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Abstract. Global well-posedness in a class of weak solutions is es-

tablished to one initial-boundary value problem with three boundary

conditions for a wide class of quasilinear dispersive evolution equations

of the third order in the multidimensional case. The considered class

of equations generalizes the Korteweg–de Vries, the Korteweg–de Vries–

Burgers and the Zakharov–Kuznetsov equations.
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The paper is concerned with global well-posedness of one nonhomo-
geneous initial-boundary value problem for quasilinear partial differential
equations of the type

ut − P (∂x)u+ divx g(u) = f(t, x), (1)

where u = u(t, x), t ≥ 0, x = (x1, . . . , xn) ∈ R
n, n ≥ 2, g = (g1, . . . , gn),

divx g(u) =
n∑

j=1

g′j(u)uxj
, P (∂x) =

∑

|α|≤3

aα∂
α
x

is a linear differential operator with constant real coefficients aα, α =
(α1, . . . , αn) is a multi-index, |α| = α1 + · · · + αn, ∂α

x = ∂α1

x1
. . . ∂αn

xn
.
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84 Weak solutions to the initial-boundary value problem

These equations are studied in the domain QT = (0, T )×Ω, T > 0 –
arbitrary, Ω = {x ∈ R

n : xn ∈ (0, 1)} = R
n−1 × (0, 1). Initial condition

u
∣∣
t=0

= u0(x), x ∈ Ω, (2)

and three boundary conditions

u
∣∣
xn=0

= u1(t, x
′),

u
∣∣
xn=1

= u2(t, x
′),

uxn

∣∣
xn=1

= u3(t, x
′),

(t, x′) ∈ ST , (3)

where x′ = (x1, . . . , xn−1), ST = (0, T ) × R
n−1, are set.

The equations (1) generalize well-known equations, describing prop-
agation of nonlinear waves in dispersive media, namely, the Korteweg –
de Vries equation

ut + uxxx + uux = 0, x ∈ R, (4)

the Korteweg – de Vries – Burgers equation

ut + uxxx − δuxx + uux = 0, x ∈ R, δ > 0, (5)

the Zakharov – Kuznetsov equation in two and three spatial dimensions

ut + uxxx + uxyy + uux = 0, (x, y) ∈ R
2, (6)

ut + uxxx + (uyy + uzz)x + uux = 0, (x, y, z) ∈ R
3. (7)

The initial value problem for equations of the (1) type (in fact, of
an arbitrary high odd order) in the multimensional case was previously
studied in [15] and [4]. An initial-boundary value problem for the equa-
tion (1) in a domain Π+

T = (0, T )×{x ∈ R
n : xn > 0} with one boundary

condition u1 was considered in [6] (P was assumed to be a homogeneous
operator of the third order). The Zakharov–Kuznetsov equation (6) was
studied in [5, 7, 13,14].

Global theory for quasilinear dispersive equations is based on conser-
vation laws, where the first one is in L2. Indeed, if u is a smooth and
decaying at infinity solution to the initial value problem for any of the
equations (4)–(7), then for t > 0

‖u(t, ·)‖L2
≤ ‖u0‖L2

. (8)

But this estimate is not sufficient to construct global solution for u0 ∈ L2

because of nonlinearity.
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Additional estimate can be obtained via the so called local smoothing
effect. It is based on the following simple property of the third derivative:

2

∫

I

uxxxuρ dx = 3

∫

I

u2
xρ

′ dx−

∫

I

u2ρ′′′dx− u2
xρ
∣∣
∂I
, (9)

where ρ is a smooth, bounded, increasing function on a certain interval
(bounded or unbounded) I ⊂ R and u|∂I = 0. The presence of the definite
term u2

xρ
′ provides extra smoothing of a solution to (4) in comparison with

initial profile u0 ∈ L2 on any bounded subinterval of I, [9,12]. When I is
bounded the local smoothing effect transforms to the global one on the
whole interval I, [2, 11, 14].

