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NONLINEAR ESTIMATES APPROACH TO THE NON-LIPSCHITZ GAP
BETWEEN BOUNDEDNESS AND CONTINUITY IN C*-PROPERTIES OF
INFINITE DIMENSIONAL SEMIGROUPS

This paper is aimed to discuss an intrinsic effect on the presence of the certain gap between the boundedness
and continuity topologies for derivatives of infinite dimensional semigroups that describe evolution of unboun-
ded lattice spin systems.

This gap is influenced by the non-Lipschitz order of corresponding generator’s coefficients and to control its
precise value we develop the approach of quasi-contractive nonlinear estimates, e.g. [2, 3, 4], and achieve the
continuity with respect to the initial data of associated variational equations. In fact the results point that
the weighted hierarchies on the boundedness topologies [1, 2] are essential.
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1. Introduction.

There is a canonical approach, ascending to the papers of Cauchy, Liouville, Picard and
others, to the investigation of continuous dependence and the arbitrary order differentiability
with respect to the initial data for solutions to the parabolic differential equations. Due to
the implicit function techniques it is closely related to, this approach permits a generalization
to the case of differential equations on the infinite dimensional Banach space, working
excellently for the equations with Lipschitz with bounded Frechet derivatives coefficients,
e.g. |6, 10, 11, 12, 15, 19, 23, 25, 26]. It also leads to the C° smooth properties of the
associated semigroups, i.e. gives the preservation of spaces of smooth functions with the
same topologization on the boundedness and continuity of derivatives: for some topologies
B; imposed onto derivatives of functions over Banach space B,

Vi=1nVa,yeB [[09f(2)ls <K, 109 f () — 89 f(y)]

the consideration of semigroup (P.f)(z) = f(y:(x)), generated by Lipschitz differential flow
y(z) =2 — fot F(ys(x))ds, guarantees no more than exponential growth of constants

B; < KH(E - y”Bm

IMYt>0 Vi=1,nVx,yc By |09(Pf)(x)|s < KeM,
189 (Pif)(x) — 8 (Pof) (y)|

In other words, in the terms of norm

B; < KeMt”x - yHBo'

1 £lle» = max(sup 10D £ ()|, sup 109 f(x) — 0D f(y)|

M xeBy z,y€Bo ||l‘ - y”Bo
there is a quasi-contractive property
AMY f el |Pifller < ™ fllen-

In this paper we show that the non-Lipschitz coefficients in equation cause the depending
on the nonlinearity parameters gap between the topologies on the boundedness and continuity
of semigroups derivatives.
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To estimate below this gap we use an observation that the higher order (n > 2) calculi
of variations assume certain nonlinear symmetries, namely that the high order variations of

nonlinear functionals .
:Z Z FO (y)dy...d"y (1.1)

s=1 ji+..+js=n

contain simultaneously in the r.h.s. the n'® variation d"y and the 1% variation in the n'
power [dy|" for s = n and s = 1 correspondingly, d denotes a derivation functor. Formula
(1.1) for n = 2 was already applied by Cauchy, because at F' = 0 the sign F" determines a
type of extremal point.

This idea was exploited in e.g. |2, 3, 4], where it was studied an important in applications
class of semigroups, describing the evolutions of the unbounded lattice spin systems [8, 9, 13,
24]. Developing further these results consider the not strongly continuous Feller semigroup
(P.f)(x) = E f(£),), generated by the stochastic non-Lipschitz differential equation in
infinite dimensional space

& —at /0 AW, — /0 (F(€2,) + BEY,)dt

with monotone F' and linear B. Observation (1.1), applied to the solutions of associated
variational equations

i @f—&m— = /0t<F’<§?,m)+B)£§,’;’dt— > / N )EI .0 dt (1.2)

(8 ) Ji+..+js=n, s>2

permitted to derive the nonlinear estimates on variations 5,5;?

m/ﬂ < Mty (€4:0) (1.3)

pn(&ait) Z Ep] ||£t:1:||)

and, using the representation of semigroups’ derivatives in the terms of variations
O P f (x) = 3 E fO(e0,)e0..e) (1.4)
Jit-..+js=n, s>1
preserve by P, the Banach spaces of differentiable functions [2], topologized by norms
Fller = e sup 12Tl
=0n o qi(ll2l)
In this paper we investigate the action of P, in topologies
o = s o 1227, 1095) = 99 1)l
gn = Imax —
i=0een” o gi(ll2l) ey Nl = yllpi (=]l + [lyl)

and demonstrate that to achieve the smooth properties of non-Lipschitz semigroup in these
scales, i.e. the quasi-contractive behaviour

] (1.5)

IM =M Vf €& ||Pufller < eM|f||en



Non-Lipshitz gap between boundedness and continuity

it is necessary to introduce the gaps between the topologies of boundedness and continuity
pi(z) = Poly(z) - 4;(z) & B; = CyB;

depending on the non-Lipschitz order k of F. Remark that operator gap Cj. displays an
essentially infinite dimensional effect.

Let us shortly discuss the key idea. We need continuity of variations, i.e. estimates on
gﬁ}x {ty for solutions of (1.2) to control the continuity of semlgroups derivatives through

the representation (1.4). The principal part of equation on ft’m — ft’y

d, G [F'(&0)+ F ()] oy .oy FE)—F &) o) .
GG - g = -l ) - el ) +
points on the similarity of behaviour
€2 — €2)ly, 4 .
T ST e, + 16D, (1.6)

1602 — &0

due to F'(£),) — F'(&),) ~ &, — &, with accuracy of some polynomial(€,,¢7,) factor.
We write first a simple generalization of (1.3)

P (Ear &y 1) ZEngm & 1°p;( IENET + €2 I1%7Y < e ph (&, €3 0)

7y

and using similarity (1.6) introduce

Pe (& &yit) ZEHftrstyll‘s g (1100 + 1€, DN — 211 (1.7)

It appears that the expression p,(&:,&y;t) = ph(&r, &yit) + p6(Er, &yi t) Tulfills a nonlinear
quasi-contractive estimate

VE>m  pullnéyit) < M (En &) 0) (1.8)

which gives the continuous behaviour of variations ft(z) with respect to initial data x,
necessary to control later the gap between boundedness and continuity topologies (1.5).

Theorem 1 achieves the continuity estimates on variations 5,52) with respect to the initial
data by proving the quasi-contractive nonlinear estimates (1.8) and precisely determines the
influence of nonlinear parameters on the hierarchies between scales {X;,Y;} and weights
{pjq;} in (L.7).

Theorem 3 is completely devoted to the study of action of semigroup P; in the scales of
spaces of smooth functions. Here the main attention is devoted to estimate the boundedness
— continuity topologization gap.

