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Walking Automata on a Class of Geometric Environments

In this paper we study the model of a finite state automaton interacting with two-dimensional geometric
environment. We consider a kind of well-known 4-way finite state automaton introduced by Blum and
Hewitt and the geometric environments defined as a subspace of two dimensional integer grid bounded
by integer value functions. As a main result of this paper we characterize a wide class of geometric
environments where a finite automaton exhibits universal behaviour.

1. Introduction. Finite state automata arose as models of transducers of discrete
information, i.e. models interacting with their environments [10]. Automata on picture
languages [4, 21], automata in labyrinths [3, 11, 12], communicating automata [15], mul-
ticounter automata [19, 8], a model of a computer in the form of interaction of a control
automaton [5] are examples of such an interaction.

The fundamental problem for systems where an automaton interacts with infinite
environment is the reachability problem: “Does a global state S (state of the automaton
and state of the environment) belong to the set of states reachable from an initial global
state”. The reachability problem has connections to many classical problems in automata
theory such as diagnostic problems, distinguishability problems, searching in labyrinths,
etc. One of the standard methods to show the undecidablity of the reachability problem
for some model is to prove that this computational model is universal.

In this paper we consider the computational power of the reactive system, where a
finite automaton interacts with a two-dimensional geometric environment.

It was shown in [13, 14] that the problem of checking indistinguishable states for two
finite automata in two-dimensional environment E (geometric environment) is decidable
if and only if the reachability problem for a finite state automaton in E is decidable.
The geometric environment is called effective if the reachability problem is decidable and
non-effective otherwise. It is known from [6, 7, 14] that the environment defined by a set
of rectangles of fixed height and the environment represented by a regular or context-free
expression are efficient. There are many other classes of effective environments with or
without holes that can be constructed by substitution of one cell in effective environment
by another effective environment [14].

It was proven in [3] that the sets of input-output words generated by automata
interacting with geometric environments without holes, namely, rectangles of unlimited
height are, in general, context-sensitive languages. Thus the reachability problem for
finite automata interacting with geometric environments is fundamentally difficult and
algorithmically unsolvable, in the general case. In spite of known undecidability results
it is interesting to identify new classes of non-effective environments, i.e. where a model
of finite automaton interacting with these environments is universal.

In this connection we consider a very natural geometric interpretation of the universal
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model of two counter automata with zero testing (Minsky machine). The Minsky machine
has Turing-machine power and can be simulated by a sequence of automaton’s (or robot’s)
movements on the positive quadrant of two dimensional integer grid. In this case the
values a and b of two counters correspond to the point (a, b) in the quadrant and the
updates of counters correspond to the moves of such automaton to the left, right, up or
down. The only testing ability of the automaton is to check whether it is close to the
wall or it is not. In such interpretation it is directly corresponds to the zero testing in
Minsky machine [20]. We belive that the geometric interpretation could give us much
more flexibility about natural restrictions for counter automata and could help with
understanding the abilities and limitations of other computational models.

We start our exploration from the environment defined by a quadrant of the plane that
corresponds to the Minsky machine model. First we consider an extension of quadrant
of the plane, changing the vertical border by power, polynomial or linear functions. In
particular we show that the finite automaton interacting with these environments can
simulate a Minsky machine. Then we consider an environment which impedes the direct
simulation of multiplication. However we show on example of an environment defined by
parabola:

Dn2,n2 = {(x, y) ∈ Z × Z|y ≥ x2}
that FSA interacting with Dn2,n2 is again a universal model of computation.

Then we generalize the class of non-effective geometric environments. Our conjecture
is that the environment in the half plane is non-effective if and only if it is defined by an
unbounded nondecreasing function.

The long-term goal of this work is to characterize the whole class of geometric en-
vironments to obtain a better understanding of the border between decidability and
undecidability for the reachability problems. While such an ambitious goal is not feasi-
ble at the moment, we instead investigate several special cases of geometric environments,
that we believe is a step towards our ultimate goal.