In order to ensure properties similar to (8), (9) the operator P in the
present paper is subjected to the following assumptions. Consider the
representation

P (∂x) =
3∑

k=0

∑

|α|=k

aα∂
α
x ≡

3∑

k=0

Pk(∂x). (10)

Let

Pk(ξ) ≡
∑

|α|=k

aαξ
α, ξ = (ξ1, . . . , ξn), ξα = ξα1 . . . ξαn ,

be the symbol of the operator Pk. Assume that

1) Q2(ξ) ≡
∂

∂ξn
P3(ξ) < 0 ∀ ξ 6= 0, 2) P2(ξ) ≥ 0 ∀ ξ ∈ R

n. (11)

It follows from the first condition (11), that there exists a constant
c > 0 such that Q2(ξ) ≤ −c|ξ|2 ∀ ξ ∈ R

n, therefore, the differential
operator Q2(∂x) with the symbol Q2(ξ) is elliptic.

Note also, that if one represents Pk in such a way:

Pk(∂x) ≡ ak∂
k
xn

+

k∑

l=1

Pkl(∂x′)∂k−l
xn

, (12)

where Pkl(∂x′) are homogeneous differential operators of the orders l and
ak = a(0,...,0,k), then (11) yields that

a3 < 0. (13)

The first condition (11) means, that the operator ∂t − P3(∂x) is 3-
hyperbolic in the direction xn, [16].
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In fact, the second condition (11) provides a global estimate on so-
lutions of the (8) type, while the first one — a local smoothing effect.
For the first time the first condition (11) for equations of the (1) type
appeared in [4]. Other conditions, that provide local smothing effect for
dispersive equations, can be found in [10,13,15].

The next lemma is concerned with properties of the operator P (com-
pare with (9)).

Lemma 1. Let the inequalities (11) be satisfied. Then there exist two

positive constants c0 and c1 such that for any function ϕ(x) ∈ H3(Ω),
ϕ|xn=0 = ϕ|xn=1 = 0,
∫

Ω

P (∂x)ϕ · ϕρ(xn) dx ≤
a3

2

∫

Rn−1

(
ϕ2

xn

∣∣
xn=0

ρ(0) − ϕ2
xn

∣∣
xn=1

ρ(1)
)
dx′

− c0

∫

Ω

| gradx ϕ|
2ρ′(xn) dx+ c1

∫

Ω

ϕ2ρ(xn) dx, (14)

where either ρ(xn) ≡ 1 or ρ(xn) ≡ 1+xn and a3 is the negative constant

from (12).

Proof. For ρ ≡ 1 the inequality (14) is obvious. For ρ(xn) ≡ 1 + xn by
virtue of the Leibniz formula write the equality

P (∂x)ϕ · ϕρ(xn) = P (∂x)(ϕρ1/2) · ϕρ1/2 −
1

2
Q2(∂x)ϕ · ϕ

+
1∑

j=0

Qj(∂x)ϕ · ϕ(ρ1/2)(3−j)ρ1/2,

where Qj(∂x), j = 0 and 1, are certain homogeneous linear differential
operators of the orders j. Then (14) in this case succeeds from (14) for
ρ ≡ 1 and the ellipticity of the operator Q2.

Consider the formally adjoint to P operator

P ∗(∂x) =

3∑

k=0

(−1)kPk(∂x).

Lemma 2. Let the inequalities (11) be satisfied. Then for any function

ϕ(x) ∈ H3(Ω), ϕ|xn=0 = ϕ|xn=1 = 0,
∫

Ω

P ∗(∂x)(ϕρ(xn))ϕdx ≤
a3

2

∫

Rn−1

(
ϕ2

xn

∣∣
xn=1

ρ(1) − ϕ2
xn

∣∣
xn=0

ρ(0)
)
dx′

− c0

∫

Ω

| gradx ϕ|
2ρ′(xn) dx+ c1

∫

Ω

ϕ2ρ(xn) dx, (15)
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where either ρ(xn) ≡ 1 or ρ(xn) ≡ 1 + xn and c0, c1 are the constants

from (14).

Proof. The inequality (15) follows from (14) and the equality

∫

Ω

P ∗(∂x)(ϕρ(xn))ϕdx =

∫

Ω

P (∂x)ϕ · ϕρ(xn) dx

+ a3

∫

Rn−1

(
ϕ2

xn

∣∣
xn=1

ρ(1) − ϕ2
xn

∣∣
xn=0

ρ(0)
)
dx′.

