =

(
N̂2 0
0 N0

)
: Hn ⊕H′

0 → K0 ⊕K1,

C1 =

(
−N̂1 0

0 N1

)
: Hn ⊕H′

1 → K0 ⊕K1.

(4.7)

4.2. Fundamental solutions

The following proposition will be systematically used in the sequel.

Proposition 4.1. Let Π = {H0⊕H1, Γ0, Γ1} be a decomposing D-triplet
(3.9) for L,

θ′ = {(N0, N1);K1} ∈ C̃(H′
0,H

′
1) (4.8)

be an operator pair with Nj ∈ [H′
j ,K1] (j ∈ {0, 1}), θ′× = {(N0×, N1×);

K1×} ∈ C̃(H′
0,H

′
1) be a ×-adjoint operator pair with Nj× ∈ [H′

j ,K1×]
(j ∈ {0, 1}) and let Lb, Lb× ∈ ExtL0

be extensions with the domains

D(Lb×) = {y ∈ D : ỹ(0) = 0, N0Γ
′
0y + N1Γ

′
1y = 0}, (4.9)

D(Lb) = {y ∈ D : ỹ(0) = 0, N0×Γ′
0y + N1×Γ′

1y = 0}. (4.10)

Then:

1) the adjoint extensions L∗
b and L∗

b× have the domains

D(L∗
b) = {y ∈ D : N0Γ

′
0y + N1Γ

′
1y = 0},

D(L∗
b×) = {y ∈ D : N0×Γ′

0y + N1×Γ′
1y = 0};

(4.11)

2) the subspace Nλ(Lb)(= Ker(L∗
b − λ)), λ ∈ C is defined by

Nλ(Lb) = {y ∈ Nλ(L0) : N0Γ
′
0y + N1Γ

′
1y = 0}; (4.12)

3) {Lb×, Lb} is a dual pair and (4.5) give a bijective correspondence
between all extensions Ã ∈ Ext{Lb×, Lb} and all operator pairs
θ0 = {(N̂2,−N̂1);K0} ∈ C̃(Hn);
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4) the operators ΓLb = (ΓLb

0 ΓLb

1 )⊤ : D(L∗
b) → Hn ⊕ Hn and ΓLb× =

(Γ
Lb×

0 Γ
Lb×

1 )⊤ : D(L∗
b×) → Hn ⊕ Hn given by

ΓLb

0 y = y(2)(0), ΓLb

1 y = −y(1)(0), y ∈ D(L∗
b) (4.13)

Γ
Lb×

0 z = z(2)(0), Γ
Lb×

1 z = −z(1)(0), z ∈ D(L∗
b×) (4.14)

form a boundary triplet Π̃ = {Hn⊕Hn, ΓLb , ΓLb×} for the dual pair
{Lb×, Lb};

5) if λ ∈ ρ̂{Lb×, Lb}, then there exists an extension Ã ∈ Ext{Lb×, Lb}
with λ ∈ ρ(Ã).

Proof. The statement 1) is implied by Theorem 4.1, 1), while the state-
ments 2) and 3) are obvious.

4) For every y ∈ D(L∗
b) and z ∈ D(L∗

b×) one has {Γ′
0y, Γ′

1y} ∈ θ′ and
{Γ′

0z, Γ′
1z} ∈ θ′×, which in view of (3.10) yields [y, z](b) = 0. This and

(3.8) give the identity (2.5) for operators (4.13) and (4.14).
Next for every h1, h2 ∈ Hn there is y ∈ D such that y(1)(0) =

h1, y(2)(0) = h2 and Γ′
0y = Γ′

1y = 0 (see formula (3.16) in [16]). Since by
(4.11) y ∈ D(L∗

b) ∩ D(L∗
b×), this proves the equality (2.4) for the triplet

Π̃.
Finally, the statement 5) follows from Corollary 3.16 in [12]

For a given operator pair (4.8) consider a boundary problem

l[y] − λy = 0 (4.15)

N0Γ
′
0y + N1Γ

′
1y = 0 (4.16)

with a boundary condition (4.16) at the right end b of the interval ∆.

Definition 4.1. A function y(·) : ∆ → H will be called a (vector) solu-
tion of the boundary problem (4.15), (4.16) if it belongs to D and obeys
the equalities (4.15), (4.16).

It follows from (4.12) that the set of all solutions of the problem (4.15),
(4.16) coincides with Nλ(Lb).

Definition 4.2. Let λ ∈ C and let K′
0 be a Hilbert space. An operator

function
v(·, λ) : ∆ → [K′

0, H] (4.17)

will be called a fundamental solution of the boundary problem (4.15),
(4.16) if v(·, λ) is an operator solution of the equation (4.15) and the
equality

y(= y(t)) = v(t, λ)h′
0 (4.18)
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gives a bijective correspondence between all vector solutions y(·) of the
problem (4.15), (4.16) and all h′

0 ∈ K′
0.

In the case N0 = N1 = 0( ⇐⇒ Lb = L0) a fundamental solution

Z(·, λ) : ∆ → [K′, H] (4.19)

of the problem (4.15), (4.16) will be called a fundamental solution of the
equation (4.15).

It follows from Definition 4.2 that a fundamental solution of the prob-
lem (4.15), (4.16) belongs to L′

2[K
′, H]. Moreover, an operator function

(4.19) is a fundamental solution of the equation (4.15) if and only if it
is an operator solution of this equation and the equality y = Z(t, λ)h′

gives a bijective correspondence between all functions y ∈ Nλ(L0) and
all h′ ∈ K′.

Let D+ be a Hilbert space of all functions y ∈ D with the inner
product

(y, z)+ = (y, z)H + (Ly, Lz)H, y, z ∈ D+

and let δ : D → Hn ⊕ Hn be a linear map given by

δy = ỹ(0), y ∈ D. (4.20)

It follows from (3.9) and Proposition 2.2, 1) that δ ∈ [D+, Hn ⊕ Hn].