2. Automata interacting with environments. In what follows we use traditional
denotations N , Z and Zn for the sets of naturals, set of integers and set of bounded
integers {−n, . . . ,−2,−1, 0, 1, 2, . . . , n} respectively.

Let A = (SA, I, O, δA, λA, s0) be a finite deterministic everywhere defined Mealy
automaton, where SA, I and O are the sets of states, input symbols, and output symbols,
respectively, and δA : S×I → S and λA : S×I → O are transition function and function
of outputs respectively and s0 ∈ S is an initial state.

The geometric environment is defined by possibly infinite (countable) Moore automa-
ton E = (D, O, I, δE , λE), where D ⊆ Z × Z is a set of states, O = Z1 × Z1 is a set of
input symbols, I = 2Z1×Z1 is a set of output symbols, δE : D ×O → D such that

δE((x, y), (d1, d2)) =
{

(x + d1, y + d2), (x + d1, y + d2) ∈ D
undefined, (x + d1, y + d2) /∈ D

is the partial transition function and λE : D → I such that

λE(x, y) = {(i, j) ∈ Z1 × Z1|(x + i, y + j) ∈ D}
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is the function of outputs. We represent λE(x, y) as the matrix (oij)i,j∈Z1 , where oij = 1
if (x + i, y + j) ∈ D, otherwise oij = 0.

We call the set of states D – the nodes of the environment, the symbols of the output
alphabet I – the labels of nodes, the function of outputs λE – the function of labels of
nodes and the words in alphabet O – the movements of automaton in the environment.
From Definition 2 follows that two-dimensional geometric environment is represented by
an automaton E. According to the fact that the set D uniquely defines the environment
E, we identify D and E in the rest of the paper.

Two nodes of the environment (x1, y1) and (x2, y2) are the neighbours iff (x2−x1, y2−
y1) ∈ Z1 × Z1.

Let us describe the process of interaction between automaton and environment. An
automaton A initiates the interaction with an environment E starting from the state s0

and a node r ∈ D. Let A be in state s and node r, then automaton moves to the state
δA(s, λE(r)) and the node

δE(r, λA(s, λE(r))).

By pair (s, r), where s is state of an automaton, and r is a node of the envi-
ronment, we denote a configuration of the automaton in the environment. We also
say that configuration (s′, r′) is directly reachable from (s, r) if s′ = δA(s, λE(r)) and
r′ = δE(r, λA(s, λE(r))) and denote it by (s, r) → (s′, r′).

A geometric environment is called effective if the reachability problem for this environ-
ment is decidable and non-effective otherwise.

3. From Minsky machine to more exotic models of computation. In this
section we start from geometric interpretation of a well-known model of two-counter
Minsky machine that can increment and decrement counters by one and test them for
zero. It is known that Minsky machine is equivalent to Turing machine [20].

It is easy to see that the behaviour of 2-counter machine with a zero test (Minsky
machine) can be interpreted as a finite state automaton that interacts with the quadrant
of the plane DQ = {(x, y) ∈ Z × Z|x ≥ 0, y ≥ 0}. The node (x, y) of the environment
EQ = (DQ, O, I, δE , λE) represent the values x and y of two counters and the empty
counters of Minsky machine corresponds to the situation when an automaton is on the
borders of the geometric environment EQ (i.e. in a cell of the environment that does not
allow to move at least in one direction).

Now we can define some exotic models of computation by changing the shape of
the geometric environment. Let us consider an extension of the quadrant of the plane,
changing the vertical border by a power function, a polynomial function, a linear function
or a sublinear function. Let a ∈ N then by Da·n, Dna and Dan we denote the following
environments:

Da·n = {(x, y) ∈ Z × Z|y ≥ a · |x|, x < 0; y ≥ 0, x ≥ 0}

Dna = {(x, y) ∈ Z × Z|y ≥ |x|a, x < 0; y ≥ 0, x ≥ 0}
Dan = {(x, y) ∈ Z × Z|y ≥ a|x|, x < 0; y ≥ 0, x ≥ 0}.
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In particular in the next section we show that a finite state automaton in the following
three types of geometric environments D2·n, Dn2 and D2n can simulate a Minsky machine.