Any function gj(u), j = 1, . . . , n, is assumed to be in the class C1(R)
and to satisfy for certain constants 0 ≤ bj ≤ 1 and c̃ > 0 the following
inequality:

|g′j(u)| ≤ c̃(|u|bj + 1) ∀u ∈ R, (16)

so these functions have at most quadratic rate of growth (additional re-
strictions on bj are specified further). Without loss of generality we also
assume that gj(0) = 0.

If B is a certain Banach space, the symbol Lp(0, T ;B) is used in the
conventional sense of Bochner measurable mappings from the interval
(0, T ) into B, summable with the degree p (essentially bounded if p =
+∞). The symbols C([0, T ];B) and Cw([0, T ];B) denote respectively the
spaces of continuous and weakly continuous mappings from [0, T ] into B.
It is known, that Cw([0, T ];B) ⊂ L∞(0, T ;B), [8].

We use the well-known interpolational inequality (see, e.g., [1]) for
functions ϕ ∈ H1(Ω)

‖ϕ‖Lp(Ω) ≤ c(p)
(
‖ gradϕ‖s

L2(Ω)‖ϕ‖
1−s
L2(Ω) + ‖ϕ‖L2(Ω)

)
, (17)

where 2 ≤ p < +∞ for n = 2, 2 ≤ p ≤ 2n/(n−2) for n > 2, s = n/2−n/p.

We also use the anysotropic Sobolev spaces for integer l,m ≥ 0 in
such a form:

H l,m(Ω) = {ϕ(x) : ∂α′

x′ ϕ ∈ L2(Ω), ∂αn
xn
ϕ ∈ L2(Ω), |α′| ≤ l, αn ≤ m},

where multi-index α′ = (α1, . . . , αn−1).

Now we can introduce a definition of a weak solution to the con-
sidered problem. Let u0 ∈ L2(Ω), uj ∈ L2(ST ) for j = 1, 2, 3, f ∈
L1(0, T ;L2(Ω)) + L2(0, T ;H−1(Ω)).
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Definition 1. A function u ∈ L2(QT ) is called a weak solution to

the problem (1)–(3), if for any function φ(t, x) ∈ L2(0, T ;Hn+1,3(Ω)) ∩
H1(QT ) such, that φ|t=T = 0, φ|xn=0 = φxn |xn=0 = φ|xn=1 = 0, the

functions gj(u(t, x))φxj
∈ L1(QT ) ∀ j and

∫∫

QT

[
u(φt + P ∗(∂x)φ) +

n∑

j=1

gj(u)φxj

]
dx dt+

T∫

0

〈f(t, ·), φ(t, ·)〉 dt

+

∫

Ω

u0φ
∣∣
t=0

dx+

∫∫

ST

u2

(
P31(∂x′) − a2

)
φxn

∣∣
xn=1

dx′dt

+ a3

∫∫

ST

(
u2φxnxn

∣∣
xn=1

− u1φxnxn

∣∣
xn=0

− u3φxn

∣∣
xn=1

)
dx′dt = 0. (18)

In fact, solutions to the considered problem are constructed in a more
smooth class

X(QT ) = Cw([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)).

We also use an auxiliary space

X̃(QT ) = C([0, T ];L2(Ω)) ∩ L2(0, T ;H1(Ω)).

Remark 1. It is known (see, e.g., [1]) that Hn+1,3(Ω) ⊂W 1
∞(Ω). Thus,

under the condition (16) (g(u), gradx φ) ∈ L1(QT ) for u ∈ X(QT ). More-
over, Hn+1,3(Ω) ⊂ H3(Ω) and, in particular, P ∗(∂x)φ ∈ L2(QT ).

In order to describe properties of the input data we introduce a special
space.

Definition 2. For certain T > 0 let MT be a space of ordered assemblies

(u0, u1, u2, u3, f) such that

u0 ∈ L2(Ω), u1, u2 ∈ L1(0, T ;H3(Rn−1)) ∩ L2(0, T ;H1(Rn−1)),

u1t, u2t ∈ L1(0, T ;L2(R
n−1)), u3 ∈ L2(ST ), f ∈ L1(0, T ;L2(Ω)),

supplied with the natural norm.