Lemma 4.1. Let assumptions be as in Proposition 4.1 and let λ ∈ C.
Then:

1) for every operator Z ∈ [K′, Nλ(L0)] the relation

Z(t, λ)h′ = (Zh′)(t), h′ ∈ K′ (4.21)

defines an operator solution Z(·, λ) ∈ L′
2[K

′, H] of the equation
(4.15). Conversely, for each such a solution there exists an operator
Z ∈ [K′, Nλ(L0)] obeying (4.21).

2) the equality
v(t, λ)h′

0 = (vh′
0)(t), h′

0 ∈ K′
0 (4.22)

establishes a bijective correspondence between all fundamental so-
lutions (4.17) of the problem (4.15), (4.16) and all isomorphisms
v ∈ [K′

0, Nλ(Lb)].

3) let Z(·, λ) ∈ L′
2[K

′, H] be an operator solution of (4.15) and let
Z ∈ [K′, Nλ(L0)] be the corresponding operator (4.21) considered
as acting to the Hilbert space H. Then

Z∗f =

b∫

0

Z∗(t, λ)f(t) dt := lim
η↑b

η∫

0

Z∗(t, λ)f(t) dt, f = f(t) ∈ H.

(4.23)
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Proof. 1) For a given Z ∈ [K′, Nλ(L0)] consider the operator solu-
tion Z(·, λ) : ∆ → [K′, H] of the equation (4.15) with the initial data
Z̃(0, λ) = δλZ, where δλ = δ ↾ Nλ(L0) ∈ [Nλ(L0), H

n ⊕Hn] . It is clear
that for every fixed h′ ∈ K′ the vector function

y = y(t, h′) := (Zh′)(t) (4.24)

is a solution of (4.15) with ỹ(0) = δλZh′ = Z̃(0, λ)h′. Therefore y =
Z(t, λ)h′ and by (4.24) the introduced operator function Z(·, λ) satisfies
(4.21). Hence Z(·, λ) ∈ L′

2[K
′, H].

Conversely, let Z(·, λ) ∈ L′
2[K

′, H] be an operator solution of (4.15).
Then the equality (4.21) defines a linear map Z : K′ → Nλ(L0) obeying
δλZ = Z̃(0, λ) with bounded operators δλ and Z̃(0, λ). This and the
equality Ker δλ = {0} imply that the operator Z is closed and, conse-
quently, bounded.

The statement 2) is immediate from 1).
3) The proof of (4.23) is similar to that of the formula (3.70) in

[16]

The following theorem is immediate from Lemma 4.1, 2).

Theorem 4.2. 1) Let the assumptions of Proposition 4.1 be satisfied
and let λ ∈ C. Then for every Hilbert space K′

0 with

dimK′
0 = dimNλ(Lb) (4.25)

there exists a fundamental solution (4.17) of the boundary problem
(4.15), (4.16). Conversely, for every fundamental solution (4.17)
the equality (4.25) holds.

2) Let v0(·, λ) : ∆ → [K′
0, H] be a fundamental solution of the bound-

ary problem (4.15), (4.16). Then the equality

v(t, λ) = v0(t, λ)X

gives a bijective correspondence between all fundamental solutions
(4.17) of the same problem and all bounded isomorphisms X ∈ [K′

0].

Definition 4.3. Let Λ be an open set in C and let K′
0 be a Hilbert

space. An operator function v(·, ·) : ∆ × Λ → [K′
0, H] will be called a

holomorphic (on the set Λ) fundamental solution of the boundary problem
(4.15), (4.16) if:

(i) for every λ ∈ Λ the operator function v(·, λ) is a fundamental so-
lution of the problem (4.15), (4.16);
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(ii) for some (and, hence, for each) fixed t ∈ ∆ all quasi-derivatives
v[k](t, ·), k = 0 ÷ (2n − 1) are holomorphic on Λ.

In the following theorem we specify conditions, which guarantee ex-
istence of holomorphic fundamental solutions.

Theorem 4.3. 1) Let Ã be a proper extension of L0 with nonempty
resolvent set ρ(Ã). Then there exists a fundamental solution (4.19)
of the equation (4.15) holomorphic on ρ(Ã).

2) Let θ′ be an operator pair (4.8), let (4.15), (4.16) be the correspond-
ing boundary problem and let Ã ∈ ExtL0

be an extension defined
by decomposing boundary conditions (4.5) with some operator pair
θ0 = {(N̂2,−N̂1);K0)} ∈ C̃(Hn). If ρ(Ã) 6= ∅, then there exists a
fundamental solution (4.17) of the problem (4.15), (4.16) holomor-
phic on ρ(Ã).

Proof. 1) Let λ0 ∈ ρ(Ã) and let Z0 be an isomorphism of a Hilbert
space K′ onto Nλ0

(L0). Since the resolvent (Ã − λ)−1 (λ ∈ ρ(Ã)) is a
holomorphic operator function with values in [H,D+], the equality

Z(λ) := Z0 + (λ − λ0)(Ã − λ)−1Z0, λ ∈ ρ(Ã) (4.26)

defines a holomorphic operator function Z(·) : ρ(Ã) → [K′,D+]. More-
over one can easily verify that Z(λ)K′ = Nλ(L0) and KerZ(λ) = {0}.
Therefore by Lemma 4.1, 2) the relation

Z(t, λ)h′ := (Z(λ)h′)(t), h′ ∈ K′, t ∈ ∆ (4.27)

defines a family of fundamental solutions of the equation (4.15) with
Z̃(0, λ) = δZ(λ). Hence the operator function Z̃(0, ·) is holomorphic on
ρ(Ã), so that Z(t, λ) is a holomorphic fundamental solution.

2) Let L∗
b ∈ ExtL0

be the extension (4.11), let v0 be an isomorphism

of a Hilbert space K′
0 onto Nλ0

(Lb) (λ0 ∈ ρ(Ã)) and let v(·) : ρ(Ã) →
[K′

0,D+] be a holomorphic operator function given by

v(λ) := v0 + (λ − λ0)(Ã − λ)−1v0, λ ∈ ρ(Ã).

Using the inclusion Ã ⊂ L∗
b one can easily prove that v(λ)K′

0 = Nλ(Lb)
and Ker v(λ) = {0}. Now applying Lemma 4.1, 2) one obtains the
required statement in the same way as the previous one.