It is not difficult to see that if the left border of the quadrant is extended by a
sublinear function (in other words it cannot be covered by a sector in the half plane), for
example:

Dsub = {(x, y) ∈ Z × Z|y ≥ log |x|, x < 0; y ≥ 0, x ≥ 0}
then a finite automaton in this environment cannot simulate a universal computational
model. This environment actually is not essentially two-dimensional environment, i.e.
the dynamics in this model can be simulated by a finite state automaton interacting with
one-dimensional environment.

Another interesting case is an environment which impedes the direct simulation of
multiplication as it can be done in the environment DQ, for example the environment
bounded by a parabola. However we show that a finite state automaton interacting with
the environment defined by parabola:

Dn2,n2 = {(x, y) ∈ Z × Z|y ≥ x2}

is a universal model of computation.
4. Linear, power and polynomial function extensions. In this section we con-

sider several types of geometric environments with borders defined by integral functions
a · x, xa and ax, a ∈ N , x ∈ Z.

Let us first explain a trick that we use to get an equivalent model of two counter
machine where one of the counters is used as a scratchpad. Another, counter holds an
integer whose prime factorization is 2a · 3b. The exponents a, b can be thought of as
two virtual counters that are being simulated. When the real counter is set to one, it is
equivalent to setting all the virtual counters to zero. If the real counter is doubled, that
is equivalent to incrementing a, and if it is halved, that is equivalent to decrementing
a. By a similar procedure, it can be multiplied or divided by 3, which is equivalent to
incrementing or decrementing b. To check if a virtual counter such as a (b) is equal to
zero, just divide the real counter by 2 (3), see what the remainder is, then multiply by 2
(3) and add back the remainder. That leaves the real counter unchanged. The remainder
will have been nonzero if and only if a (b) was zero.

In the rest of the paper we are going to use the universal model of 2-counter machine
Mscrt with one scratchpad counter to show several undecdiability results for walking
automaton in different geometric environments.

The simple extension of machine Mscrt shows that the environment limited by two
linear functions in the half plane is non-effective. Since the integral line defines the regular
shift of the borders, we only need to amortise this shifts by adding a fixed number of right
or left moves according to the chosen direction to each transition of original automata. So
we can directly simulate multiplication and division that corresponds to original operation
of machine Mscrt.

Theorem 1. The geometric environments D2n, Dn2, D2n are non-effective.
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Proof. The proof of this fact is based on a simulation of Minsky machine by a finite
state automaton in the above geometric environments.

Let the finite state machine A interacting with DQ can reach the configuration
(s, a′, b′) from configuration (s, a, b) by one step. Now we can construct another FSA
A′ interacting with DQ, that can reach the configuration (s, 2a′ · 3b′ , 0) from configura-
tion (s, 2a · 2b, 0) by a finite number of states.

To check if a virtual counter such as a (b) is equal to zero, just divide the real counter
by 2 (3), see what the remainder is, then multiply by 2 (3) and add back the remainder.
That leaves the real counter unchanged. The remainder will have been nonzero if and
only if a (b) was zero.
The geometric environment D2n. The straightforward modification of the FSA A′

gives the result for any sector environment formed by two lines in the half plane. Since
the integral line defines the regular shifts of the border, we only need to amortise these
shifts by adding a fixed number of right or left moves according to the chosen direction.
The geometric environment Dn2. The case where one of the borders does not have a
periodic shifts is less trivial. However we use again the same scheme and prove that in-
teraction of finite state automaton A′ with the quadrant environment DQ can be reduced
in some sense to the interaction of finite state automaton B with environment Dn2 . In
case of nonperiodic border we need to choose another method to code the counter in the
new environment, and more sophisticated method of amortisation during the operations
of multiplication and division.

Let the boundary point (−x, x2) ∈ Gn2 represents a number x. Now let us show that
we can convert any point (−x, x2) to the point (−2x, (2x)2), that stands for multiplication
of x by 2.