Let η(θ) be a certain “cut-off”function, i.e. η ∈ C∞(R), η(θ) ≥ 0,
η′(θ) ≥ 0 for θ ∈ R, η(θ) = 0 for θ ≤ 0, η(θ) = 1 for θ ≥ 1, η(θ) + η(1 −
θ) ≡ 1.
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Along with the problem (1)–(3) we consider an auxiliary initial-bo-
undary value problem

vt − P (∂x)v + divx g(v + ψ) = F, (t, x) ∈ QT , (19)

v
∣∣
t=0

= v0, x ∈ Ω, (20)

v
∣∣
xn=0

= v
∣∣
xn=1

= 0, vxn

∣∣
xn=1

= u3, (t, x′) ∈ ST . (21)

Let

ψ(t, x) ≡ u1(t, x
′)η(1 − xn) + u2(t, x

′)η(xn), (22)

v0(x) ≡ u0(x) − ψ(0, x), F (t, x) ≡ f(t, x) + P (∂x)ψ(t, x) − ψt(t, x).
(23)

It is obvious, that under (22), (23) a function

v(t, x) ≡ u(t, x) − ψ(t, x) (24)

is a solution to the problem (19)–(21) if and only if u(t, x) is a solution
to the original problem.

First consider a linear version of (19)–(21).

Lemma 3. Let gj ≡ 0 ∀j, v0 ∈ L2(Ω), u3 ∈ L2(ST ) for some T > 0,
F ≡ F1 + F2, where F1 ∈ L1(0, T ;L2(Ω)), F2 ∈ L2(0, T ;H−1(Ω)), and

the conditions (11) be satisfied. Then there exists a solution v(t, x) to

the problem (19)–(21) in the class X̃(QT ). This solution is unique in

L2(QT ). For any t ∈ (0, T ]

‖v‖
X̃(Qt)

≤ c(T )
(
‖v0‖L2(Ω) + ‖u3‖L2(ST )

+ ‖F1‖L1(0,t;L2(Ω)) + ‖F2‖L2(0,t;H−1(Ω))

)
(25)

and

∫

Ω

v2(t, x)ρ(xn) dx+ c0

t∫

0

∫

Ω

| gradx v|
2ρ′(xn) dx dτ

≤

∫

Ω
v2
0ρ(xn) dx+ c

t∫

0

∫

Ω

v2ρ(xn) dx dτ + c

∫∫

St

u2
3 dx

′dτ

+ 2

t∫

0

〈F (τ, ·), v(τ, ·)ρ(xn)〉 dτ, (26)

where either ρ ≡ 1 or ρ(xn) ≡ 1 + xn.



90 Weak solutions to the initial-boundary value problem

Proof. We construct a solution via the Galerkin method. Let {ϕj(x),
j = 1, 2, . . . } be a set of linearly independent functions complete in the
space {ϕ ∈ H3(Ω) : ϕ|xn=0 = ϕxn |xn=0 = ϕ|xn=1 = 0} and orthonormal
in L2(Ω). We seek an approximate solution in the form

vm(t, x) =

m∑

j=1

cmj(t)ϕj(x)

via the conditions for l = 1, 2, . . . ,m

∫

Ω

[
vmt · (1 + xn)ϕl − vmP

∗(∂x)((1 + xn)ϕl)
]
dx− 〈F (t, ·), (1 + xn)ϕl〉

+ 2a3

∫

Rn−1

u3ϕlxn

∣∣
xn=1

dx′ = 0, t ∈ [0, T ], (27)

∫

Ω

(vm

∣∣
t=0

−v0)ϕl dx = 0. (28)

Multiplying (27) by 2cml(t) and summing with respect to l we find
that by virtue of (15)

d

dt

∫

Ω

(1 + xn)v2
m dx+ 2c0

∫

Ω

| gradx vm|2 dx− 2a3

∫

Rn−1

v2
mxn

∣∣
xn=1

dx′

≤ 2c1

∫

Ω

(1 + xn)v2
m dx− 4a3

∫

Rn−1

u3vmxn

∣∣
xn=1

dx′

+ 2

∫

Ω

F1 · (1 + xn)vm dx+ c0‖(1 + xn)vm‖2
H1

0
(Ω) + 4c−1

0 ‖F2‖
2
H−1(Ω).