Combining this theorem with statements 3) and 5) of Proposition 4.1
we arrive at the following corollary.

Corollary 4.1. Let θ′ be an operator pair (4.8) and let {Lb×, Lb} be the
corresponding dual pair of operators (4.9), (4.10). If λ0 ∈ ρ̂{Lb×, Lb},
then there exists a fundamental solution of the boundary problem (4.15),
(4.16) holomorphic in some neighborhood of the point λ0.
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4.3. Spectra of proper extensions

In this subsection we describe spectrum of a proper extension Ã ∈
ExtL0

in terms of boundary conditions and fundamental solutions of the
boundary problem (4.15), (4.16).

Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (3.9) for L,
let θ = {(C0, C1);K} ∈ C̃(H0,H1) be an operator pair with operators
Cj ∈ [Hj ,K], j ∈ {0, 1} and let Z(·, λ) : ∆ → [K′, H] (λ ∈ C) be
a fundamental solution of the equation (4.15). Introduce the operator
T ∈ [K′,K] by

T = (C0Γ0 + C1Γ1)Z, (4.28)

where Z ∈ [K′, Nλ(L0)] is the corresponding isomorphism (4.21) (see
Lemma 4.1, 2)). Using the block-matrix representation (4.1) one rewrites
(4.28) as

Th′ = (Ĉ1Z
(1)(0, λ) + Ĉ2Z

(2)(0, λ))h′

+ (C ′
0Γ

′
0 + C ′

1Γ
′
1)(Z(t, λ)h′), h′ ∈ K′.

Theorem 4.4. Let under the above suppositions Ã ∈ ExtL0
be an exten-

sion (4.3) corresponding to the operator pair θ. Then for every λ ∈ ρ̂(L0)
the relations (2.8) and (2.9) hold with the operator T given by (4.28).

Proof. Let Π̂ = {H0 ⊕ H1, Γ̂
L0 , ΓL0} be a boundary triplet (2.18) for

the dual pair {L0, L0} corresponding to the decomposing D-triplet Π
for L (see Proposition 2.2, 1)). Applying Lemma 2.2 to the triplet Π̂
(with F := Z) and taking (4.6) into account we arrive at the desired
statement.

Next assume that θ0 = {(N̂2,−N̂1);K0} ∈ C̃(Hn) is an operator pair
with operators N̂1, N̂2 ∈ [Hn,K0] and θ′ is an operator pair (4.8). Con-
sider the boundary problem (4.15), (4.16) corresponding to the given θ′

and let v(·, λ) : ∆ → [K′
0, H] (λ ∈ C) be a fundamental solution of this

problem. Introduce the operator T̂ ∈ [K′
0,K0] by setting

T̂ = N̂1v
(1)(0, λ) + N̂2v

(2)(0, λ). (4.29)

Theorem 4.5. Let under the above assumptions Ã ∈ ExtL0
be an exten-

sion (4.5) corresponding to the operator pairs θ0 and θ′ and let {Lb×, Lb}
be a dual pair of operators (4.9), (4.10). Then for every λ ∈ ρ̂{Lb×, Lb}
the relations (2.8) and (2.9) hold with the operator T̂ instead of T .

Proof. Let Π̃ = {Hn ⊕ Hn, ΓLb , ΓLb×} be the boundary triplet (4.13),
(4.14) for the dual pair {Lb×, Lb}. Then in view of Proposition 4.1, 3)
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the domain D(Ã) is given by

D(Ã) = {y ∈ D(L∗
b) : N̂2Γ

Lb

0 y − N̂1Γ
Lb

1 y = 0}. (4.30)

Next assume that v ∈ [K′
0, Nλ(Lb)] is the isomorphism (4.22) correspond-

ing to the fundamental solution v(·, λ). Then the operator (4.29) can be
written as

T̂ = N̂2(Γ
Lb

0 v) − N̂1(Γ
Lb

1 v). (4.31)

Now applying Lemma 2.2 to the triplet Π̃ and taking (4.30), (4.31) into
account one obtains the required statement.

Corollary 4.2. Assume that θ′ is an operator pair (4.8), {Lb×, Lb} is
the dual pair (4.9), (4.10) and Aθ′ ∈ ExtL0

is the extension with the
domain

D(Aθ′) = {y ∈ D : y(2)(0) = 0, N0Γ
′
0y + N1Γ

′
1y = 0}. (4.32)

If λ ∈ ρ̂{Lb×, Lb} and v(·, λ) : ∆ → [K′
0, H] is a fundamental solution of

the problem (4.15), (4.16) (corresponding to the given θ′), then the set

ṽ(0, λ)K′
0

= {ỹ(0) : y(·) is a vector solution of the problem (4.15), (4.16)}

is a closed subspace in Hn ⊕ Hn.

If in addition λ ∈ ρ(Aθ′), then dimK′
0 = dim Hn and, therefore, there

exists a fundamental n-component solution v(·, λ) : ∆ → [Hn, H] of the
problem (4.15), (4.16).

Proof. If λ ∈ ρ̂{Lb×, Lb}, then according to Proposition 4.1 there is an
operator pair θ0 = {(N̂2,−N̂1);K0} ∈ C̃(Hn) such that the extension
Ã ∈ Ext{Lb×, Lb} with the domain (4.5) obeys the inclusion λ ∈ ρ(Ã).
Let T̂ be the corresponding operator (4.29) and let N̂ = (N̂1 N̂2) ∈
[Hn ⊕ Hn,K0]. Then T̂ = N̂ ṽ(0, λ) and by Theorem 4.5 0 ∈ ρ(T̂ ).
Hence ṽ(0, λ)K′

0 is a closed subspace in Hn ⊕ Hn and dimK′
0 = dimK0.

