УДК 62-50,531.38

©2002. Н.В. Кравченко

СТАБИЛИЗАЦИЯ ЗА КОНЕЧНОЕ ВРЕМЯ СИСТЕМ С ДИНАМИЧЕСКОЙ ОБРАТНОЙ СВЯЗЬЮ МЕТОДОМ ФУНКЦИИ УПРАВЛЯЕМОСТИ

Получено решение задачи стабилизации за конечное время систем с динамической обратной связью с использованием функции управляемости. Выполнен компьютерный анализ трехмерных модельных систем.

1. Постановка задачи. Рассматриваются системы управления, описываемые обыкновенными дифференциальными уравнениями

$$\dot{x} = f(x, u),\tag{1}$$

где $x \in D \subseteq R^n$ — фазовый вектор, $u \in U \subset R^m$ — вектор управления. Множество U предполагается ограниченным, содержащим точку нуль в качестве внутренней. Кроме того, предполагается f(0,0)=0, что обеспечивает существование нулевого решения системы (1).

Задача стабилизации за конечное время системы (1) с динамической обратной связью состоит в построении динамической системы

$$\dot{u} = g(x, u),\tag{2}$$

где g(0,0)=0, такой, что все траектории системы (1), (2), начинающиеся в окрестности начала координат, попадают в начало координат за конечное время. При этом начальное значение u^0 может зависеть от начальных значений фазового вектора $u^0=u^0(x^0)$. Поставленную задачу будем решать, используя метод функции управляемости[1] для решения задачи локального синтеза непрерывного управления.

Задача локального синтеза непрерывного управления системы (1) состоит в нахождении управления $u=u(x)\in U$ непрерывного при $x\neq 0$ и такого, что траектория системы $\dot{x}=f(x,u(x))$, начинающаяся в точке x_0 из окрестности нуля оканчивается в точке $x_1=0$ за конечный момент времени $T(x_0)$.

2. Решение задачи локального синтеза непрерывного управления методом функции управляемости. В работе [1] решение задачи локального синтеза непрерывного управления системы (1) получено в виде $u=u(x,\theta)$. Функция $\theta(x)$, названная функцией управляемости, удовлетворяет следующей теореме.

ТЕОРЕМА. Пусть для управляемого процесса, описываемого уравнением $\dot{x}=f(x,u)$, где $x\in E^n,\ u\in U\subset E^m,\ f\in E^n$ и вектор-функция f в каждой области $\{(x,u):0<\rho\leq t\}$ удовлетворяет условию Липшица

$$||f(x'', u'') - f(x', u')|| \le L_1(\rho, \rho_1)(||x'' - x'|| + ||u'' - u'||)$$

существует функция $\theta(x)$, удовлетворяющая условиям:

- 1) $\theta(x) > 0$ и $\theta(x) = 0$ только при x = 0;
- 2) $\theta(x)$ непрерывна всюду и непрерывно дифференцируема всюду за исключением, быть может, точки x=0;

3) существует функция u(x) при $x \in Q$, где $Q = \{x : \theta(x) \le C, C > 0\}$ (С таково, что множество Q ограничено), удовлетворяющая неравенству

$$\sum_{i=1}^{n} \frac{\partial \theta(x)}{\partial x_i} f_i(x, u) \le -\beta \theta^{1 - \frac{1}{\alpha}}(x)$$

при некоторых $\alpha>0,\ \beta>0,$ причем u(x) при $0<\rho\leq\|x\|<\rho_1$ и $x\in Q$ удовлетворяет условию Липшица, то есть $\|u(x'')-u(x')\|\leq L_2(\rho,\rho_1)\|x''-x'\|.$

Тогда траектория системы $\dot{x}=f(x,u(x))$, начинающаяся в произвольной точке $x_0\in Q$ при t=0, оканчивается в точке x=0 в некоторый конечный момент времени $T\leq \frac{\alpha}{\beta}\theta^{\frac{1}{\alpha}}(x_0)$.

Метод решения задачи локального синтеза для линейной управляемой системы с одномерным управлением [1] можно представить в виде следующего алгоритма.