(29)

Since vm(0, ·) → v0 in L2(Ω) it follows from (29), that the set {vm} is
bounded in the space L∞(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)) and, therefore,
a solution v(t, x) to the considered problem can be obtained as a weak
limit in this space of a certain subsequence {vm′}. Moreover, v ∈ X(QT )
and the inequalities (25) (where X̃ is temporarily substituted by X) and
(26) for ρ ≡ 1 + xn are valid.

In order to prove uniqueness we use the Holmgren method. It is easy
to see, that after corresponding change of variables the adjoint problem
coincides with the original one, so, of course, the desired uniqueness can
be obtained if one constructs a solution to the considered problem for
F ∈ C∞

0 (QT ), v0 ≡ 0, u3 ≡ 0 in the class L2(0, T ;Hn+1,3(Ω))∩H1(QT ).
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But in this paper we prove existence of such solutions not to this problem,
but to a certain approximate one.

Consider first the linear problem of the (19)–(21) type with zero initial
and boundary data, where F ∈ C∞

0 (QT ) is substituted by Ft. It is
already proved, that a solution w(t, x) to this problem in the class X(QT )
exists. Let

v(t, x) ≡

t∫

0

w(τ, x) dτ. (30)

Then the function v is a solution to the linear problem (19)–(21) (with
zero initial and boundary data) and v ∈ H1(QT ). Write down the cor-
responding integral equality (18) for the function v, where the variables
x′ are substituted by y′, and choose a function φ in a special form:

φ(t, y′, xn) = ν(t)λh(x′ − y′)ϕ(xn),

where ν is an arbitrary function from H1(0, T ), ν(T ) = 0; λh is an
averaging kernel with a parameter h > 0, i.e. λh(y′) ≡ h1−nλ(y′/h),
λ ∈ C∞

0 (Rn−1), λ ≥ 0, λ(y′) = 0 if |y′| ≥ 1,
∫

Rn−1 λ(y′) dy′ = 1; x′ is
an arbitrary point in R

n−1; ϕ(xn) is an arbitrary function from H3(0, 1)
such that ϕ(0) = ϕ′(0) = ϕ(1) = 0. Denote by

vh(t, x) ≡

∫

Rn−1

λh(x′ − y′)v(t, y′, xn) dy′

an average function to v (where the averaging is performed only with
respect to x′; the similar notation is used for Fh), then it follows from
(18), that the function vh is a solution to the linear problem of the
(19)–(21) type with zero initial and boundary conditions, where F is
substituted by Fh, and ∂α′

x′ vh ∈ H1(QT ) for any multi-index α′.
The third derivative with respect to xn can be expressed from the

linear equation (19) itself by virtue of (10) and (12):

a3∂
3
xn
vh = vht − Fh −

3∑

l=1

P3l(∂x′)∂3−l
xn

vh −
2∑

k=0

Pk(∂x)vh. (31)

Any derivative with respect to x′ of the right part of this equality belongs
to the space L2(0, T ;H−1(Ω)), therefore, ∂α′

x′ vh ∈ L2(0, T ;H2(Ω)) for
any multi-index α′. Applying (31) once more we derive that ∂α′

x′ vh ∈
L2(0, T ;H3(Ω)).

As a result, for any F ∈ C∞
0 (QT ) and h > 0 a solution to the linear

problem (19)–(21) with zero and boundary data and F substituted by
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Fh in the class L2(0, T ;Hn+1,3(Ω))∩H1(QT ) is constructed. Thus, if v is
a solution in the space L2(QT ) to the linear problem (19)–(21) with zero
initial and boundary conditions and zero right part, then for any function
F ∈ C∞

0 (QT ) and h > 0 choosing in (18) φ(t, x) ≡ vh(T − t,−x′, 1−xn),
where vh is a corresponding solution to the linear problem of the (19)–
(21) type for v0 ≡ 0, u3 ≡ 0 and F substituted by −Fh(T−t,−x′, 1−xn),
we obtain the equality

∫∫

QT

vFh dx dt = 0,

whence passing to the limit as h→ 0 derive that v ≡ 0.
Next we construct more smooth solutions to the considered prob-

lem. Assume temporarily that ∂α′

x′ v0 ∈ H3
0 (Ω), ∂α′

x′ F, ∂α′

x′ Ft ∈ L2(QT ),
∂α′

x′ u3 ∈ H1
0 (ST ) for any multi-index α′. As in the proof of uniqueness

consider first a linear problem of the (19)–(21) type, where v0, u3, F are
substituted by Φ ≡ F |t=0 +P (∂x)v0, u3t, Ft. Let w(t, x) be a solution to
this problem in the class X(QT ).