If in addition λ ∈ ρ(Aθ′), then ρ(Aθ′) ∩ ρ(Ã) 6= ∅. Moreover, Aθ′ ∈
Ext{Lb×, Lb} and the boundary triplet (4.13), (4.14) for {Lb×, Lb} obeys
the equality D(Aθ′) = Ker ΓLb

0 . Therefore by Corollary 5.3, ii) in [12] one
can put K0 = Hn, which implies that dimK′

0 = dimHn

In what follows we denote by Sol(Hn) the set of all fundamental n-
component solutions v(·, λ) : ∆ → [Hn, H] of the problem (4.15), (4.16)
obeying ṽ(0, λ)Hn = ṽ(0, λ)Hn.
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Definition 4.4. A boundary condition (4.16) will be called dissipative,
accumulative or selfadjoint if the corresponding operator pair (linear re-
lation) θ′ given by (4.8) belongs to the class Dis(H′

0,H
′
1), Ac(H′

0,H
′
1) or

Self(H′
0,H

′
1) respectively.

Corollary 4.3. 1) Every boundary problem (4.15), (4.16) with a dis-
sipative (accumulative) boundary condition has a fundamental so-
lution v(·, λ) ∈ Sol(Hn) holomorphic on C− (respectively, C+).

2) Let under assumptions of Theorem 4.5 θ′ ∈ Dis(H′
0,H

′
1) (θ′ ∈

Ac(H′
0,H

′
1)). Then the statement of this theorem holds for all λ ∈

C− (λ ∈ C+).

Proof. 1) If θ′ ∈ Dis(H′
0,H

′
1), then θ′× ∈ Ac(H′

0,H
′
1) and by (3.10)

Lb× (Lb) is a closed dissipative (accumulative) operator in H. Therefore
the operator pair {Lb×, Lb} admits a maximal dissipative proper exten-
sion Ã, which in view of Proposition 4.1, 3) is given by (4.5). Moreover,
by Theorem 4.1, 3) from [16] the equality (4.32) defines a maximal dis-
sipative extension Aθ′ . Hence C− ⊂ ρ(Ã) ∩ ρ(Aθ′) and Theorem 4.3, 2)
together with Corollary 4.2 give the required statement.

The statement 2) is implied by Theorem 4.5 and the obvious inclusion
C− ⊂ ρ̂{Lb×, Lb}.

For an operator T ∈ C̃(H) denote by ρ̂r(T ) := ρ̂(T ) ∩ R the set of all
real regular type points of T .

Corollary 4.4. 1) Let (4.15), (4.16) be a boundary problem with a
selfadjoint boundary condition (4.16) and let Lb ∈ ExtL0

be the
corresponding extension (4.10). Then:

(i) the operator Lb(= Lb×) is symmetric;

(ii) for every point λ0 ∈ ρ̂r(Lb) there exists a fundamental solu-
tion v(·, λ) ∈ Sol(Hn) holomorphic on U(λ0)∪C+ ∪C− (here
U(λ0) ⊂ R is a real neighborhood of λ0);

(iii) there exists a fundamental solution v(·, λ) ∈ Sol(Hn) holo-
morphic on C+ ∪ ρ̂r(Lb) (i.e., on some domain Λ containing
the set C+ ∪ ρ̂r(Lb)).

2) The following statements are valid:

(i) for every point λ0 ∈ ρ̂r(L0) there exists a fundamental solution
of the equation (4.15) holomorphic on U(λ0) ∪ C+ ∪ C−;

(ii) there exists a fundamental solution of (4.15) holomorphic on
C+ ∪ ρ̂r(L0).
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Proof. 1) If λ0 ∈ ρ̂r(Lb), then there is a selfadjoint extension Ã ∈ ExtLb

with λ0 ∈ ρ(Ã). Moreover, there exists a maximal accumulative exten-
sion Ã′ ∈ ExtLb

with (C+ ∪ ρ̂r(Lb)) ⊂ ρ(Ã′) (for example, so is the

extension Ã′ with the domain D(Ã′) = D(Lb) ∔ N−i(Lb)). Observe also
that the extensions Ã and Ã′ are defined by decomposing boundary con-
ditions (4.5) and the operator (4.32) is selfadjoint, so that ρ(Aθ′) = C.
Now applying Theorem 4.3, 2) and Corollary 4.2 we obtain the state-
ment 1).

The statement 2) can be proved similarly.

The following corollary is immediate from Theorem 4.5.

Corollary 4.5. Let under suppositions of Theorem 4.5 θ′ ∈ Self(H′
0,

H′
1) and let Lb be the corresponding (symmetric) extension (4.10). Then

the statement of the mentioned theorem holds for all λ ∈ ρ̂r(Lb)∪C+∪C−.

5. Resolvents of proper extensions

Let Π = {H0 ⊕ H1, Γ0, Γ1} be a decomposing D-triplet (3.9) for L,
let θ = {(C0, C1);K} ∈ C̃(H0,H1) be an operator pair (4.1) and let Ã ∈
ExtL0

be the corresponding extension (4.3). Assume that λ ∈ ρ(Ã) and
let Z(·, λ) : ∆ → [K′, H] be a fundamental solution of the equation (4.15)
(such a solution exists in view of Theorem 4.2). It follows from Theorem
4.4 that the corresponding operator T ∈ [K′,K] (see (4.28)) is invertible.
This allows us to introduce the operator function Yθ(·, λ) : ∆ → [K′, H]
as the operator solution of the equation l[y]−λy = 0 with the initial data

Y
(1)
θ (0, λ) = −Ĉ∗

2T−1∗, Y
(2)
θ (0, λ) = Ĉ∗

1T−1∗. (5.1)

Next assume that θ× = {(C0×, C1×);K×} ∈ C̃(H0,H1) is a ×-adjoint
operator pair (4.2). Then the adjoint extension Ã∗ is defined by (4.4)
and λ ∈ ρ(Ã∗). Let Z(·, λ) : ∆ → [K′

×, H] be a fundamental solution of
the equation l[y] − λy = 0 and let T× ∈ [K′

×,K×] be the operator given
by

T×h′ = (Ĉ1×Z(1)(0, λ) + Ĉ2×Z(2)(0, λ))h′

+ (C ′
0×Γ′

0 + C ′
1×Γ′

1)(Z(t, λ)h′), h′ ∈ K′
×. (5.2)

Then in view of Theorem 4.4 0 ∈ ρ(T×), which makes it possible to define
the operator function Yθ×(·, λ) : ∆ → [K′

×, H] as the operator solution of
(3.4) with the initial data

Y
(1)
θ×

(0, λ) = −Ĉ∗
2×T−1∗

× , Y
(2)
θ×

(0, λ) = Ĉ∗
1×T−1∗

× . (5.3)
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One can easily verify that for a given fundamental solution Z(·, λ)
(Z(·, λ)) the operator function Yθ(·, λ) (Yθ×(·, λ)) is uniquely defined by
θ, i.e., it does not depend on the choice of the equivalent representation
θ = {(C0, C1);K} (respectively, θ× = {(C0×, C1×);K×}).