First, FSA converts point (−x, x2) to point (x2−x, 0) by moving right and down until
it reaches the border. Then it converts the point (x2 − x, 0) to the (−2x, 4x2 + 4x) by
repeating the following pattern “moving four times up and one time left” until it reaches
the border. Since the inequality (2x)2 ≤ 4x2 + 4x ≤ (2x + 1)2 holds for any natural
number we can state that the point (−2x, 4x2 + 4x) belongs to the border Gn2 . Finally
the point (−2x, 4x2 +4x) can be converted to the point (−2x, 4x2) by a finite number of
moves down along the border, since all points {(−2x,w)|(2x)2 < w ≤ (2x + 1)2} are the
boundary points. Let us consider how to perform multiplication on 3 in this environment.
In other words we need to show that from any point (−x, x2) we can reach the point
(−3x, (3x)2). We start just as in previous case. We convert point (−x, x2) into (x2−x, 0)
and then to (−3x − 3, 9x2 + 18x + 27), which is the boundary point according to the
inequality (3x + 3)2 < 9x2 +18x +27 < (3x + 4)2, which holds for all x ∈ N . After that
FSA moves from point (−3x− 3, 9x2 + 18x + 27) to point (−3x, (3x)2) along the border
via 3 corners (−3x − 3, (3x + 3)2), (−3x − 2, (3x + 2)2) and (−3x − 1, (3x + 1)2). In a
similar way we construct automaton that can divide on 2 and 3 in Dn2 .
The geometric environment D2n. Let us prove that we can perform the operations
of multiplication and division by a finite state automaton in the geometric environment
D2n .

Let the boundary point p = (−blog2 xc, x) stands for a positive number x in the
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Figure 1. Simulation of the multiplication by 2 in the geometric environment Dn2 .

geometric environment D2n . The finite automaton can move from the point (−blog2 xc, x)
to the new point (0, x − blog2 xc) by repeating a pair of operations move left and down
until it reaches the border. Then the finite automaton can reach the border point r
by repeating two moves up and one move left. Thus, r is either (−blog2 xc, 2x) or
(−blog2 xc − 1, 2x + 2).

Now let us show how to check by a finite automaton in which part of E it reaches the
boundary point r from the initial point p. We use the simple property that if n is an even
number then (2n mod 4) = 0 and (2n + 2 mod 4) 6= 0, if n is an odd number then (2n
mod 4) 6= 0 and (2n + 2 mod 4) = 0. We first check by finite automaton if the ordinate
of the point p is odd or even and then we check the ordinate of the point r on divisibility
by 4. So if r’s ordinate is divisible on 4 and p’s ordinate is odd then the automaton is in
the point (−blog2 xc − 1, 2x + 2) and it can move down to the point (−blog2 xc − 1, 2x)
=(−blog2 2xc, 2x), otherwise it is in the point (−blogxc, 2x) =(−blog2 2xc, 2x).

In a similar way we can show that finite automaton can multiply on 3 and divide on
2 and 3 in the geometric environment D2n . ¤

Theorem 2. The geometric environment Dn2,n2 = {(x, y) ∈ Z × Z|y ≥ x2} is
non-effective.

Proof. Let the boundary point (x, x2) stands for a positive number x in the geometric
environment Dn2,n2 . A finite automaton cannot multiply in Dn2,n2 if it touches the border
only by a constant number of times as we have in case of Dn2 or D2n . So in case of Dn2,n2

we introduce some kind of cycle that will be used for multiplication and division.
Let us prove that a finite automaton can reach a point (2x, (2x)2) from a point (x, x2).
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A finite automaton can reach the boundary point (−(x + 1), (x + 1)2) = (−(x + 1), x2 +
2x + 1) in Dn2,n2 from a point (x, x2) by repeating the pattern “up and left”, since it
will move left for exactly 2x + 1 cells. It is easy to see that an automaton will reach the
point (−(x + 1), (x + 1)2 + c) from (x, x2 + c) for any 0 ≤ c < 2x + 1 by repeating the
same pattern “up and left”. Then it can reach the point (x + 1, (x + 1)2 + c) by moving
“right” until it reaches the border and the point (x + 1, (x + 1)2 + c + 4) doing additional
4 moves “up”.