Theorem 5 plays an especial role. We derive estimates

E q,(/1€) DD — 1" < el — gl (el + lyD2IEO R, (19)
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which follow by formal appeal to (1.7), (1.8) at = m/n < m, when we remain n'* term of
pS in the Lh.s. of (1.8) and choose initial data

W =g =1, 70 =D =0, i>2 (1.10)

n (1.2), therefore p¢|i—¢ = 0 and summands on j > 2 in p’|,—o disappear in the r.h.s. of
(1.8).

Remark now that estimate (1.8) holds only in the domain 6 > m, otherwise one would
face singular terms like 1/]|€7, — &, [™° in expression (1.7). Having guessed in Theorem 1
the precise form of {p;,¢;} and {X;,Y;} we apply in Theorem 5 the evolutionary equations
techniques to the non-autonomous inhomogeneous equation (1.2) with a special initial data
(1.10) to reach 6 = m/n and obtain estimate (1.9), important in the proof of Theorem 3.

2. Description of the problem and nonlinear estimate on the
continuity of variations.

This Section is devoted to the derivation of quasi-contractive nonlinear estimate which
reflects the continuous dependence of variations with respect to the initial data.

Introduce notation IP for vectors ¢ = {cy}4c e such that . = sup,_;_; [ex/c;| < oo
Let cylinder Wiener process W = {Wj() }.c z¢ with values in ly(a), > cpaar =1, a € IP
be canonically realized on measurable space (2 = Cy([0, 00), ¢5(a)), F, F;, P) with canonical
filtration F, = o{W (s)|0 < s < ¢} and cylinder Wiener measure P.

Consider the stochastic differential equation

) =ai+ [ i)~ [ P + (B 2.1)

with nonlinear diagonal map {F(z)}x = F(z}), k € Z* defined by a smooth monotone
function F' € C*(IR'), F(0) = 0 such that

Jk>-1: Vne N3C ' Vi=1,...,n |FD(2)-F(y)| < CFlz—y|(1+|z|+[y)¥ (2.2)
and linear finite diagonal map B:

drg >0 (Bz) = Z B(k—j)z;, k& Z*for some numbers B(i), |i| < ro.

g |i—k|<ro

The solvability of equations like (2.1) has already been studied in [7, 8, 20, 21, 22|. For
example, for initial data z € gz(k+1)2(a) there is a unique strong solution &§(t) = {&f y(t) } ez
to equation (2.1), i.e. £3(a)-continuous F;-adapted process &§ € Dy,(q)(F'), which a.e. fulfills
equation (2.1) and for x € ¢5(a) there is a generalized solution, obtained as uniform on [0, 7]
P a.e. limit of strong solutions. By a slight modification of approach [7] it is easy to show
(see [2, Th.3.11]) that for =,y € l3(a) and any ¢ > 1 there are constants M and K, such
that

E sup [&(0) = & (), < ™ Mz = yllf, - (2.3)
o€[0,T]
E sup (1+[15(0) Iy + 165 () leya)? < Koe™ (1 + (2l + 1Wlle@) (2:4)

o€[0,T]
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Consider associated to (2.1) variational equations

t
() = aus — [ [FER)6E + (BEW + o, Jds (25)

0

with inhomogeneous part ¢? defined by

Ghe= Y, FOEGOE (2.6)

y1U...Uys=T, s>2

where the summation runs on all subdivisions of set 7 onto the nonintersecting subsets
Vi Ys C Ty il o+ vl = 7], s> 2, [y > 1and 7, ...,&7 are the solutions of lower
rank variational equations.

It is important to mention that the processes £ are variations of process §j with respect

olTle
to the initial data z (2.1), i.e. have sense of partial derivatives {& }y = &r = %
l‘jn... l‘jl
with respect to variables {x;,,...,x;, }, 7= {Ji,..., jn}, only for zero-one initial data in (2.5)
2, Th.3.6&3.7|
~ | by, T=A{y}, ITI =1
Tk = { 0’ |7_| 2 9 . (27)

Suppose that vectors {c,},c, satisfy hierarchy: for any subdivision of set vy = oy U... U
oz, v C 7 on nonempty nonintersecting subsets aj, ..., a, there is a constant I, , such that

ki,
Vk 6 Zd [Ck/}/]‘fy‘ak ? S RfY:a[Ck:al]‘al‘"'[Ck7asj|‘as" (2'8)

In [2, Th.3.1] it was shown that for the initial data z, € ¢, (dc,), v C 7 with d; >
k.

2

a, ., my =my/|y| > 1 and vectors {c,},c, that fulfill (2.8) there is a family of strong
solutions {&,},c- to system (2.5), i.e. Fi-adapted processes {£(t)},c, such that: 1) for P
a.e. w € Q the map [0,T] > ¢ — &£J(t) € L, (c,) is Lipschitz continuous; 2) for a.e. ¢t € [0,T]

x

dgz(t
£5(t) € Dy, (c,) (F' (&5 (1)) + B); 3) there is a strong £, (c,) derivative %() a.e.ont € [0,7]
and equation (2.5) holds in ¢, (c,) sense. Moreover Vo € l3(a) Vg > 1Vy C 7 VT >0

m1

E sup ||E@OF .. <o0
s O,

and 7 permits representation
t
&0 = U (t0)a, + [ U(09)5(s)ds (29)
0

in the terms of strongly continuous in X, = £,,. (c,) evolutional family {U(t,s), 0 < s < t},
generated by {C*(t) = F'(&(t,w)) + B}iejor), such that

U2 (E, 8)llexy < X9, JUP(E 8) [l eqr,y < X070 (2.10)
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ki,
for Yy, = Uy, (dcy), dy > a;, * 7, and constants A = || B||z(x.), X = | B||z(y;)- For further
consideration we will need the property of {U”(t, s)}: for any z € ¥, and 0 § s <t<T

(U (¢, )z = UV (¢, 8)z]x, < [t = sl @[z, sup [C(7) = CY(T) e, ) (211)

Te[s

which follows from the general theory of evolutional semigroups |14, 16, 17, 18].
To proceed further let p,,q, € C*(IR;), v C T be positive monotone functions of
polynomial behaviour, i.e. such that

Je>0Vze Ry py(2) >¢, pl(2) >,
3C >0 (1+2)pi(2) < CP(2), (14 2)p.(2) < Cpy(2). (2.12)
Introduce nonlinear expression
pr(E7,E¥51) = pl(E7,€%5) + p (€7, €% 1)

for respective boundedness p’ and continuity p¢ parts

T 4 x, x| m.
(e, € t) =) BIE — lle pr (i IENLT oy + I o) (2.13)
YCT
x 6—m x, T m.
piE €5 =Y Bl — llaw’ e 0iIE —em™ - (2.14)
7C7— Em»y(a_r 'YC»Y)

Henceforth let ;¥ denote the sum of norms

ni? =16 Ol + 16Ol

with corresponding sense of ng? = |27, + [[¥[|7,)

In the following Theorem we obtain the estimates of the continuous dependence of
solutions &7 to variational equations (2.5) with respect to the initial data x in (2.1) in the
terms of quasi-contractive behaviour of expression p, (£, £Y;t). We'd like to turn the attention
that the multiple || — &£¥]|°~™ in (2.14) reflects the similarity of behaviour (1.6).