Definition 5.1. The operator function Gθ(·, ·, λ) : ∆ × ∆ → [H], given
by

Gθ(x, t, λ) =

{
Z(x, λ)Y ∗

θ (t, λ), x > t

Yθ×(x, λ)Z∗(t, λ), x < t
, λ ∈ ρ(Ã) (5.4)

will be called the Green function, corresponding to an operator pair θ ∈
C̃(H0,H1).

It is easily seen that for a given operator pair θ the Green function
(5.4) does not depend on the choice of fundamental solutions Z(·, λ) and
Z(·, λ).

Next assume that θ0 = {(N̂2,−N̂1);K0} ∈ C̃(Hn) is an operator pair
with N̂1, N̂2 ∈ [Hn,K0], θ′ is an operator pair (4.8) and Ã ∈ ExtL0

is
the corresponding extension defined by the decomposing boundary con-
ditions (4.5). Suppose that λ ∈ ρ(Ã) and let v(·, λ) : ∆ → [K′

0, H]
be a fundamental solution of the boundary problem (4.15), (4.16) with
the given operator pair θ′. It follows from Theorem 4.5 that 0 ∈ ρ(T̂ )
where T̂ ∈ [K′

0,K0] is the corresponding operator (4.29). This enables to
introduce the operator solution ϕθ(·, λ) : ∆ → [K′

0, H] of the equation
l[y] − λy = 0 with the initial data

ϕ
(1)
θ (0, λ) = −N̂∗

2 T̂−1∗, ϕ
(2)
θ (0, λ) = N̂∗

1 T̂−1∗. (5.5)

Furthermore, let θ∗0 = {(N̂2∗,−N̂1∗);K0∗} ∈ C̃(Hn) be the adjoint op-
erator pair (linear relation) to θ0 and let θ′× = {(N0×, N1×);K1×} ∈
C̃(H′

0,H
′
1) be a ×-adjoint operator pair to θ′. Then the adjoint Ã∗ is

defined by the decomposing boundary conditions

D(Ã∗) = {y ∈ D :, N̂1∗y
(1)(0) + N̂2∗y

(2)(0) = 0, N0×Γ′
0y + N1×Γ′

1y = 0}
(5.6)

and λ ∈ ρ(Ã∗). Let v(·, λ) : ∆ → [K′
0×, H] be a fundamental solution of

the ×-adjoint boundary problem

l[y] − λy = 0 (5.7)

N0×Γ′
0y + N1×Γ′

1y = 0 (5.8)

and let T̂× ∈ [K′
0×,K0∗] be the operator given by

T̂× = N̂1∗v
(1)(0, λ) + N̂2∗v

(2)(0, λ). (5.9)
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Then according to Theorem 4.5 0 ∈ ρ(T̂×), which makes it possible to
define the operator solution ϕθ×(·, λ) : ∆ → [K′

0×, H] of (3.4) with the
initial data

ϕ
(1)
θ×(0, λ) = −N̂∗

2∗T̂
−1∗
× , ϕ

(2)
θ×

(0, λ) = N̂∗
1∗T̂

−1∗
× . (5.10)

In the following proposition we show that in the case of decomposing
boundary conditions the Green function can be represented in a rather
simpler form.

Proposition 5.1. Let the extension Ã ∈ ExtL0
be defined by decompos-

ing boundary conditions (4.5) and let v(·, λ) (v(·, λ)) be a fundamental
solution of the boundary problem (4.15)-(4.16)(respectively,(5.7)-(5.8)).
Then the corresponding Green function (5.4) admits the representation

Gθ(x, t, λ) =

{
v(x, λ)ϕ∗

θ(t, λ), x > t

ϕθ×(x, λ) v∗(t, λ), x < t
, λ ∈ ρ(Ã). (5.11)

Proof. First observe that formula (5.11) defines the same function
Gθ(x, t, λ) independently on the choice of fundamental solutions v(·, λ)
and v(·, λ). Therefore it is sufficient to prove (5.11) only for a certain
pair of such solutions.

According to Remark 4.1 the extension Ã is defined by (4.6) and
(4.7). This and Theorem 4.4 imply that for each λ ∈ ρ(Ã) there exists a
fundamental solution

Zc(t, λ) = (vc(t, λ) uc(t, λ)) : K0 ⊕K1 → H (5.12)

of the equation (4.15) such that T = IK0⊕K1
(here T is the operator

(4.28)). Therefore by (4.7) one has

N̂1v
(1)
c (0, λ) + N̂2v

(2)
c (0, λ) = IK0

,

(N0Γ
′
0 + N1Γ

′
1)(vc(t, λ)h) = 0, h ∈ K0.

(5.13)

Similarly by using (5.6) one proves the existence of a fundamental solu-
tion

Zc(t, λ) = (vc(t, λ) uc(t, λ)) : K0∗ ⊕K1× → H (5.14)

of the equation l[y] − λy = 0 such that the operator (5.2) obeys T× =
IK0∗⊕K1×

and

N̂1∗v
(1)
c (0, λ) + N̂2∗v

(2)
c (0, λ) = IK0∗

,

(N0×Γ′
0 + N1×Γ′

1)(vc(t, λ)h) = 0, h ∈ K0∗.
(5.15)



522 Fundamental solutions...

It follows from the second equality in (5.13) ((5.15)) that vc(·, λ) (vc(·, λ))
is a fundamental solution of the boundary problem (4.15)–(4.16) (respec-
tively, (5.7)–(5.8)). Moreover, the first equalities in (5.13) and (5.15)
show that T̂ = IK0

and T̂× = IK0∗
, where T̂ and T̂× are given by (4.29)

and (5.9) respectively. Therefore (5.5) and (5.10) take the form

ϕ
(1)
θ (0, λ) = −N̂∗

2 , ϕ
(2)
θ (0, λ) = N̂∗

1 ;

ϕ
(1)
θ×

(0, λ) = −N̂∗
2∗, ϕ

(2)
θ×

(0, λ) = N̂∗
1∗.