Consider for j = 1, . . . , n− 1 and h 6= 0 the function wh
j ≡ 1

h(w(t, x+
hej) − w(t, x)), where ej is the unit vector in the direction xj . This
function is a weak solution to the corresponding linear problem of the
(19)–(21) type and we can write down the analogue of the inequality (25),
where v, v0, u3, F are substituted by wh

j , Φh
j , uh

3tj , F
h
tj (the notations Φh

j

etc. are the same as wh
j , the space X is used instead of X̃). Passing to

the limit as h→ 0 we establish existence of the derivative wxj
∈ X(QT ).

Continuing these arguments we prove existence of the derivatives ∂α′

x′w ∈
X(QT ) for any multitindex α′.

By analogy to (30) let

v(t, x) ≡ v0(x) +

t∫

0

w(τ, x) dτ.

This function is a solution to the considered problem and ∂α′

x′ v ∈ H1(QT )
for any multi-tindex α′. Writing down the corresponding analogue of (31)
by the same arguments we derive that ∂α′

x′ v ∈ L2(0, T ;H3(Ω)) and, in
particular, obtain the solution to the considered problem in the class
L2(0, T ;H3(Ω)) ∩H1(QT ). For this solution the inequality (25) is valid
and applying closure we derive this inequality in the general case.

Finally note, that for smooth solutions the inequality (26) for ρ ≡ 1
succeeds from (14) and for solutions from X̃(QT ) can be obtained via
closure.
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Next we establish well-posedness for an auxiliary nonlinear problem
with nonlinearity restricted to at most linear rate of growth.

Lemma 4. Let (v0, 0, 0, u3, F ) ∈ MT for some T > 0, ψ ∈ L2(QT ) and

the conditions (11), (16) be satisfied. Assume in addition, that bj = 0 in

the inequality (16) for all j. Then the problem (19)–(21) has a unique

solution v(t, x) in the space X̃(QT ).

Proof. The proof is based on the contraction principle. For t0 ∈ (0, T ]
define on the space X̃(Qt0) a map Λ in such a way: v = Λu ∈ X̃(Qt0) is
a solution in Qt0 to the initial-boundary value problem for the equation

vt − P (∂x)v = F − divx g(u+ ψ)

with initial and boundary conditions (20), (21).

Note that

‖(gj(u+ ψ))xj
‖L2(0,t0;H−1(Ω)) ≤ ‖gj(u+ ψ)‖L2(Qt0

)

≤ c‖u‖L2(Qt0
) + c‖ψ‖L2(Qt0

) <∞, (32)

so according to Lemma 3 such a map exists. Moreover, for u, ũ ∈ X̃(Qt0)

‖(gj(u+ ψ) − gj(ũ+ ψ))xj
‖L2(0,t0;H−1(Ω)) ≤ c‖u− ũ‖L2(Qt0

)

≤ ct
1/2
0 ‖u− ũ‖C([0,t0];L2(Ω)),

so by virtue of (25) for small t0, where the value of t0 does not depend
on v0, u3, F , ψ, the map Λ is a contraction.

In the next lemma we establish the main a priori estimate.

Lemma 5. Let (v0, 0, 0, u3, F ) ∈ MT for some T > 0, ‖ψ(t, ·)‖W 1
∞

(Ω) ∈
L1(0, T ), ψ ∈ L∞(0, T ;L2(Ω))∩L2(0, T ;H1(Ω)) and the conditions (11),
(16) be satisfied. Assume in addition, that bn < 4/n in the inequality

(16). Then there exists a constant c > 0 uniform with respect to all

vector-functions g(u), satisfying the hypothesis of the present lemma with

the same constants bj and c̃ in the inequality (16), such that for any

solution v(t, x) to the problem (19)–(21) in the class X̃(QT ), (gj(v +
ψ))xj

∈ L2(0, T ;H−1(Ω)) for all j, the following estimate is valid:

‖v‖
X̃(QT )