THEOREM 1. Let F' satisfy (2.2), 6 > my > |7| and &,&;, £2,8Y, v C T be generalized

’77
k+1
solutions to (2.1) and (2.5) with initial data x,y € ly(a) and x,y, € by, (dcy), dy > a,; ° ™

correspondingly.
Suppose that weights {c,, v C 7} fulfill hierarchy (2.8), functions {p,, v C 7} of
polynomial behaviour fulfill: Yo, U...Uas =y C 71, s>23K,

[, ()] (1 + 2)@"“ < Kplpa, ()] fpa, ()], 2 € Ry (2.15)

and functions {g,,y C 7} are such that ¢,(2)(1 + z)km7/2 = p,(2).
Then 3 M, such that

pr (€7, €% 1) < eMp. (€7, 6% 0). (2.16)
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Proof. The complete proof of this Theorem may be found in [5]. We give below its abridged
version, because we will need some its steps in further calculations.

Theorem is proved by induction on the number of points in set 7. First suppose that
initial data x,y € £2(k+1)2(a), ie. &, & and £,&Y form strong solutions to (2.1) and (2.5).

For i = 1, ..., |7| introduce notations
| 0, i=0
(€850 = X [6h(€. ) + g5, ), i1
YCT, "Y‘Sz
with

xT [ x, x||m m
2(1) = B & ~ &l mr ENUNENT () +IEIE o}

c T o—m z, T My
95(t) = ENIg = &lle@™ ™ g (ne)IE = 1™

+1
I

'y(a' 2 ch’y)

Similar to [2, 3] it is sufficient to derive estimate

g2 (t) < g5(0) + A, /Ot g2 (s)ds + Ay /Ot Rt (s)ds (2.17)

for boundedness part gfr of nonlinear expression and then, using the special symmetry (1.6)
between g% and g¢, obtain inequality

t t t
ﬁ@gﬁ@+&/ﬁ@+&/ﬁ@+&/hﬁ@ (2.18)
0 0 0

for continuity part g¢. Together with (2.17) this implies

t
(1) < g, (0) + G [ I 7 5)ds (2.19)

0

and nonlinear estimate (2.16).
Estimate (2.17). Tto formula for ¢} = E I} Lp,(n;") with finite variation processes

Lol - low b= €1 o+ I (2.20)
implies .
40 = 350)+ B [ Ry, (07%) 4 p, (") BT+ Hp () (221)
To estimate first integral in (2.21) we write the stochastic differential of p,(n;")
dp,(ny?) = —=L™py (ny?)dt + 2pl (nY) < & + &, AW, >4y(a) (2.22)

where the second order differential operator LY acts by the rule

L:c,yp(ng,y) _ _2pl(ng,y) Z ap — 2p”(n§’y) Z az(xk + yk)2+ (2.23)
kez? ke z¢

+2p' (g ){< z, F(x) + Bz >4y0) + < 4y, F(y) + By >4,00)}-
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Using (2.22) and estimate
L%p(ng?) > —M,p(ng?) (2.24)

which is analogous to |1, Hint 9] we have

t t
E / I dp, = _/ E 1, L™¥p, (nj¥)dt < M, / ghdt (2.25)
0 0

Monotonicity of map F and Ito formula for the stochastic differential of I? give for the second

term in (2.21)
¢

t
E / Py (nE) L} < 8|1B] cieniey / o (t)dr (2.26)
0 0

Ito formula for stochastic differential of I
dly = my{ < [E1F,dE3 >, (c) + < [EF,dEY >y, ()}t

with < &%,y >0 0= Y. &l [P 2y, and inequality
kez?

| < &%, 0 >0, | < Rllelle, + 5 IENE, (2.27)

together with £’ > 0 imply
t t t
E / Ip,(n{*)dly < (my||Bl| e, ( Cw))+(m7—1)Kv)/ g,’;(t)dt+/ E I{p,(n{") x
0 0 0

x> AIFOEDE, LI o)+ IFOEDES, &L () Yt (2.28)

ajU...Uag="y, §>2

where K, is a number of all possible subdivisions of set v on subsets a4, ..., a,, s > 2.
Both terms in the second line of (2.28) are estimated in the same manner. Condition
(2.2) implies

1

_Qm z k+
[FO(EE ™ < (Cr)™ay ™ (L4 mf?) ™

Using hierarchy (2.8) and representation |£,|™ = (|€|™)l*/V] we estimate first term in
(2.28) by

(2.28); <

é<05>m”ZR¥c'7'/ B 1 (7)1 0 %) 53 T (el 7o) 7 (229)

aiU..Uas=y, s>2 0 kezt (=1

Hierarchy (2.15) and inequality |z1...2,] < [21|" /g1 + ... + |2,]% /g, With g, = |7|/]ay| imply

¢
(2.29) < K/"(CEym™ > RYN / R (s)ds (2.30)
aiU...Uag=y, s>2 0
Finally, (2.26), (2.30) and analogous estimates for second term in (2.28) lead to inequality
(2.17).

10
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Estimate (2.18). Similar to (2.17) g¢5(t) = Elffm”lgqy(nf’y) with I; introduced in
(2.20) and I3 = [|&2 — &¥||™ s . Because I! ™ and I are finite variation processes,

Ly (@™ 27 " ey)

applying Ito formula to g5 (t), we have

t
G5(0) = G500+ B [ By (07) 4 0, () BAL T + 1 (7R (231)
0

Representation (2.22) for ¢,(n;"), inequality (2.24) and monotonicity of map F imply for
the first and second integrals in (2.31):

¢
E/I " I3dg, (ny? /g7 (2.32)
0

t
B [ it < 6~ m )|l [ d6(5)is (2.3
0 0
Estimation of the third term in (2.31) uses proportionality (1.6). Using Ito formula for
k+1
I3 with ¢, = a,° ¢, representation (2.6) of ¢,, monotonicity of map F' (F' > 0),

inequality (2.27) and, where necessary, adding and subtracting intermediate terms, we have

t t
5im’Y x, C
E / 1™ g, (05 dly < (ms 1B e ) + (my — D(1y] + D) / gl (2.34)
0 0

t
+ [ B, - PEDENT e dt+ (235)

¥ / B g, (n )| [FO(6) — FOEIEL, I o dt+ (236)
0

a1 U.. Uas =7, §>2

o— mw s T x T (|
YD / B 10 g () | PO 8, (65, — €4)E0, bl I o

arU...Uas=y, s>2 j=1
(2.37)
We use connection ¢, (ni"’)(1+n ’y)k”“/2 = p,(ny?) and assumption (2.2) on map F