1. Система приводится к каноническому виду

$$\dot{z}_i = z_{i+1}, \quad i = \overline{1, n-1},
\dot{z}_n = v, \quad |v| \le d.$$
(3)

- 2. Управление v ищется в виде полинома $v = \sum_{i=1}^{n} a_i z_i$, где коэффициенты a_i подбираются из условия асимптотической устойчивости нулевого решения системы (3).
 - 3. Строится положительно определенная квадратичная форма

$$V = \frac{1}{2} \sum_{i,j=1}^{n} f_{ij} z_i z_j = = \frac{1}{2} (Fz, z)$$

такая, что $\dot{V} = -\sum_{i=1}^n z_i^2$, где \dot{V} – производная по времени в силу системы (3) с управлением $v = \sum_{i=1}^n a_i z_i$. Известно [2], что такая форма существует и единственна.

- 4. Параметр α выбирается, исходя из условий:
- 1) $\alpha > -\nu^*$, где ν^* минимальный корень уравнения

$$det||f_{ij}(2n+1-i-j-\nu)||_{i,j=\overline{1,n}} = 0; (4)$$

2) квадратичная форма $(F^{\alpha}z, z)$ положительно определенная, где

$$F^{\alpha} = ||f_{ij}(1 + \frac{2n+1-i-j}{\alpha})||_{i,j=\overline{1,n}}.$$
 (5)

5. Находится a_0 такое, что выполняется условие

$$\sqrt{2a_0(F^{-1}a,a)} \le d. \tag{6}$$

Выбрав соответствующим образом ${\pmb a}=(a_1,a_2,...,a_n), F,\alpha,a_0$ получаем, что управление

$$v(z,\theta) = \sum_{i=1}^{n} a_i z_i \theta \frac{-n-1+i}{\alpha},$$
(7)

где θ – положительный корень уравнения

$$\theta = \frac{1}{2a_0}(F_1(\theta)z, z),\tag{8}$$

при $F_1(\theta) = ||f_{ij}\theta^{(-2n-1+i+j)/\alpha}||_{i,j=\overline{1,n}}$ удовлетворяет теореме и

$$T(x_0) \le \frac{\alpha \lambda}{2} \theta^{\frac{1}{\alpha}(x_0)}. \tag{9}$$

Здесь λ – максимальный корень характеристического уравнения для матрицы F^{α} . Известно [1], что положительное решение уравнения (8) существует и единственно.

3. Построение динамической обратной связи. Рассмотрим функцию $\Phi(\theta,z)=2a_0\theta-(F_1(\theta)z,z), a_0>0$. Найдем производную $\Phi(\theta,z)$ по θ при $z\neq 0$. Получаем $\frac{\partial\Phi}{\partial\theta}=2a_0\theta+\frac{1}{\theta}((\frac{2n+1-i-j}{\alpha})F_1(\theta)z,z)$. Из (8) $2a_0=\frac{1}{\theta}(F_1(\theta)z,z)$, следовательно $\frac{\partial\Phi}{\partial\theta}=\frac{1}{\theta}((1+\frac{2n+1-i-j}{\alpha})F_1(\theta)z,z)$. Введем обозначение $y_i=\theta$ $\frac{-n-1+i}{\alpha}z_i$, тогда $\frac{\partial\Phi}{\partial\theta}=((1+\frac{2n+1-i-j}{\alpha})Fy,y)=(F^\alpha y,y)$. Так как α подбирается так, что $(F^\alpha z,z)$ положительно определенная квадратичная форма, то $\frac{\partial\Phi}{\partial\theta}>0$. Поскольку обе части уравнения (8) непрерывно дифференцируемы по θ и z, и так как $\frac{\partial\Phi}{\partial\theta}\neq0$ при $z\neq0$, то по теореме о неявной функции $\theta(z)$ непрерывно дифференцируема в окрестности любой точки $z\neq0$. Доопределим функцию $\theta(z)$ значением $\theta(0)=0$. Функция $\theta(z)$ становится непрерывной при любом z [1]. Продифференцировав (8) в силу системы (3), с учетом (7), получаем выражение для $\theta(z)$.

$$\dot{\theta} = \left(\sum_{i,j=1}^{n-1} f_{ij} \ \theta^{\frac{-2n+i+j}{\alpha}} (z_{i+1}z_j + z_{j+1}z_i) + 2\sum_{i=1}^n f_{in} \ \theta^{\frac{-n+i}{\alpha}} (z_{i+1}z_n + z_i \sum_{j=1}^n a_j z_j \ \theta^{\frac{-n-1+j}{\alpha}})\right) \times \left(\left(1 + \frac{2n+1-i-j}{\alpha}\right) F_1(\theta) z, z \right)^{-1}.$$
(10)