Let us call the sequence of moves from the point (x, x2 + c) to the point (x + 1, (x +
1)2 + c + 4) a cycle. In the above procedure of multiplication by 2, starting from the
point (x, x2) the finite automaton will meet the cell




1 1 1
1 1 0
1 1 0




for the first time exactly after x cycles since it corresponds to the point (2x, 4x2 + 4x).
If the automaton will move down from the cell




1 1 1
1 1 0
1 1 0


 to




1 1 0
1 1 0
1 0 0




it reaches the point (2x, 4x2) and the multiplication by 2 is completed (see Figure 2).
Similarly we can perform multiplication by 3 if we slightly change the previous procedure.
If we change our cycle in a such way that the automaton will do 3 additional moves up

0−1 2

1 

2 

3 

4 

−2 1

0 

(2,4)−>(4,16)  

. . . . . .

. . .

Figure 2. An example of multiplication of x = 2 by 2 in the geometric environment Dn2,n2 . The operation
of multiplication is simulated by the movement of a finite automaton from (x, x2) to (2x, (2x)2).
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instead of 4 it reaches the cell 


1 1 1
1 1 0
1 1 0




for the first time after 2x cycles and will be in the position (3x, 9x2 + 6x). After that it
moves down in the same way as in previous case to reach the point (3x, (3x)2). Another
pair of operation such that division by 2 and 3 an automaton can perform in the following
way. The automaton moves from point (x, x2) to the point (−x, x2) and back. In such
way it perform 4x steps or moves. In order to check the divisibility of x by 2 (or 3) it
needs to check the divisibility of 4x by 8 (or 12) that can be done using a finite memory.
¤

In the next section we show a wider class of environments where the reachability
for walking automaton is undecidable but the direct multiplication and division are not
implementable.

5. Widening Non-effective Environments. Let us consider a function f : N →
N such that f(n) ≥ n and function g : N → N such that g(1) = 1, g(n) = g(n −
1) + f(n − 1). We define now a geometric environment E(g), that is defined by the set
of vertices {(x, y) ⊆ N × N |x ≥ g(y)}. The example of an environment is shown on
Figure 3.

   
  1

   
   

  2
   

   
   

3 
   

   
 4

   
   

  5
   

  .
..

     1        2         3        4        5     ...

(g(2),2)

(g(3),3)

(g(4),4)

(g(5),5)

(g(1),1)

Figure 3. The example of an environment represented by function f(x) = x.

Theorem 3. Given a number p ∈ N . If for all n > p a function f satisfies the
condition f(n) ≡ p (mod n) then an environment E(g) is non-effective.

Proof. The proof is done by reduction of the reachability problem for 2-counter
automaton (Minsky machine) to the reachability problem for walking finite state au-
tomaton in the above environment. In particular we show how to perform operation of
multiplication and division in the environment E(g) that allow us to perform the pro-
posed reduction. We show the simulation of multiplication by 2 in the environment E(g)
in details. It is easy to apply this method to simulate the multiplication by 3 and division
by 2 or 3 by walking automaton in E(g).

Let us assume that an automaton starts from a point (g(y), y) in the environment
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E(g). The vertex of environment E(g) in this point has a label



0 0 0
0 1 1
1 1 1


 .

Now we show that a finite state automaton on environment E(g) can reach a vertex
(g(2y), 2y) from a vertex (g(y), y) and stop on it. Note that all movements (computations)
of a finite state automaton that interacts with an environment E(g) is done using only
labels of environments that are available to our walking automaton and its finite number
of states.

By Sn = (1, 0)n ∈ O∗, n ∈ N we denote the movement of automaton from a vertex
(x, y) to a vertex (x + n, y), that is n movements to the right.

Another kind of movements that we are going to use for simulation are movements
of type C : C1 or C0.

   
  1

   
   

  2
   

   
   

3 
   

   
 4

   
   

  5
   

  .
..