T My m T m .y km My
IF'(&) = F'Eel™ ., < @CO™IIE — &lleaw™ @ +ny?)y ™2l )

Em,y (aTmAf C»y)
(2.38)
to obtain

t
(2.35) < (CFym™ / g (t)dt (2.39)
0
ki,
To estimate (2.36) we use 1 < a, > 7 and hierarchy (2.8) to get
ITFOEF) — FOENIEY, €0 @) <

m»,<

< (CEY™MIE5 — Elluay™ (L4 nf)Km/2 3" ¢ ey el

kezd

11
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S
m T m T, km Maj (o7
<(C)™ 1€ = Elleaa)™ (1 4+ mp )< 2R H[||§§j||emcfj (e )V (2.40)
j=1
and therefore by inequality [z1...z,| < |21|" /¢ + ...+ |24|™ /g, With ¢; = [y]/]ey], connection
¢,(2)(1 + z)ka/2 = p,(2) and using hierarchy (2.15) of polynomials {p,} we have

t K]
(230) < (@mKRBI / B 1 [Tloe, i) 1€8, 1 o, )1 <
j=1

ar1U...Uas="y, s>2

S ) t
<@y RS g (241
aiU...Uas="y, s>2 j=1 |’7|
ke,
Finally, we estimate (2.37) for ¢, , =a,> ¢, by
||F(S)(€g) gl gjfl(é-gj - gzj)§§j+1"'§§s Z,;YW('E,Y) —

kit
< (Chym Z ak " (14 €8 ol ) T |y — é-lgi,aj|m’y"'|£]f,ai|m’y <

kezd
k a
< (€Y (U npt) & e o
x H L €0 o ey + €Mt e ) (2.42)

(=1, (#]

where on the last step we used

ki k
_ —Smy, S
Chyy = ChyyQy

kit
7Ct1] lal/l "‘[Ck,as] s /17y ak 2

= lelvl[ck aja:{;lmaj]aﬂ/’Y f[ P
(=1, b4
To estimate (2.37) we note that the hierarchy (2.15) of weights p, and the connection
0y () (L 2K/ = py () imply

Qm —Km a o s : «
0y () (1+ 2) e < (14 o) Kmal2 gllglanl bl _plasl/il = get/pglestiol T plod/i
=1, 1]
Finally, substituting (2.42) in (2.37) and using § — m,, = (0 — ’moéj)M + Z 5| |
e E—— |7|
have
(2370 < (€™ ¥ R

atU...Uas="y, s>2

t
T 57777401- T, T Ma o
<3 [ B UG - Qo™ ™ (e, = €1 )

=1

12
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S

T 4 Me Me a
x T 165 = Elleate o (nF )L+ 1€ T ooy + 1€ Nt (o, )DL <

ema Ema
=1, t#j

Fym., 1/ 11/ | . - | ay| g’
S(Cn) Z R%’YK ’YZ/{| | a] Z |’7| }dt<

aiU..Uas=7y, §>2 =1, {#£j

< (CFyma > R/ /0 Ri~Ldt (2.43)

ajU...Uag=7y, §>2
Collecting together (2.32), (2.33), (2.34), (2.39), (2.41) and (2.43) we have (2.18) proved.
The possibility to close nonlinear estimate (2.16) from z,y € EQ(kH)Q(a) to z,y € ly(a)
follows from |2, Th.3.4&3.11]. W

Next Corollary prepares the uniform on 7 C Z¢, |7| < n estimates which we need for
the proof of smooth properties of semigroup P, in Section 4.

COROLLARY 2. Let F' satisfy (2.2) and &§§, &}, &3, &7 be generalized solutions to (2.1), (2.5).
with initial data x,y € ly(a) and zero-one initial data x.,,y, (2.7).

Then for function Q(-) of polynomial behaviour and vector ) = {{; }c za € IP there are
uniform on T C Z* constants Ky = 2|7|ty and M, such that¥ 3§ >0Vk € Z*

ey 6 z, T |mr mr
E ||6f — & llex@) @i )N85 A™ + 1€} <

[r|=1

T T @m
< KIGM'T'tHx_?Jng Q(ng”)(L+ng?) 2 ™ T

- k+1 7' —1
H wml/\Tl

JET

(2.44)

Proof. Estimate (2.44) follows from inequality (2.17) which implies
PRETE5t) < eMTp(E7, € ) (2.45)

with p? introduced in (2.13). In Lh.s of (2.45) we omit all lower terms, corresponding to sets

k
v C 1, |v] <|r], choose py(2) = Q(2)(1 + z)Tﬂ(mW’mT), ~ C 7 and achieve

T 4 z, T ||mr mr
E [1§5 — & lle@ Qi) NENLT (o) + I, )} <

T T @m |
< M|z — yll‘éz(a)Q(no’y)(l +mng?) 2 T

ma (eg;})
JET

Finally taking

o g - /b
Chy = H Pt (2.46)

jev
which fulfill (2.8) with R,, =1 we obtain estimate (2.44). Remark that by

1Balloye = (D el Y bk —j)zl")? =

kez“ J:lk—jl<ro

13
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— (3 el 3 b < 3 OIS el

kez4 li] <ro i <7o kez?
. Ck . i
= > @) . cpilzn—iP)'P <Y [0(0)] VP (|l o)
|i]<ro kez? ki li|<ro

and property dop < 6,0 for 8y = supy,_j 1 [¥x/1;] < 00, ¥ € IP the choice (2.46) of vectors
{cy}ycr gives that || Bl/z,.. (c,)) is independent on 7 : |7] < n.

Therefore constants A; and Ay in (2.17) are uniform on 7 : |7| < n for any n € IN and
this implies the same property of M. = M), in (2.44). To end the proof one should also note
that (2.17) works for any 6 > 0. W

3. C*° properties of semigroup and non-Lipschitz gap between the
boundedness and continuity topologies.

In this Section we obtain the preservation of spaces of continuously differentiable functions
under the action of Feller semigroup (P,f)(z) = E f(£(t)). Using the quasi-contractive
nonlinear estimates on the continuity of variations we estimate the gap between boundedness
and continuity topologies on derivatives of functions, which ensures the quasi-contractive
property of semigroup in non-Lipschitz case.

Let Lip.(¢2(a)) denote the Banach space of continuous functions over ¢;(a) equipped
with a norm

|f(x) = f(y)]

||f||LipT = sup /(z)] ] + sup - < o0
zeto(a) (14 [[2]lea)) zyeto(@) 1T = Yl (1 + [12lles@) + [9le@)

To introduce the norms on derivatives for function of f € Lip,(¢5(a)) consider for n € IN
the array © = ©'U...UO™ of pairs {(¢,,, G™) € O™} where ¢, is a smooth polynomial which
satisfies (2.12) and g™ = G'®...QG™ is m-tensor constructed by vectors G* € IP,i = 1,...,m.