(5.16)

Next, in view of (4.7) the initial data (5.1) can be written as

Y
(1)
θ (0, λ) = (−N̂∗

2 0) : K0 ⊕K1 → Hn,

Y
(2)
θ (0, λ) = (N̂∗

1 0) : K0 ⊕K1 → Hn

and similarly (5.3) gives

Y
(1)
θ×

(0, λ) = (−N̂∗
2∗ 0) : K0∗ ⊕K1× → Hn,

Y
(2)
θ×

(0, λ) = (N̂∗
1∗ 0) : K0∗ ⊕K1× → Hn.

Combining these equalities with (5.16) one obtains the block-matrix rep-
resentations

Yθ(t, λ) = (ϕθ(t, λ) 0) : K0 ⊕K1 → H,

Yθ×(t, λ) = (ϕθ×(t, λ) 0) : K0∗ ⊕K1× → H.
(5.17)

Now by using definition (5.4) (with Z(x, λ) := Zc(x, λ), Z(t, λ) :=
Zc(t, λ)) and taking (5.12), (5.14) and (5.17) into account we arrive at
the equality (5.11) with v(x, λ) := vc(x, λ) and v(t, λ) := vc(t, λ).

Now we are ready to prove the main result of the paper — the repre-
sentation of the resolvent of a proper extension Ã ∈ ExtL0

in a form of
the integral operator.

Theorem 5.1. Suppose that Π = {H0 ⊕ H1, Γ0, Γ1} is a decomposing
D-triplet (3.9) for L, θ = {(C0, C1);K} ∈ C̃(H0,H1) is the operator pair
(4.1), Ã ∈ ExtL0

is the corresponding extension (4.3), λ ∈ ρ(Ã) and
Gθ(x, t, λ) is the Green function (5.4). Then the resolvent (Ã−λ)−1 ∈ [H]
is the integral operator, given by

((Ã − λ)−1f)(x) =

b∫

0

Gθ(x, t, λ)f(t) dt

:= lim
η↑b

η∫

0

Gθ(x, t, λ)f(t) dt, f = f(·) ∈ H. (5.18)
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Proof. Step1. Let Hb be the set of all functions f ∈ H such that f(t) = 0
on some interval (η, b) ⊂ ∆ (depending on f). First we show that

((A0 − λ)−1f)(x) =

b∫

0

G0(x, t, λ)f(t) dt, f = f(·) ∈ Hb, λ ∈ C+,

(5.19)
where A0 is the symmetric extension (3.14) and the operator kernel
G0(x, t, λ) is

G0(x, t, λ) =

{
−v0(x, λ) c∗(t, λ), x > t

−c(x, λ) v∗0(t, λ), x < t
, λ ∈ C+ ∪ C−. (5.20)

To prove (5.19) it is sufficient to show that for every f = f(t) ∈ Hb the
function

y = y(x, λ) :=

b∫

0

G0(x, t, λ)f(t) dt, λ ∈ C+ (5.21)

belongs to D(A0) and obeys the equality l[y] − λy = f .

It follows from (5.21) and (5.20) that

y = y(x, λ) = c(x, λ)C1(x) + v0(x, λ)C2(x) = Yv(x, λ)C(x), λ ∈ C+

(5.22)
where

C1(x) = −

b∫

x

v∗0(t, λ)f(t) dt, C2(x) = −

x∫

0

c∗(t, λ)f(t) dt, (5.23)

Yv(x, λ) = (c(x, λ) v0(x, λ)) : Hn ⊕ Hn → H, λ ∈ C+ ∪ C−, (5.24)

C(x) = {C1(x), C2(x)} (∈ Hn ⊕ Hn). (5.25)

Next we show that the functions (5.24), (5.25) satisfy hypothesis of
Lemma 3.1.

In view of (3.21) and (3.22) Yv(·, λ) is the solution of (3.4) with the
initial data

Ỹv(0, λ) =

(
c(1)(0, λ) v

(1)
0 (0, λ)

c(2)(0, λ) v
(2)
0 (0, λ)

)
=

(
IHn −m(λ)
0 IHn

)
, λ ∈ C+ ∪ C−.

(5.26)
Hence 0 ∈ ρ(Ỹv(0, λ)) and, consequently, 0 ∈ ρ(Ỹv(x, λ)) for all x ∈ ∆.
Next the direct calculation with taking the relation m∗(λ) = m(λ) into
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account gives Ỹ ∗
v (0, λ)JHn Ỹv(0, λ) = JHn , where JHn =

(
0 −IHn

IHn 0

)
.

Moreover, the Lagrange’s identity (3.8) implies

Ỹ ∗
v (x, λ)JHn Ỹv(x, λ) = Ỹ ∗

v (0, λ)JHn Ỹv(0, λ) (= JHn), x ∈ ∆.

Therefore in view of the invertibility of Ỹv(x, λ) one has
Ỹv(x, λ)JHn Ỹ ∗

v (x, λ) = JHn , which is equivalent to the relations

c(1)(x, λ)v
(1)∗
0 (x, λ) − v

(1)
0 (x, λ)c(1)∗(x, λ) = 0, (5.27)

c(2)(x, λ)v
(2)∗
0 (x, λ) − v

(2)
0 (x, λ)c(2)∗(x, λ) = 0, (5.28)

c(2)(x, λ)v
(1)∗
0 (x, λ) − v

(2)
0 (x, λ)c(1)∗(x, λ) = −IHn ,

x ∈ ∆, λ ∈ C+ ∪ C− (5.29)

It follows from (5.27), (5.29) that

c(1)(x, λ)v∗0(x, λ) − v
(1)
0 (x, λ)c∗(x, λ) = 0,

c(2)(x, λ)v∗0(x, λ) − v
(2)
0 (x, λ)c∗(x, λ) = (−IH 0 . . . 0)⊤,

x ∈ ∆, λ ∈ C+ ∪ C−.