     1        2         3        4        5     ...

(g(1),1)

(g(2),2)

(g(3),3)

(g(4),4)

C 0

Figure 4. The example of a movement C0.

If g(y) ≤ x < g(y + 1) − y by C0 = (1,−1)y−1(1, 0)(0, 1)y−1 ∈ O∗ we denote the
movement of an automaton from a vertex (x, y) to a vertex (x + y, y) .

   
  1

   
   

  2
   

   
   

3 
   

   
 4

   
   

  5
   

  .
..

     1        2         3        4        5     ...

(g(1),1)

(g(2),2)

(g(3),3)

(g(4),4)

C 1

Figure 5. The example of a movement C1.

If g(y + 1) − y ≤ x < g(y + 1) by C1 = (1,−1)y−1(1, 0)(0, 1)y ∈ O∗ we denote the
movement of automaton from vertex (x, y) to a vertex (x + y, y + 1) . The examples of
movements C0 and C1 are shown on Figures 4, 5.
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There are several useful properties of C-movements. Let us assume that a walking
automaton is in the bounded vertex (x, y) of an environment E(g), where g(y) ≤ x <
g(y + 1), then it can make only a finite number of consecutive moves of type C0. If
f(y) = iy + p (note that p is a constant), then the number of consecutive moves of
type C0 is bounded by i. So finally after a finite number of C0 movements a walking
automaton does C1 movement. It can also determine the fact of changing from C0 to
C1 by checking evenness/oddness of second component of the vertex coordinate using a
finite number of its internal states.

Next type of movements that we use for simulation is T . Let a walking automaton
is at the boundary vertex (x, y), g(y) ≤ x < g(y) + y of an environment E(g), in which
the following property f(y) = iy + p holds. By T we denote the sequence of movements
from a vertex (x, y) to (x + p, y) by Sp and then a finite number of C0 movements that
end by C1. Let us prove now that T will move an automaton from a vertex (x, y) to a
vertex (x′, y + 1), where

x− g(y) = x′ − g(y + 1) (1)

Since we have that f(y) = iy + p, a walking automaton should make exactly i − 1
movements of type C0 to reach vertex (x + (i− 1)y + p, y) from vertex (x + p, y). Then
after movement C1 it reaches vertex (x+(i−1)y +y +p, y +1) that is (x+ iy +p, y +1).
From it follows that x′−g(y+1) = x+iy+p−g(y+1) = x+iy+p−g(y)−f(y) = x−g(y).
In other words, we proved that after a movement T the distance from a corner (g(y), y)
of the environment to a vertex (x, y) is the same as the distance from a vertex (x′, y +1)
to a corner (g(y+1), y+1). So we can keep some information of the computations during
the walk of automaton as a distance from its location to the nearest left corner of the
environment.

Let us show how to move an automaton from a vertex (g(y), y) to a vertex (g(2y), 2y)
that corresponds to the multiplication of y by 2. The automaton starts in a vertex
(g(y), y) by making a sequence of movements (TS2) (that will be exactly y such patterns)
until the automaton reaches a vertex (g(2y) + 2y, 2y). In fact the automaton can easily
recognize whether a point V is of type (g(x) + x, x) by making the moves that are
reversible to the movement of type C (i.e an automaton moves down to the wall and
then iteratively moves left and up) starting from V . Actually if V is a vertex of type
(g(x) + x, x) the automaton should appear in the vertex (g(x), x) with the label




0 0 0
0 1 1
1 1 1


 .

In order to come back to the vertex V the automaton can perform one standard movement
of type C and continues its predefined actions. So if the current vertex is of the form
(g(2y) + 2y, 2y) the automaton makes a number of movements (−1, 0) until it reaches




0 0 0
0 1 1
1 1 1


 .
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that is exactly the vertex (g(2y), 2y).
Let us track the sequence of above movements. The first movement TS2 will change

the position of automaton from (g(y), y) to (g(y+1)+2, y+1). The position of automaton
after next movements TS2 will be (g(y + 2) + 4, y + 2). Thus, the position of automaton
will be changed to (g(y + y) + 2y, y + y) = (g(2y) + 2y, 2y) exactly after y of such
movements. Then it moves to the point (g(2y), 2y) by the sequence of moves (−1, 0)2y

until it reaches the corner of the environment. The example of such movements that
correspond to the multiplication by 2 is shown on Figure 6.