The Banach space o, (l2(a)), © = 6, U O, consists of functions f € Lip,(¢y(a)) which
have partial derivatives up to n'* order {0M f,....0 f} {0 fly 4 = Oty o} f (2) and
norm is finite

1Fllo, = 1/llin, + max (10 fllop, 0 llop) < o0
where (m)
O™ f ()
0 flop = max_ sup 1270 Dlan 1)
H(m) — 9m) m
||a(m)f||®z” = max sup l f(iE) x f(y)lil k (3.2)
(@ H™EOT 4 yetr(a) |2 — Y||ty(a)gm (ng™?) (1 + ng? ) K/2
with

0 flgm = D GGl (@)
T={j1,.Jm } CZ?
for G" = G'® ... ® G™, G' € IP, and similar expression for H" = H' ® ... @ H™.
The partial derivatives {9V f, ..., 0™ f} of function f € Eg, are understood in the sense
of identities: Va € ly(a) Vh € X([a,b]) = N AC«([a,b],¢,(c))

fla+ R’ = / ds 3" Ouf(z + h(s))B(s) (3.3)

14



Non-Lipshitz gap between boundedness and continuity
and V|7| <n—1

0@+ hO)| = [ ds 3 Oupa @+ his)Hy(o (3.9

@ ¢ ezl

Here ACy([a,b],X) ={h € C([a,b],X): TN € Ls([a,b], X)} for Banach space X.

The topologies of space g, or more precisely weights G™,"H™ should fulfill additional
assumptions to guarantee the quasi-contractive property of semigroup. Like in [1, 2| we
say that the array © = ©' U ... U ©" is quasi-contractive with parameter k iff Vm =
2,...,n V(q,G) € ©™ and Vi,j € {1,...m}, i # j there is a pair (¢,G) € O™ such
that

ki:
3K Vze R, (1+2) 7 4(z) < Kq(z) (3.5)
3L (G < LG, (=1,.,m—1

where the (m — 1) tensor Glid} is constructed from m-tensor G by rule

Gl =G @ .. ® A—<kT+1)GiGJ' ®..® G™
; j

Notation G' ® .... ®G* means that in tensor product the ith - vector is omitted and G' ® .. ®
i
B ®.. ® G* means that on j - place in tensor product it is inserted vector B. Inequality

13
(3.5) is understood as a coordinate inequality between two vectors.
Henceforth we demand that array ©, in (3.1) is generated by array O, (3.2) by law
Vm=1,...,n Oy ={(¢m,G]")j=, such that GJ' = H®.oAKVgie oo™ (3.6)

7=1
for (gmH"=H'®..® H") c O}

Immediately remark that for quasi-contractive with parameter k array ©. the array ©, =
O} U ..U OF generated by (3.6) is also a quasi-contractive one, which could be directly
checked.

The next theorem gives the smooth properties of semigroup P;, associated with the
stochastic differential equation (2.1), and estimates the gap between the boundedness and
continuity topologizations in corresponding functional spaces.

THEOREM 3. Let F fulfill (2.2), © = ©,UO, for O. be quasi-contractive array with parameter
k and Oy be generated by O, by rule (3.6).
ThenVt>0 P, :&, = Eo,r and I Ke,, Mo, such that

Vf€or [Pflgo, < Keore" " |Ifleo, (3.7)

Proof.  First remark that the definition of norm in g, implies that the function f € &g,
has partial derivatives 0, f € C(f3(a), R"), |7| < n. In [2, Thm.3.9] we have shown that the
spaces Cg, equipped with norm

1o, = 1l + max (10 [,

15
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and consisting of functions f with partial derivatives 9, f € C(fy(a), IR"), |7| < n in sense
(3.3), (3.4) are preserved under the action of semigroup:

Vt>0 P:Co,—+Co, and IK,MVfE€ECo, ||Pfllce, < Ke"|fllco, (3.8)

Moreover for f € Co, the partial derivatives 9, P,f € C(fy(a), IR") fulfill (3.3), (3.4) and

have representation

0-(Pf)(x)=>_ > E <dIf(),& ®..08 > (3.9)

s=1 yU..Uys=T

for 7 = {ky, ..., km} and 9, = 0" /0y, ...0xy,,, where we used notation

<OVFED. & @@ >= > (04 E) §y

jlv--vjsezd

Because £o, C Co, by the above considerations, we only have to obtain estimate (3.7).
Due to (3.8) it is sufficient to show that

max [|0" P, fllep < Keoe™®* max (0" ey, 0" flloy) (3.10)

=1,..

To prove (3.10) we represent derivatives of semigroup 0™ P, f(z) = {0k, .--O, Pif (2) Y5y b
(3.9) as:

O™ P f(x) =) > E <Y f(&), 8, &, >
s=1 B1U..UBs={1,....m}

where for any fixed set {ji, ..., jm} C Z* the subdivision v, U...Uv, = {j1, ..., jm} is replaced
by subdivision 8; U ... U s = {1, ...,m} with corresponding identification v; = {j,, ¢ € 5;}

and {ggf}jh...,jm = &, ¢ =1,..,5 In other words expression E < a<5>f(§g;),§gl...§gs >,

frU...UBs = {1,...,m} has coordinates

{E < a(s)f(gg),ggl...ggs >}iimemi = E < o) (&3, 0 .. R >

Now we take a fixed pair (g, H" = H' ® ... ® H™) € O™ in the expression (3.2) of
10 P, f||em, add and subtract intermediate terms to obtain

|8(m)Ptf(x) - a(m)Ptf(y)lme
2 = Ylleata)@m (n5™) (1 + ng)K/2 7

IE X [0n0kf (&) — OO f(EDIEL 5y 5, Ly

< zm: Z { ki, ks€ Z4 + (311)

s=1 f1U..UBs={1,....m} 12 = Yllea(@)@m (g ™) (1 + ng k2
s | E . % i akl'“aksf(g@y)g;flﬁl'”gl:gj—lﬁj—l(glfjﬁj B ggjy,ﬁj)ggj+l’ﬁj+1“'gi{sa,ﬁs|7‘lm
wsks€
+ L - - } (3.12)
o 2 = Yl es(aydm () (1 + g )k/2

To finish the proof we have to estimate each term in (3.11) and (3.12).
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Non-Lipshitz gap between boundedness and continuity

To estimate (3.11) we apply Corollary 2. For fixed s € {1,...,m}, and subdivision 3; U
~UBs={1,...,m}

- Ok, ...0 ) — O, ...0 K
(311) S | Z B}fll::]is( E | k1 /:;sf(g@z) :1y ka(i03|k)1/2|Hm
L 165 — &l @)1 + )