≤ c. (33)
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Proof. Write down the inequality (26), where F is substituted by F −
divx g(v + ψ). Note that

gj(v + ψ)vxj
= ∂xj

v∫

0

gj(θ + ψ) dθ − ψxj

v∫

0

g′j(θ + ψ) dθ. (34)

First let ρ ≡ 1, then since bj ≤ 1 in (16) and v|∂Ω = 0 the equality (34)
yields: ∣∣∣∣∣

∫

Ω

gj(v + ψ)vxj
dx

∣∣∣∣∣ ≤ c‖ψxj
‖L∞(Ω)

∫

Ω

(v2 + ψ2) dx

and it follows from (26) that

‖v‖C([0,T ];L2(Ω)) ≤ c. (35)

Next let ρ ≡ 1 + xn, then (34) yields:

∣∣∣∣∣

∫

Ω

gn(v + ψ)
(
vρ(xn))xn dx

∣∣∣∣∣ ≤ c

∫

Ω

(
|v|bn+2 + |ψ|bn+2

)
dx

+ c‖ψxn‖L∞(Ω)

∫

Ω

(v2 + ψ2) dx.

Making use of the interpolational inequality (17), where p = bn + 2, and
the already obtained estimate (35) we derive since nbn < 4 that

∫

Ω

|v|bn+2 dx ≤ c

( ∫

Ω

| gradx v|
2 dx

)nbn/4( ∫

Ω

v2 dx

)1−(n−2)bn/4

+ c

( ∫

Ω

v2 dx

)bn/2+1

≤ ε

∫

Ω

| gradx v|
2 dx+ c(ε),

where ε > 0 can be chosen arbitrarily small. Therefore, (33) succeeds
from (26).

Now we establish the main existence result.

Theorem 1. Let (u0, u1, u2, u3, f) ∈ MT for some T > 0 and, in addi-

tion, ‖u1(t, ·)‖W 1
∞

(Rn−1), ‖u2(t, ·)‖W 1
∞

(Rn−1) ∈ L1(0, T ). Let the condition

(11) be satisfied and the functions gj ∈ C1(R), j = 1, . . . , n, satisfy the

inequality (16) for bj ∈ [0, 1] and, in addition, bn < 4/n. Then there ex-

ists a weak solution u(t, x) to the problem (1)–(3) from the space X(QT ).
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Proof. Consider the functions ψ, v0 and F defined by the formulae (22),
(23). Then for these functions the hypothesis of Lemma 5 is satisfied.

For any h ∈ (0, 1] define

gjh(u) ≡

u∫

0

[
g′j(θ)η(2 − h|θ|) + g′j(2h

−1 sign θ)η(h|θ| − 1)
]
dθ.

Then for these functions the hypothesis of Lemma 5 is satisfied uniformly
with respect to h. On the other hand, gjh(u) = gj(u) if |u| ≤ 1/h and
g′jh(u) ≤ c/h ∀u. In particular, the hypothesis of Lemma 4 is satisfied,

so for any h there exists a solution vh ∈ X̃(QT ) to the corresponding
problem (19)–(21), where gj are substituted by gjh. The estimates (32)
and (33) provide that uniformly with respect to h

‖uh‖X̃(QT )
≤ c, (36)

where uh, given by the corresponding analogues of the formula (24), are
solutions to the problems of the (1)–(3) type, where gj are substituted
by gjh.

Let l0 = [n/2] + 2. Then by virtue of the well-known embedding
L1(Ω) ⊂ H1−l0(Ω) it follows from the corresponding analogue of the
equation (1) itself, that for 0 ≤ t1 < t2 ≤ T

‖uh(t2, ·) − uh(t1, ·)‖H−l0 (Ω) ≤ γ(t2 − t1), (37)

where γ(t) → 0 as t→ +0 and γ does not depend on h.
The estimates (36), (37) by standard arguments (see, e.g., [6]) provide

an opportunity to construct the desired solution as a limit of a certain
subsequence {uh′}.

The next result is concerned with uniqueness and continuous depen-
dence.