S2T S2

(g(7),7)

(g(5),5)

(g(4),4)

(g(3),3)

T

Figure 6. The example of a multiplication y×2, where y = 3, in the environment represented by function
f(x) = x.

By analogy with a case of multiplication by 2 one can show a similar sequence of
movements that that changes the location of automaton from (g(y), y) to (g(3y), 3y)
and correspond to multiplication by 3. The sequence of movements that guarantees the
division by 2 and 3 can be derived from the operation of multiplications. The question
whether a number y is divisible by 2 (3) can be checked by automaton in a standard
way using 2 (3) states by moving down from (g(y), y) to the vertex (g(y), 1) and up
again. It follows that the walking automaton interacting with an environment E(g) can
simulate the computation of two counter machine where one of the counters is used as a
scratchpad. Thus the reachability problem of a walking automaton in environment E(g)
is undecidable and the model is universal. ¤

Now we can derive a variety of different non-effective environments from above the-
orem.

Corollary 1. Let g : N → N be an integral polynomial function of degree n, where
n ≥ 2. The environment E(g) is non-effective.

Proof. Let g(x) = anxn + . . . + a1x + a0 and f(x)= g(x+1)-g(x). Since f is also
polynomial, i.e. f(x) = bnxn + . . . + b1x + b0, then f(x) ≡ b0 (mod x). It follows form
Theorem 3 that the environment E(g) is non-effective. ¤

Moreover we can change the main theorem, but using the same ideas of computations
with respect to some modulo.

Corollary 2. Given a constant p ∈ N . Let function f fulfil condition f(n) ≡ n− p
(mod n) for all n > p then an environment E(g) is non-effective.
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Corollary 3. Given a constant p ∈ N . Let function f fulfil condition f(n) ≡ bn
2 c

(mod n) for all n ∈ N then an environment E(g) is non-effective.

Corollary 4. Given a function f : N → N that can be represented as f1(x) · f2(x),
where f1(n) ≡ 0 (mod n) and f2(n) is any nondecreasing function. An environment
E(g) is non-effective.

We can also use Theorem 3 to show that for any environment limited by unbounded
nondecreasing function there exist a sub-environment where a finite automaton exhibits
universal behaviour:

Corollary 5. Let E(h) = {(x, y) ⊆ N × N |x ≥ h(y)} and h : N → N is an
unbounded integral nondecreasing function. Then there is a function g : N → N , such
that E(g) ⊆ E(h) and E(g) is non-effective.

Proof. Let g : N → N be a function such that g(1) = 1, g(x) = g(x− 1) + f(x− 1)
and let f(x) = x · c(x), where c(x) : N → N is large enough to satisfy the property
f(x) > h(x + 1) − h(x). From the above construction follows that E(g) ⊆ E(h). On
the other hand the fact that f(x) ≡ 0 (mod x) gives us that the environment E(g) is
non-effective by Theorem 3. ¤

6. Conclusion and Discussion. The straightforward consequence of the above
result can be stated as follows. We can define a model of two-counter automaton with
restricted counters. i.e. the model of two-counter automaton where the maximum value
of one counter at every moment is bounded by a some function from the value of another
counter. In case if such (even very slow growing) function is of type defined in Theorem 3
we still have a universal model with some slowdown for simulation of every action of
classical Minsky Machine.

The decidability of reachability problem for automaton interacting with environments
defined by other functions is still an open question. Though we show in Corollary 4
that bounds on increase rate of the environment width does not have any influence
on universality, it is not clear what would be the cornerstones of undecidability for
some specific environment, e.g. when environment is limited by a logarithmic function:
Elog = {(x, y) ∈ N ×N |y ≤ log(x)}.
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