Moreover the equalities (5.23), (5.25) give

C ′(x) = (v∗0(x, λ) − c∗(x, λ))⊤f(x) ( mod µ).

Hence nearly everywhere on ∆ one has

Ỹv(x, λ)C ′(x) =

(
c(1)(x, λ) v

(1)
0 (x, λ)

c(2)(x, λ) v
(2)
0 (x, λ)

)(
v∗0(x, λ)

−c∗(x, λ)

)
f(x)

= {0, . . . , 0,︸ ︷︷ ︸
n

−f(x), 0, . . . , 0︸ ︷︷ ︸
n−1

},

which coincides with (3.6). Therefore according to Lemma 3.1 the func-
tion (5.22) belongs to D(l) and obeys the relations

l[y] − λy = f, ỹ(x, λ) = Ỹv(x, λ)C(x). (5.30)

Since f ∈ Hb, it follows from (5.23) that C1(x) ≡ 0 and C2(x) ≡ C2 (∈
Hn) on some interval (η, b) ⊂ ∆. Hence by (5.22) y = v0(x, λ)C2, x ∈
(η, b), which yields the inclusion y ∈ D. Moreover, according to [16]
(see proof of Lemma 3.4) Γ′

0y = Γ′
0(v0(x, λ)C2) and by (3.16) Γ′

0y = 0.
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Finally combining the second equality in (5.30) with (5.26) and (5.25),
we obtain y(2)(0, λ) = C2(0) = 0.

Thus the function (5.21) satisfies the boundary conditions in the right
hand part of (3.14) and, consequently, it belongs to D(A0).

Step2. Next by using formula for resolvents (2.28) we prove (5.18)
for all f = f(t) ∈ Hb and λ ∈ ρ(Ã)∩C+. Applying Lemma 4.1, 3) to the
solution Z−(·, λ) and taking (3.24) into account one obtains

γ∗
−(λ)f =

b∫

0

Z∗
−(t, λ)f(t) dt, λ ∈ C+, f ∈ Hb.

This and (3.23) yield

(
γ+(λ)(C0 + C1M+(λ))−1C1γ

∗
−(λ)f

)
(x)

=

b∫

0

Z+(x, λ)(C0 + C1M+(λ))−1C1Z
∗
−(t, λ)f(t) dt

=

b∫

0

G1(x, t, λ)f(t) dt,

where

G1(x, t, λ) = Z+(x, λ)(C0 + C1M+(λ))−1C1Z
∗
−(t, λ), λ ∈ ρ(Ã) ∩ C+.

(5.31)
Moreover the resolvent (A0 − λ)−1 is defined by (5.19). Hence formula
(2.28) for the decomposing D-triplet Π takes the form

((Ã−λ)−1f)(x) =

b∫

0

G(x, t, λ)f(t) dt, f = f(·) ∈ Hb, λ ∈ ρ(Ã)∩C+,

(5.32)
where G(x, t, λ) = G0(x, t, λ)−G1(x, t, λ), λ ∈ ρ(Ã)∩C+. Now it remains
to show that G(x, t, λ) coincides with the Green function Gθ(x, t, λ) (see
(5.4)).

Denote by G+(x, t, λ) and G−(x, t, λ) restrictions of G(x, t, λ) onto
the sets {(x, t) : x > t} and {(x, t) : x < t} respectively. It follows from
(5.20) and (5.31) that

G+(x, t, λ) = −v0(x, λ)c∗(t, λ) − Z+(x, λ)(C0 + C1M+(λ))−1C1Z
∗
−(t, λ),

(5.33)
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G∗
−(x, t, λ) = −v0(t, λ)c∗(x, λ) − Z−(t, λ)C∗

1 (C∗
0 + M−(λ)C∗

1 )−1Z∗
+(x, λ).

(5.34)

Next assume that θ× = {(C0×, C1×);K×} ∈ C̃(H0,H1) is the ×-adjoint
operator pair (4.2) and let θ∗ = {(C1∗, C0∗);K×} ∈ C̃(H1,H0) be the
adjoint pair with C1∗ and C0∗ given by (2.3). It follows from (4.2) that
the block-matrix representations

C1∗ = (Ĉ2× C ′
1∗) : Hn ⊕H′

1 → K×,

C0∗ = (−Ĉ1× C ′
0∗) : Hn ⊕H′

0 → K×.
(5.35)

are valid with C ′
1∗ = C ′

0× ↾ H′
1 and C ′

0∗ = C ′
1×P ′

1 − iC ′
0×P ′

2. Now by
using Lemma 2.1 we can rewrite (5.34) as

G∗
−(x, t, λ) = −v0(t, λ)c∗(x, λ) − Z−(t, λ)

× (C1∗ + C0∗M−(λ))−1C0∗Z
∗
+(x, λ). (5.36)

Let

Y1(t, λ) := (−c(t, λ) 0) : Hn ⊕H′
0 → H,

Y2(t, λ) := (−c(t, λ) 0) : Hn ⊕H′
1 → H (5.37)

and let Y−(·, λ) : ∆ → [H0, H], Y+(·, λ) : ∆ → [H1, H] be operator
solutions given by

Y−(t, λ) := Y1(t, λ) − Z−(t, λ)C∗
1 (C∗

0 + M−(λ)C∗
1 )−1 (5.38)

Y+(t, λ) := Y2(t, λ) − Z+(t, λ)C∗
0∗(C

∗
1∗ + M+(λ)C∗

0∗)
−1 (5.39)

Combining (5.37) with (3.19) and (3.20) one obtains

−v0(x, λ)c∗(t, λ) = Z+(x, λ)Y ∗
1 (t, λ),

−v0(t, λ)c∗(x, λ) = Z−(t, λ)Y ∗
2 (x, λ).