,Bl .......... ,BS Y1yeees Vs L — y
where expression B, has coordinates: {B b i gmezd = By for v = {4, L€

B} and

2 x, z,
e _ (BIE ~ &l @i ) (Lt e Mg o, 0,1
17 = Yllagay@on (15 ) (1 + ) K/2 N

[T(E & — &llea@ anf") (1 +nf?)K|er | [2m/hedylel/2m
(=1

< x ok
12 = Yll (@) Gm (10" ) (1 + ng? )</
Above we applied Holder inequality with

X 2|vi|/m il/m s 3 k i|/m _
= (165 = & llesiay™ V™ 2DV () (14 mip )< g 2N ol m =1

Taking in (2.44) 6 = 2, Q(z) = ¢(2)(1 + z)k, my = 2m and m, replaced by 2m/|vy,| we
obtain

5 Kii vt
LL{K Ml — g2 a2 (ng ) (1 + mg) 472 6T Yl f2m
B’YI ----- Vs < /=1 _
kioke = s k+1 IW\ /‘ |
1% = Ylltaa) G (PE) (1 + m¥ K72 H( K R Iy
J€Ye
12 u t/Qqs(nﬁ’y)(Hn”)k (m=s) 2o kg 1
SR () [T, =" Tlwt)  G13)
Ao =1 J€Ye

Quasi-contractivity of array ©, implies that for any pair (qm,’}—[m) € O™ and Vs < m and
subdivision 5 U...U f; = {1, ...,m} there is a pair (qs,?—[s H®..® HS) € OF such that

ki,

g5(2)(1 4 2) 72 ") < K™ gy (s) (3.14)
Vhiy ko € 20 [ a0 g0 < pmos T Hj, (3.15)
=1 =1

with H?) = [[ Hi, k € Z".
i€l
Applying (3.14) to (3.13) we continue

B < K™ R/ 2eMmt/? H ak[ T el (3.16)

=1 JEY

17
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and substituting (3.16) into (3.11)

(3.11) < K™ o K[ZeM2 N~ gl Hr Y Hk[ I

G1seerjmEZS k1,...kseZ? €=1 JEYe

|ak18ksf(§(2)) a/ﬂ aks (60)|2 )1/2} ]1/2

(E " Y (3.17)
168 = &8l o) 2 (ni¥) (1 + n )k
Combinatorial Lemma 7 with b, = v,
f[ k“ (lve[=1) |ak1 O, (&) — 5k1---3ksf(§g)|2
..... Qp z, z,
‘ ||§@ 5@ |42(a)2q§(nt y)(l +ny y)k
and vector ¢ € IP chosen so that
K - 1 (5 s |a‘
L S LD DRV DR
aEZ‘i
imply
1/2 prm—s_ Mpt/2 m (71) (7s) - *%(\W‘*l)
(3.17) < K PKm M1+ Ky > BV LH ([ [ e,
k1,...,ks€Zd £=1
( |ak1 aksf(f@) 8/61 8ks (60)|2 )1/2] }1/2 (318)
||§@ 5@ |€z qs (nt )(1 +n ’y)k
with H =] HJ Using the quasi-contractivity of array O, = {(¢m, H™), m = 1,...,n}

j€v
and its consequence (3.15) to (3.18) we finally have

109 £(55) = 0 F (&7 1o

(3.18) < K, K™ $eMmt/?(1 4 K, )" L™ *(E - : <
165 — féfHez(a)?q?(nt D)1+ npk

< Kll/QKmstmfseMmt/Q(l 4 K,l/}) IPIaX (319)

.....

To estimate (3.12) we apply Theorem 5 and its Corollary 6, i.e. nonlinear estimate
continued into domain § = m,. For fixed s € {1, ..., m}, subdivision $; U...U 3, = {1, ..., m}
and j € {1,..., s} expression (3.12) is estimated by

|0, Ok, f (&) 7
a2 (165117, )

312)<| Y D(E )25 (3.20)

where DBI’ ’Bs has coordinates: {Dﬁl’ ’fj}jl’_._’jmezd Db for v = {je, £ € By}

...............

2)1/2

- ( E qz(”&f”%r_)(a)) |€]:fl yY1 513;] 1,Y5— (glf] Y3 - 5gj77j)§gj+la7j+1 "'ggs,’ys
17 = ylleata)@on () (1 + 115" 72

.....
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Non-Lipshitz gap between boundedness and continuity

_ (B @)l = &, o, P/ hhilree
”:E - nyz (a) Qm(n07y)(1 +n ’y)k/2

[T [E@ni)(g, 171 + (g, 17m /el /2m (3.22)
(=1, t£j

(3.21)

Above we used g5(||§5117, ) < g5(n7”) and Hélder inequality with z; = q‘s%‘/m(nf’y)ﬁ,fim 2

i%jmmdxr—ﬁmm(?%K%W—f@mew=2mN%L

To expressions (3.21) and (3.22) we apply Corollary 6 (4.27) and Corollary 2 (2.44) with
Q(z) = ¢%(z), mi1 = 2m and m, replaced by 2m/|v;| or 2m/|v,| correspondingly. Collecting
together the inequalities obtained and using hierarchy (3.14) for weights {¢s} we derive

b

k+1 (m—s)

2

z,y 1
Dzi, e < (maX{Kl,Kg})1/2eMmt/2qs(n0 )( +nxy)
Gm (19"

TSR YI . VAN -
a L, T et <

=1 rey.

.....

S _k+ B
< (max{ K, Ko}) 2K e 2, S0 T (o Tl (3.23)

=1 TEY
Substitution of (3.23) into (3.20) gives for fixed j € {1,..., s}

(3.12) < K'eM'[ > H} .H"{ > ap ? %
jl ~~~~~ jm K1yeeey ks
P R Gl
2 (el =1) k1 Oks
X H(ak[ " H ,lvbk[fb)( E (”5 || ) )1/2} ]1/2
/=1 bE, 0 f‘)

K i) T Kt 1) < |Oks--Ok, F(ED)]?
< K'eM(1+ Ky)™ HOD 1O g RO TT R0 g 19k T 10T g1/
(2, e Lo 2TET, )
(3.24)
On the last step we applied Lemma 7 with b, = ¢!

k+1 Ha LSS D)(g | Ok -0, f (§5)1? 172
..... ke a; (1165117, (ay)

and vector i) € IP was chosen so that

Ky = max max max E Y 6ms)19 < o0
m=1,...,n (gm,H™)€OT s=1,....m
acZ?