Уравнение (10) представляет собой динамическую обратную связь для системы (3). Обозначим правую часть уравнения (10) через $g(z,\theta)$. Рассмотрим расширенную систему

$$\dot{z}_i = z_{i+1} \ (i = \overline{1, n-1}), \quad \dot{z}_n = v(z, \theta), \quad \dot{\theta} = g(z, \theta)$$
 (11)

с начальными условиями $z=z^0,\; \theta=\theta^{\,0},\;$ где $\theta^{\,0}$ – положительное решение уравнения (8) при $z=z^0.$

Управление $v(z,\theta)$ и $\theta(z)$ удовлетворяют теореме из п.1, следовательно решение системы (11) будет переводить точку из окрестности начала координат в начало координат за конечное время. Так как f(0,0)=0 и g(0,0)=0, то получаем решение задачи стабилизации за конечное время для системы (3) с помощью динамической обратной связи.

Замечание. Полученный результат может быть обобщен на случай нелинейных систем, которые могут быть точно линеаризованы [3].

4. Примеры. Пример 1. Рассмотрим систему

$$\dot{x}_1 = x_2, \ \dot{x}_2 = x_3, \ \dot{x}_3 = u, \ |u| \le 1.$$
 (12)

Построим для данной системы стабилизирующую динамическую обратную связь. Положим $a_1 = -1$, $a_2 = -3$, $a_3 = -3$, тогда нулевое решение системы (12) с управлением

 $u = \sum_{i=1}^n a_i x_i$ будет асимптотически устойчиво. Для данной системы

$$F = \begin{pmatrix} 37/8 & 31/8 & 1\\ 31/8 & 13/2 & 13/8\\ 1 & 13/8 & 7/8 \end{pmatrix}.$$

Наименьшим корнем уравнения (4) для системы (12) будет $\nu^*=0.133$. Если положить $\alpha=1,$ $(\alpha>-\nu^*),$ то получим

$$F_1 = \begin{pmatrix} 111/4 & 155/8 & 4\\ 155/8 & 26 & 39/8\\ 4 & 39/8 & 7/8 \end{pmatrix}.$$

Тогда из (9) получаем оценку для времени, за которое система из окрестности нуля попадает в нуль, $T(x_0) \le 0.623 \; \theta(x_0)$. Построим обратную матрицу к матрице F

$$F^{-1} = \frac{1}{451} \begin{pmatrix} 195 & -113 & -13 \\ -113 & 195 & -233 \\ -13 & -233 & 963 \end{pmatrix}.$$

Найдем a_0 удовлетворяющее (6) при d=1. Получаем $a_0 \le 0,079$. Положим $a_0=0,05$ и из (10) определим динамическую обратную связь $\dot{\theta}$ для системы (12).

Расширенная система (11) с динамической обратной связью $\dot{\theta}$ для системы (12) имеет вид

$$\dot{x}_1 = x_2, \quad \dot{x}_2 = x_3, \quad \dot{x}_3 = -\frac{x_3}{\theta^3} - \frac{3x_2}{\theta^2} - \frac{3x_1}{\theta},
\dot{\theta} = \frac{-40(\theta^3 x_1^2 + \theta x_2^2 + \theta^{-1} x_3^2)}{12\theta^5 - 70\theta^3 x_1^2 - 195\theta^2 x_1 x_2 - 20(13x_2^2 + 4x_1 x_3)\theta - 105x_2 x_3}.$$
(13)

С начальными условиями

$$\mathbf{x}(t_0) = \mathbf{x}^0, \ \theta(t_0) = \theta^0, \tag{14}$$

где $\theta^{\ 0}$ – положительный корень уравнения

$$0.8\theta^6 - 7\theta^4 x_3^{0^2} - 26\theta^3 x_2^0 x_3^0 - 4(13x_2^{0^2} + 4x_1^0 x_3^0)\theta^2 - 62\theta x_1^0 x_2^0 - 37x_1^{0^2} = 0.$$

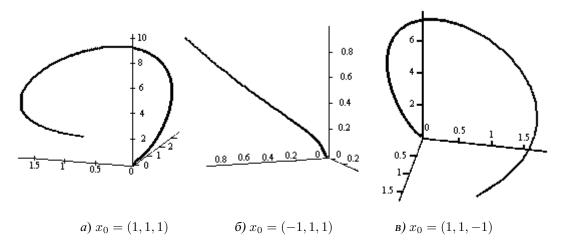


Рис. 1. Траектории системы (12).