Hence the equalities (5.33) and (5.36) can be represented as

G+(x, t, λ) = Z+(x, λ)Y ∗
−(t, λ), G∗

−(x, t, λ) = Z−(t, λ)Y ∗
+(x, λ) (5.40)

It follows from (3.23) and (3.24) that the corresponding operators (4.28)
and (5.2) for Z+(·, λ) and Z−(·, λ) are

T = (C0Γ0 + C1Γ1)γ+(λ), T× = (C0×Γ0 + C1×Γ1)γ−(λ).

Therefore by Lemma 2.3 one has

T = C0 + C1M+(λ), T× = C1∗ + C0∗M−(λ). (5.41)
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Next by (5.38) Y−(·, λ) is the operator solution if the equation l[y]−λy =
0 and

Ỹ−(0, λ) = Ỹ1(0, λ) − Z̃−(0, λ)C∗
1 (C∗

0 + M−(λ)C∗
1 )−1

= X(C∗
0 + M−(λ)C∗

1 )−1,

where

X = Ỹ1(0, λ)(C∗
0 + M−(λ)C∗

1 ) − Z̃−(0, λ)C∗
1

=

(
−I 0
0 0

)[(
Ĉ∗

2

C ′
0
∗

)
+

(
m(λ) M2−(λ)

M3−(λ) M4−(λ)

)(
−Ĉ∗

1

C ′
1
∗

)]

−

(
−m(λ) −M2−(λ)

IHn 0

)(
−Ĉ∗

1

C ′
1
∗

)
=

(
−Ĉ∗

2 + m(λ)Ĉ∗
1 − M2−(λ)C ′

1
∗

0

)

−

(
m(λ)Ĉ∗

1 − M2−(λ)C ′
1
∗

−Ĉ∗
1

)
=

(
−Ĉ∗

2

Ĉ∗
1

)

(here we made use of the block-matrix representations (4.1), (3.13) and
(3.22)). This implies that the solution Y−(·, λ) satisfies the initial data

Ỹ−(0, λ) = (−Ĉ∗
2 Ĉ∗

1 )⊤ (C∗
0 +M−(λ)C∗

1 )−1 = (−Ĉ∗
2 Ĉ∗

1 )⊤ T−1∗ (5.42)

Similar calculations for Y+(t, λ) (with taking (5.35) into account) gives

Ỹ+(0, λ) = (−Ĉ∗
2× Ĉ∗

1×)⊤ (C∗
1∗ + M+(λ)C∗

0∗)
−1 = (−Ĉ∗

2× Ĉ∗
1×)⊤ T−1∗

× .

(5.43)
Comparing (5.42) and (5.43) with (5.1) and (5.3), one obtains Y−(t, λ) =
Yθ(t, λ) and Y+(t, λ) = Yθ×(t, λ). Now the equality G(x, t, λ) =
Gθ(x, t, λ) is implied by (5.40).

Step 3. To complete the proof it is necessary to extend the above
result to all f ∈ H and λ ∈ ρ(Ã).

If λ ∈ ρ(Ã) ∩ C−, then λ ∈ ρ(Ã∗) ∩ C+ and, consequently,

((Ã∗ − λ)−1f)(x) =

b∫

0

Gθ×(x, t, λ)f(t) dt, f = f(·) ∈ Hb. (5.44)

Since (Ã−λ)−1 = ((Ã∗−λ)−1)∗, it follows from (5.44) that (Ã−λ)−1|Hb

is the integral operator with the kernel G′(x, t, λ) = (Gθ×(t, x, λ))∗ =
Gθ(x, t, λ) (here the second equality is immediate from (5.4)). Therefore
(5.18) holds for all f ∈ Hb and λ ∈ ρ(Ã) ∩ C−.
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Next assume that λ0 ∈ ρ(Ã) ∩ R. Then there exists a disk U(λ0) =
{λ ∈ C : |λλ0| < ε} (ε > 0) such that U(λ0) ⊂ ρ(Ã). Let Z(·) be an op-
erator function (4.26) and let Z(·, λ) (λ ∈ ρ(Ã)) be a family of fundamen-
tal solutions (4.27) (see proof of Theorem 4.3). Since by Proposition 2.2
Γj ∈ [D+,Hj ], j ∈ {0, 1}, the operator functions

T (λ) = (C0Γ0+C1Γ1)Z(λ), T×(λ) = (C0×Γ0+C1×Γ1)Z(λ), λ ∈ U(λ0)

are holomorphic on U(λ0). Let now Y(·, λ) : ∆ → [K′, H] and Y×(·, λ) :
∆ → [K′, H] be operator solutions of (3.4) with

Ỹ(0, λ) = (−Ĉ∗
2 Ĉ∗

1 )⊤ (T (λ))−1∗,

Ỹ×(0, λ) = (−Ĉ∗
2× Ĉ∗

1×)⊤ (T×(λ))−1∗, λ ∈ U(λ0)

Then for every λ ∈ U(λ0) the corresponding Green function (5.4) can be
written as

Gθ(x, t, λ) =

{
Z(x, λ)Y∗(t, λ), x > t

Y×(x, λ)Z∗(t, λ), x < t
. (5.45)

Since all initial data Z̃(0, λ), Ỹ(0, λ) and Ỹ×(0, λ) are continuous (and
even holomorphic) at the point λ0, it follows from (5.45) that

lim
λ→λ0

sup
(x,t)∈R

‖Gθ(x, t, λ) − Gθ(x, t, λ0)‖ = 0

for each closed rectangle R ⊂ ∆ × ∆. Therefore for every f = f(·) ∈ Hb

we can pass to the limit in the equality (5.18) as C+ ∋ λ → λ0, which
gives the same equality for λ = λ0. Hence (5.18) holds for all λ ∈ ρ(Ã)
and f ∈ Hb.

Finally (4.23) implies existence of the limit

lim
η↑b

η∫

0

Gθ(x, t, λ)f(t) dt

for all f(·) ∈ H , which completely proves (5.18).
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