Due to the quasi-contractivity (3.15) of array ©, for tensor H" = H' ® ... ® H™ there
is tensor H* € ©7 such that

’Yl ’Ys k+1 Y(|vel=1) m—s 71 7S
H a, < LI™"°H} ..Hj
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Furthermore, by construction of array ©, (3.6) for any H® € O tensor 1G9 hrke =
ﬁkl...ﬁksa,;(kﬂ) belongs to ©; and we have

~ OB F (€D ..
(3.24) < (max{K,, K })'/2K™= L™ =Mmt/2(1 4 K )™ sup 1077 (&)lg- x(gg)'g <
& as(1€5 ||z2(a))

< (max{K;, K,}) PK™ = L =seMmt/2 (1 4 )™ max |0 flo (3.25)

From (3.19) and (3.25) we have estimate (3.10) proved. W

4. Continuation of nonlinear estimate in the domain 6 = m,.

We give a proof of estimate on the continuity of variations in the domain 6 = m, < my
(2.16) by application of evolutionary semigroups techniques. We show that at the optimal
choice of parameters {p,., c,, ¢, }, achieved in the quasi-contractive nonlinear estimate (2.16),
one can extend its consequence in form (1.9) in the domain of smaller values for constant
0 = m; < my, i.e. when the direct monotone methods are not applicable.

We pay a special attention below to control the uniformity of constants with respect to
7 : |7| < n, necessary for the estimation of (3.21).

First Lemma provides uniform estimates on the boundedness of 7.

LEMMA 4. Let vectors {c,},c satisfy hierarchy (2.8) and {&3},c, be strong solutions to
system (2.5) with zero-one initial data {z,, v C 7} (2.7) and initial data v € ly(a) for
equation (2.1). Then ¥ q > 1 3 M, such that

E sup (&)}, o) <M1+ 2]l 0)
a€[0,t]

ql7|
DY EGE ., @D

JET

Proof.  'We prove this Lemma by induction on |7|. For 7 = {j}, |7| = 1 and ¢, = 0
representation (2.9) implies

E sup [0, ) <O NFmL

Crs
o€(0,t] (eta)

with A = || B[ £(, (c(;y))- This gives an inductive base.
Let (4.1) be proved for all v C 7, |y| < |7]. By (2.9) we have

E S[Jourfllﬁﬂlﬁmcf) < E (M7 e, (o) + te Sup 67 llem, () <
it

< 19" B sup |77 (cr)
[0,4] e

Above we used that for zero-one initial data 7, if |7| > 2 then 7}, = 0 and |7+ ||, (c,) = 0.
Expression (2.6) for ., property (2.2) of map F' and hierarchy (2.8) give, like in (2.28)-(2.29)
an estimate

Bl o= Bl > FOE@E -

1] Y1U...Uys=T, §>2

(4.2)
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Non-Lipshitz gap between boundedness and continuity

