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Abstract. The completed group classification of systems of two cou-
pled nonlinear reaction-diffusion equation with general diffusion matrix
is carried out. The simple and convenient method for deduction and
solution of classifying equations is presented.
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1. Introduction

Group classification of differential equations is one of corner stones of
group analysis. Such classification specifies the origin of possible appli-
cations of powerful group-theoretical tools such as constructing of exact
solutions, group generation of solution families starting with known ones,
etc. A very important result of group classification consists in a pri-
ori description of mathematical models with a desired symmetry (e.g.,
relativistic invariance).

One of the most impressive results in group classification belongs to
S. Lie who had completely classified second order ordinary differential
equations [17]. It was Lie also who first presented the group classification
of partial differential equations (PDE), namely, he had classified linear
equations including two independent variables [18].

Using the classical Lie approach whose excellent presentation was
given in [25] it is not difficult to derive determining equations for possible
symmetries admitted by equations of interest. Moreover, to describe Lie
symmetries for a fixed (even if very complicated) equation is a purely
technical problem which is easily solved using special software packages.
However, the situation is changing dramatically whenever we try to search
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for Lie symmetries for an equation including an arbitrary element which
is not a priory specified, i.e., when we are interested in group classification
of an entire class of differential equations.

The main problem of group classification of a substantially extended
class of partial differential equations (PDEs) consists in effective solv-
ing of determining equations for coefficients of generators of symmetry
group. In general the determining equations are rather complicated sys-
tems whose variables are not necessarily separable.

A nice result in group classification of PDEs belongs to Dorodnitsyn
[26] who had classified nonlinear (but quasi linear) heat equations

ut − uxx = f(u) (1.1)

where f is an arbitrary function of the dependent variable u, the sub-
scripts denote derivations w.r.t. the corresponding variables, i.e., ut =
∂u/∂t and uxx = ∂2u/∂x2. Moreover, in paper [26] more general equa-
tions ut − (Kux)x = f(u) were classified. The related determining equa-
tions appears to be easily integrable, which made it possible to specify
all non-equivalent non-linearities f (which are power, logarithmic and
exponential ones) which correspond to different symmetries of equation
(1.1). The non-classical (conditional) symmetries of (1.1) were described
by Fushchych and Serov [10] and Clarkson and Mansfield [6].

The results of group classification of equations (1.1) play an important
role in constructing of their exact solutions and qualitative analysis of the
nonlinear heat equation, refer, e.g. to [28].

In the present paper we perform the group classification of systems
of the nonlinear reaction-diffusion equations

∂u1

∂t
− ∆(a11u1 + a12u2) = f1(u1, u2),

∂u2

∂t
− ∆(a21u1 + a22u2) = f2(u1, u2)

(1.2)

where u =

(
u1

u2

)
are function of t, x1, x2, . . . , xm, symbols a11, a12, a21,

a22 denote real constants and ∆ is the Laplace operator in Rm. We shall
write (1.2) also in the matrix form:

∂u

∂t
−A∆u = f (1.3)

where A is a matrix whose elements are a11, . . . a22 and f =

(
f1

f2

)
.

Mathematical models based on equations (1.2) are widely used in
mathematical physics and mathematical biology. Some of these models
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are discussed in [23] and in Section 12 of the present paper, the entire
collection of such models is presented in [20]. Thus the symmetry analysis
of equations (1.2) has a large application value and can be used, e.g.,
to construct exact solutions for a very extended class of physical and
biological systems. The comprehensive group analysis of systems (1.2)
is also a nice “internal” problem of the Lie theory which admits exact
general solution for the case of arbitrary number of independent variables
x1, x2, . . . , xm.

Symmetries of equation (1.3) for the case of a diagonal (and invert-
ible) matrix A were investigated by Yu. A. Danilov [7]. Unfortunately,
the results presented in [7] and cited in the handbook [14] are neither
complete nor correct. We discuss these results in detail in Section 12.

Symmetry classification of equations (1.3) with a diagonal diffusion
matrix was presented in paper [3], then some results missing in [3] were
added in Addendum [4] and paper [5]. However, we shall demonstrate
that the results given in [3]–[5] are still incomplete, and add the list of
non-equivalent equations given in these papers.