Theorem 2. Let (u0, u1, u2, u3, f) ∈ MT for some T > 0, the condition

(11) be satisfied and the functions gj ∈ C1(R), j = 1, . . . , n, satisfy the

inequality (16) for bj ∈ [0, 2/n]. Then a weak solution to the problem

(1)–(3) is unique in the class X(QT ). Moreover, if for two elements

(u0, u1, u2, u3, f) and (ũ0, ũ1, ũ2, ũ3, f̃) of the space MT there exist so-

lutions u(t, x) and ũ(t, x) to the corresponding problems (1)–(3) in the

space X(QT ), then

‖u− ũ‖X(QT ) ≤ c‖(u0 − ũ0, u1 − ũ1, u2 − ũ2, u3 − ũ3, f − f̃)‖MT
, (38)

where the constant c depends on the norms of u and ũ in X(QT ).
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Proof. First of all we establish one auxiliary inequality. Let ϕ1, ϕ2 be
arbitrary functions from H1(Ω), then for any ε > 0
∣∣∣∣∣

∫

Ω

|ϕ1|
4/nϕ2

2 dx

∣∣∣∣∣ ≤ ε‖ϕ2‖
2
H1(Ω) + c(ε)‖ϕ1‖

2
H1(Ω)‖ϕ1‖

2
L2(Ω)‖ϕ2‖

2
L2(Ω).

(39)
In fact, (39) is obtained via application of the Hölder inequality and the
inequality (17) for p1 = 2n/(n− 1) and p2 = 2n2/(n2 − 2n+ 2):

∣∣∣∣∣

∫

Ω

|ϕ1|
4/nϕ2

2 dx

∣∣∣∣∣ ≤ ‖ϕ1‖
4/n
Lp1

(Ω)‖ϕ2‖
2
Lp2

(Ω)

≤ c
[
‖ gradx ϕ1‖

2/n
L2(Ω)‖ϕ1‖

2/n
L2(Ω) + ‖ϕ1‖

4/n
L2(Ω)

]

×
[
‖ gradx ϕ2‖

2−2/n
L2(Ω) ‖ϕ2‖

2/n
L2(Ω) + ‖ϕ1‖

2
L2(Ω)

]
.

Let ψ, v0, F be defined by the formulae (22), (23) and ψ̃, ṽ0, F̃ –
by the similar ones, where u0, u1, u2, f are substituted by ũ0, ũ1, ũ2, f̃ .
Then the function v ≡ (u − ũ) − (ψ − ψ̃) is a solution in X(QT ) to the
linear problem

vt − P (∂x)v = (F − F̃ ) − (divx g(u) − divx g(ũ)), (t, x) ∈ QT ,

v
∣∣
t=0

= v0 − ṽ0, x ∈ Ω,

v
∣∣
xn=0

= v
∣∣
xn=1

= 0, vxn

∣∣
xn=1

= u3 − ũ3.

Applying (39), where either ϕ1 = ϕ2 ≡ u or ϕ1 = ϕ2 ≡ ũ, we derive that
divx g(u),divx g(ũ) ∈ L2(0, T ;H−1(Ω)).

Write down for the function v(t, x) the corresponding inequality (26)
in the case ρ ≡ 1 + xn. Note that

∣∣gj(u) − gj(ũ)
∣∣ ≤ c

(
|v| + |ψ − ψ̃|

)(
|u|2/n + |ũ|2/n + 1

)
.

Again using the inequality (39) it is easy to see that for any ε > 0

∣∣∣∣∣

∫

Ω

(
gj(u) − gj(ũ)

)
vxj

dx

∣∣∣∣∣ ≤ ε

∫

Ω

| gradx v|
2 dx+ c‖ψ − ψ̃‖2

H1(Ω)

+ c(ε)
(
‖u‖2

H1(Ω)‖u‖
2
L2(Ω) + ‖ũ‖2

H1(Ω)‖ũ‖
2
L2(Ω) + 1

)

×

∫

Ω

(
v2 + (ψ − ψ̃)2

)
dx,

whence (38) follows.
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Remark 2. Under the hypotheses both of Theorem 1 and Theorem 2
the problem (1)–(3) is globally well-posed in the corresponding spaces.

Remark 3. The assumptions on the functions u1 and u2 seem not to be
optimal. In the paper [6] a special solution of the “boundary potential”
type to the problem in Π+

T for the corresponding linearized equation was
constructed, which provided relaxation of the smoothness assumptions
on u1 in comparison with the present paper. A similar approach may be
useful for the present problem also.
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