Решение данной задачи проходит через точку (0,0,0) за время $T(x_0) \le 0,623$ θ^0 . Для примера выберем в пространстве три точки (1,1,1), (1,-1,1) и (1,1,-1).Им соответствуют следующие значения θ^0 : 4.567, 2.399, 4.246. Используя метод Рунге-Кутта, решаем задачу Коши (13), (14). Траектории системы(13) изображены на рис. 1.

Пример 2. Будем рассматривать систему

$$\dot{x}_1 = u_1, \ \dot{x}_2 = x_3, \ \dot{x}_3 = u_2; \ |u_i| \le 1.$$
 (15)

Построим для нее стабилизирующую обратную связь. Данная система является линейной, управляемой с двумерным управлением. Система распадается на две независимые системы

$$\dot{x}_1 = u_1, \ |u_1| \le 1;$$
 (16)

$$\dot{x}_2 = x_3, \ \dot{x}_3 = u_2; \ |u_2| \le 1.$$
 (17)

Для системы (16) параметр $a=-1,\ f_{11}=1,\$ уравнение (4) имеет корень $\nu^*=1,$ матрица F имеет вид $(1+1/\alpha)f_{11}$, поэтому положим $\alpha=1.$ Пологаем $a_0=1/2.$ Уравнение (8) примет вид $\theta^2=x_1^2$. Функция $\theta(x)=|x_1|,$ а управление $u_1=-x_1/|x_1|=-\mathrm{sign}(x_1).$

Систему (17) приводим к системе с динамической обратной связью

$$\dot{x}_2 = x_3, \quad \dot{x}_3 = -\frac{x_2}{\theta^2} - \frac{2x_3}{\theta},
\dot{\theta} = \frac{\theta^2 x_3^2 + x_2^2}{-\frac{4}{9}\theta^4 + \theta^2 x_3^2 + \theta x_2 x_3}.$$
(18)

Тогда расширенная система с динамической обратной связью для системы (15) имеет вид

$$\dot{x}_1 = -\operatorname{sign}(x_1), \quad \dot{x}_2 = x_3, \quad \dot{x}_3 = -\frac{x_2}{\theta^2} - \frac{2x_3}{\theta},
\dot{\theta} = \frac{\theta^2 x_3^2 + x_2^2}{-\frac{4}{9}\theta^4 + \theta^2 x_3^2 + \theta x_2 x_3}.$$
(19)

С начальными условиями

$$\mathbf{x}(t_0) = \mathbf{x}^0, \ \theta(t_0) = \theta^0, \tag{20}$$

где $\theta^{\ 0}$ – положительный корень уравнения

$$\frac{2}{9}\theta^4 - x_3^{0^2}\theta^2 - 2x_2^0 x_3^0 \theta - 3x_2^{0^2} = 0.$$
 (21)

Для примера выберем в пространстве три начальные точки: (1,1,1), (-1,1,1) и (1,-1,1). Построим для этих начальных точек траектории движения. Задаем начальные значения для вектора х и подставляем в уравнение (21). Затем, решив это уравнение, выбираем положительный корень в качестве начального значения для θ . Для выбранных начальных точек получены следующие значения θ θ : 3, 3, 1.88, соответственно. Используя метод Рунге-Кутта решаем задачу Коши (19), (20). Траектории системы (19) изображены на рис. 2.

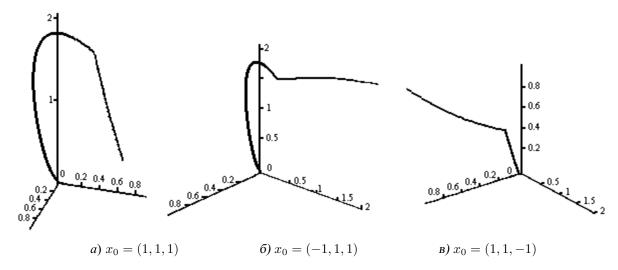


Рис. 2. Траектории системы (18).

- 1. *Коробов В.И.* Общий подход к решению задачи синтеза ограниченных управлений в задаче управляемости // Мат.сб. -1979. -109(151), N4(8). C. 582-606.
- 2. Ляпунов А.М. Общая задача об устойчивости движения.-М.:Гостехиздат,1950. 476с.
- 3. *Jakubczyk B., Respondek W.* On linearization of control systems// Bull. Acad. Polonaise Sci., Ser. Sci. Math., 1980. 28, P. 517 522.

Ин-т прикл. математики и механики НАН Украины, Донецк kravchenko@iamm.ac.donetsk.ua

Получено 01.10.02