We notice that symmetries of equations (1.3) with a diagonal diffusion
matrix was partly described in paper [15] were symmetries of more general
class of diffusion equations where studied.

Equations (1.3) with arbitrary invertible matrix A were investigated
in paper [23], the related results were announced in [24]. Unfortunately,
mainly due to typographical errors made during publishing procedure,
presentation of classification results in [23] was not satisfactory 1.

In the present paper we give the completed group classification of
coupled reaction-diffusion equations (1.3) with an arbitrary diffusion ma-
trixes A. Moreover, we present a straightforward and easily verified pro-
cedure of solution of the determining equations which guarantees the
completeness of the obtained results. We also indicate clearly the equiva-
lence relations used in the classification procedure. In addition, we extend
the results obtained in [23] to the case of non-invertible matrix A.

The additional aim of this paper is to present a rather straightforward
and conventional algorithm for investigation of symmetries of a class of
partial differential equations which includes (1.3) as a particular case.
We will show that the classical Lie approach (refer, for example, [11],[25])
when applied to systems (1.3) admits a rather simple formulation which
can be used even by such investigators which are not experts in group
analysis of differential equations. Furthermore the algorithm may be

1The tables presenting the results of group classification have been deformed and
cut off. It is necessary to stress that it was the authors fault, one of whom signed the
paper proofs without careful reading.
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used to search for conditional symmetries of (1.3) [23] (for definition of
conditional symmetries see [12]).

There exist two non-equivalent 2× 2 matrices with zero determinant,
namely, the diagonal matrix with the only non-zero element and the
Jordan cell. We will consider the following generalized versions of the
related equation (1.2)

∂tu1 − ∆u1 = f1(u1, u2),

∂tu2 − pµ∂µu1 = f2(u1, u2)
(1.4)

and
∂tu1 − pµ∂µu2 = f1(u1, u2),

∂tu2 − ∆u1 = f2(u1, u2).
(1.5)

Here pµ are arbitrary constants and summation is imposed over repeating
µ = 1, 2, · · · ,m . Moreover, without loss of generality we set

p1 = p2 = · · · = pm−1 = 0, pm = p. (1.6)

In the case p ≡ 0 equations (1.4) and (1.5) are nothing but particular
cases of (1.2), which include such popular models of mathematical biology
as the FitzHung-Naguno [9] and Rinzel-Keller [27] ones. In addition, (1.5)
can serve as a potential equation for the nonlinear D’alembert equation.

The determining equations for symmetries of equations (1.2) are rath-
er complicated systems of PDE including two arbitrary elements, i.e.,
unknown functions f1 and f2. To handle them we use the approach
developed in paper [29] , whose main idea is to make a priori classification
of realizations of the related Lie algebras. In fact this method has roots
in works of S. Lie who used his knowledge of vector field representations
of Lie algebras in space of two variables to classify second order ordinary
equations [17]. In the case of partial differential equations we have no
hope to classify all related realizations of vector fields . However, for some
fixed classes of PDEs it appears to be possible to make this classification
restricting ourselves to realizations which are compatible with equations
of interest [29].

We notice that analogous technique was used earlier [13] to classify
the nonlinear Schrödinger equations with cubic nonlinearity and variable
coefficients.

In Section 2 we present the general equivalence transformations for
equations (1.3) which are valid for arbitrary nonlinearities f1 and f2, and
give the list of additional equivalence transformations which are valid for
some fixed nonlinearities.

In Section 3 the simplified algorithm for investigation of symmetries
of systems of reaction-diffusion equation is presented.
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In Section 4 we deduce determining equations for symmetries admit-
ted by equations (1.3) and specify the general form of the related group
generators.

In Section 5 we present the kernel of symmetry group for equations
(1.3) and give definitions of main and extended symmetries.

In Sections 6–8 the results of group classification of equations (1.4)
and (1.5) are presented. Equations (1.3) with invertible diffusion matrix
are classified in Sections 9 and 10, the case of nilpotent diffusion matrix
is studied in Section 11.