77 H ||§’w ||£m7[ C'y[ Q/’H’LT

1 q(s-l—l))l/(s—l—l) %

<(C)'E S[(l]ll])(l + 11&5 117 ()
K

~~~~~ Vs

x k.
<(C)(E 3[515(1 + ||€@||?2(a)) ’

x( Y, R (swp H EsuI}JII et Ve (4.3)

meyy (Cv)
Y1U...Uys=T, §>2 TirTs g—q 0,¢ e

By application to (4.3) of inductive assumption and estimate (2.4), using that for s > 2 a =
>oo (vl = 1) +1 < |7| — 1 and therefore (1 + ||lz][*)® < (1 + ||=|?)"I=! we obtain

k r S 1
E sup “@i”ZmT(cr) < MleMzt(l + ||:E||§2( )z q(|7]-1) SUPH Z ||37{]}||sz; Clﬁzzl)l/ s+1) (4.4)
[0,¢] =1 jey
with constants
= (CIyapy/ e+ Z R,,)"m (4.5)

k+1
(s+1)
+ «sYs

My=(s+1)(k+1)Mq+ sup HIZ
..... Vs =1

The equivalence of all norms in R gives inequality

¢ bl

(s+1L)glvel\1 1)
H Z ||55{J}||eml cizf ) /(e+1) < IZ ||55{J}||zm1 (ci)) (4.6)

(=1 jert jeT

so we estimate (4.4) by

(4.4) < 20|T\M16M2t(1 + ||5E||32 Z Hx{J}HZLJ (cgs3) (4.7)

JET

Substituting (4.3)-(4.7) into (4.2) and applying Ct? < exp(qv/Ct) we have statement (4.1)

of Lemma 4 with
MT = qY MlCm + )\q + M2 |

THEOREM 5. (CONTINUATION OF NONLINEAR ESTIMATE TO 0 = m, ). Let conditions of
Theorem 1 hold. Then for zero-one initial data (2.7) the variations fulfill

M, Eg(ni?) suwp |l - <
te[0,T] (@™ 2 MTer)
ki
r mr T, z,y\0
< Mg — | g(ng ) (14 g ) Dol e,y (48)
JET

Proof. To obtain the inductive base at 7 = {j}, m, = m; we use representation (2.9) and
estimate (2.11) with ¢, =0, |7| =1

E q(ny™) SUP ||§{g} 5{]}”6"“ =

+1m
Iy (a2 Megyy)
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= Eq(ny”) sup |[U*(t,0)zy; — UY(t, O)LE{]}Héml kot <
tE[UT] Zml( =g mlc{j})
< (Texp2T(+ D)™ Eq(i) swp [F(6) - FEDITN o [Fplim  (@49)
0,t€[0,T

k k
where Xy = lp, (a ;lmlc{j}) and Yyjy = Ly, (da ;lmlc{j}) = U, (cgjy) for a weight dj, =
ki,
y 2 and A = ||B||C Xy A — ||B||C(Y{j})'

Using properties of nonhnear F and proceeding like in (2.38) we have for u € Y},

xX m m m 5 km m
I (&) — FUEDIII™ < (CFY™ iég — &llome, (1 + mp)Km 2 i

and estimate (4.9) by

m T, 2,9\6Km
(1) < (TETBCL P 5 7 B arF) sup 165 - S 1+ )R <

< (TN G [, (B 6P ()

my C{J})
<(E sup [ - ) B(E sup (14 nfv)Hmksz)s (4.10)
o€l0,T o€[0,T]

Representation (2.22) of stochastic differential of ¢*(n;*) and inequality (2.24) lead to

¢ ¢
E ¢(n{Y) = ¢*(ng?) — E / L*Yg* (ng?)dt < ¢*(ng?) + My / E @ (nfY)dt  (4.11)
0 0

with second order differential operator L*¥ given by (2.23). By Gronwall-Bellmann lemma
inequality (4.11) implies
E ¢’(nf") < el (ng”) (4.12)

Finally (4.12) and (2.3), (2.4) applied to (4.10) give

(410) < MOTE I gY@ =yl (1 + ngt) K (413)
with
~ 2
Mgy = 20ma(A + ) + 2 Mys + omi M (1 + k) + CTém 35m§/2K35m1k 1 (4.14)

where we used that CT9 < exp(qv/CT).
Inequality (4.13) gives the statement of Theorem 5 at 7 = {j}.
Inductive step.  Suppose that for all sets v C 7,|y| < || estimate (4.8) is already

proved. Now we check it for 7. In terms of notation X, = ¢,,_(¢,) for ¢, = aTHm’cT, Y, =

_B+1
b (dE) = o (cy), dr, = a, > ", for zero-one initial data x,y (2.7) using representation
(2.9) and properties (2.10) and (2.11) of evolutional families U*(t, s), UY(t,s) we have

E q(n{) sup & — &% =
t€[0,T]
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Non-Lipshitz gap between boundedness and continuity

t

= Eq(n”) sup || [ {U"(t,0)¢7(0) = U (t,0)pY(0)}do|[§" <

te[0,T] 0

< T g(nfY) sup [[{U(t o) — Ut o)}l (o) [+

t,0€[0,T]
TR Q(”f’y)t s U (¢, 0) {7 (o) — p2(o)}I¥ <
,0€|0,

§T25m725m71625mT(A+X)TEQ(nf’y)tSB%}||F’(§q)) FIENZ xollerl3+ (4.15)
€10,

T6m726m7—1 A&mTTEq( ,y) sup ||SOT ¢T||6mT (416)
te[0,7T
To estimate (4.15) we apply (2.38), (2.3), (2.4) and achieve
(E up. 1F"(&5) = F' D75 )" <

te[0,T

< (05)6mT66mTMT||x |z5m, 1/6 eém.,kMT(l +n ,y)éka/Q (417)

36km-r
Estimate (4.4) with ¢ = 30m, and inequality (4.6) give

Y|

m o K1
(B sup [[@f]2m )3 < MM T+ |a]j2, ) mr e (71D

t€[0,77]

36(s+1)m.
sup H Z||1E{]}||gmlst{];n |W|)1/3(S+1) <

Y15-- 77sz 1 jev

1/3 mT T mi
< MGl (22 0) ™™ T 3 E g 18 (418)

JET

with constants M, M, given by (4.5). Above we used that dm. > ,_, || = dm.|7| = dmy.
Applying (4.11) we finally have from (4.17) and (4.18)

m !, m T m m k+1 T
(4.15) < MIT?mr MT| s — yome (1 4 g )omekrzsim Ke =g 29) ™7 om
JET
(4.19)
where

= R, P

~ 2
My =20m;( A+ A) +om, M(k+1) + qug + Ms/3

From inequality CT9 < exp(qv/CT) we transform (4.19) in required form (4.8).
Estimation of (4.16). Using representation (2.6) for ¢, and adding and subtracting
necessary terms we obtain for some combinatorial constant C;| 5,

o7 = @IV < Clapome D AIFWE) — FOEIE, & oyt (4.20)

Y1U...Uys=T, §>2
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+ZHF(S)(§$) gl 2171@?1 B gz)§$z+1€$s (Z::(ET)} (4'21)
i=1
In analog to (2.40) we have
I TFOE) = FOENIE, & 17 ey <
< (C’f)(smTH% %H&m (1 + n T,y 6mTk/2R6/\T| H || g:: @) (4‘22)

Substituting (4.22) into (4.16) and applying (2.3), (2.4), (4.12) and Lemma 4 (4.1) we
have

Tomr9im-—1 0m-T g q(ny?) sup (4.20) <
o€[0,T]

DS EG I (4.23)

JET

< M{/TémT Y q( ,y)(1+n ,y)émTk/2+6mT

with constants
mr— mr 7| 1-1/4
My =2 O™ G Y, RITIK N
Y1s445Ys
S
" ]‘
My = Xom, + Mys/4+ om M(k+1)+ sup — » M,

ViyeesVs 48 j=1

Using CT? < exp(qv/CT) and that by a; < 1: || -
required form (4.8).
It remains to estimate (4.21). Proceeding like in (2.42) we obtain

||€m1(5{j}) <|- ”Eml(cu}) we have (4.23) in

(4.21) <
F\om, 6mTk omr x dmr omr
< Z (C)™ (14 nyY) 71||£m7 || o || )|| Hém @) (4.24)
i=1
By inductive assumption we have
(B () sup 65, = 15070 ) < el Dl — y gt
oc
k om (s+1)
y\om, L z15ka2 1|| 1/(s+1
x(1+ng") (=R 208 N Z gy )Y (4.25)
J€v;
due to
km,,

(S mn =) + 52031 = G BG2 (s] — 1) o e
Substituting (4.24) in (4.16) and using (4.25), (2.4) and Lemma 4 (4.1) we have

11 k
(4.16) < M"T ™ eM2'T (1 4 ng’y)émrT“(lﬂflmkmf/zq(ng,y)X

dmr(s+1) s
x|z =yl H P Y e S R (4.26)

=1 j€vy
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with constants

M= 2 Sl (LR, S R

Y1seeesVs

My = m.6 + dm,(k+1)M +

Applying to (4.26) estimate (4.6), inequality CT9 < exp(q\/_T) and || -
| llem, (eg;y) We finally have (4.26) in the required form (4.8). W

The next result states the uniform on |7| < n estimates on variations, used to derive
the smooth properties of semigroup P, in step (3.21).

|| £my (Cg51) <

COROLLARY 6. Let F fulfill (2.2) and &, &5,&2,8Y, v C T be generalized solutions to
(2.1), (2.5) with initial data x,y € ly(a) and zero-one initial data x.,,y.,. Then the following
estimate holds

k NS \ 1
o KMt — g QST (L ) T K2
E Q(n; )&, — & " < i (4.27)
’ k;m/m g oLt m s
ay, H (I

acT
with uniform on |T| <n, n € IN constants Ky = |T|1bg and M.

Proof. Estimate (4.27) is a direct coordinate consequence of (4.8) if we choose ¢(-) = Q(-),
vectors ¢, in (2.46). Note that vectors {c,} (2.46) fulfill hierarchy (2.8) with uniform on sets

7,7 constant R, ., = 1. This implies that constants A, A and M, in Theorem 5 are uniform
with respect to 7 : |7| < n. Uniformity of || B|| is similar to Corollary 2. W

LEMMA 7. ([2, LEMMA 3.12]). Let d4 wf Sup|,_jj—1 |dk/d;| and b € IP be such that |b(k)| <
1, ke Z%. Suppose that for d € IP, i =1,...,n constant

H{1 + Y baldgo]} < oo (4.28)

acZ¢

ThenV 51 U...U By ={1,...,n}, s > 1 we have inequality with dgf) = Hieﬁ dfj)

Z dg)---dg:” Z Lky...ks H H bki—jz|2)1/2 < (4‘29)

J1.jn€Z? k1..kseZ? i=1L€B;
2\1/2
(> dp.d )
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