In Section 12 we discuss the results of group classification and present
some important model equations which appear to be particular subjects of
our analysis. The Appendix includes a priori classification of realizations
of low dimension Lie algebras which are used in the main text to solve
the determining equations.

2. Equivalence Transformations

The problem of group classification of equations (1.2)–(1.5) will be
solved up to equivalence transformations.

We say the equation

ũt − Ã∆ũ = f̃(ũ) (2.1)

be equivalent to (1.3) if there exist an invertible transformation u →
ũ = G(u, t, x), t → t̃ = T (t, x, u), x → x̃ = X(t, x, u) and f → f̃ =
F (u, t, x, f) which connects (1.3) with (2.1). In other words the equiva-
lence transformations should keep the general form of equation (1.3) but
can change concrete realizations of matrix A and non-linear terms f1 and
f2.

Let us note that there are six ad hoc non-equivalent classes of equa-
tions (1.3) corresponding to the following forms of matrices A

I. A =

(
1 0
0 a

)
, I∗. A =

(
1 0
0 1

)
, II. A =

(
a −1
1 a

)
,

III. A =

(
1 0
a 1

)
, IV. A =

(
1 0
0 0

)
, V. A =

(
0 0
1 0

) (2.2)

where a is an arbitrary parameter. Indeed any 2 × 2 matrix A can be
reduced to one of the forms (2.2) using linear transformations of depen-
dent variables and scaling independent variables in (1.3). For matrices I
and III it is possible to restrict ourselves to the cases a 6= 0, 1 and a 6= 0
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respectively, but we prefer to reserve the possibility to treat version I∗ as
a particular case of versions I and III.

The group of equivalence transformations for equation (1.3) can be
found using the classical Lie approach and treating f1 and f2 as addi-
tional dependent variables. In addition to the obvious symmetry trans-
formations

t→ t′ = t+ a, xµ → x′µ = Rµνxν + bµ (2.3)

where a, bµ and Rµν are arbitrary parameters satisfying RµνRµλ = δµλ,
this group includes the following transformations

ua → Kabub + ba, fa → λ2Kabf b,

t→ λ−2t, xa → λ−1xa
(2.4)

where Kab are elements of an invertible constant matrix K commuting
with A, λ 6= 0 and ba are arbitrary constants.

Let us specify the form of matrices K. By definition, K commutes
with A, so for the versions I–V present in (2.2) we have

I∗ : K =

(
K11 K12

K21 K22

)
, K11K22 −K21K12 6= 0; (2.5)

I, IV : K =

(
K1 0
0 K2

)
, K1K2 6= 0; (2.6)

II : K =

(
K1 −K2

K2 K1

)
, K2

1 +K2
2 6= 0; (2.7)

III, V : K =

(
K1 0
K2 K1

)
, K1 6= 0. (2.8)

In addition, for the Case I there is one more transformation (2.4) with

K =

(
0 1
1 0

)
, λ2 = a. (2.9)

Such transformations reduce to the change a → 1
a in the related matrix

A, i.e., to scaling the parameter a.
Equivalence transformations (2.4) are valid also for equations (1.4)

and (1.5) . The related matrices K are given in (2.6) and (2.8).
It is possible to show that there is no more extended equivalence re-

lations valid for arbitrary nonlinearities f1 and f2. However, if functions
f1, f2 are fixed, the class of equivalence transformations is more extended.
In addition to transformations (2.4) it includes symmetry transformations
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which does not change the form of equation (1.3). Moreover, for some
classes of functions f1, f2 equation (1.3) admits additional equivalence
transformations (AET). The corresponding set of equivalence transfor-
mations for equation (1.3) can be found using the classical Lie approach
and treating f1 and f2 as additional dependent variables constrained by
the relations specifying the dependence of f1, f2 on u1 and u2.

In spite of the fact that we search for AET after description of sym-
metries of equations (1.3) and specification of functions f1, f2, for conve-
nience we present the list of the additional equivalence transformations
in the following formulae:

1. u1 → exp(ωt)u1, u2 → exp(ρt)u2,

2. u1 → u1 + ωt+ λaxa + µx2, u2 → u2,

3. u1 → u1, u2 → u2 + ρt+ λaxa + µx2,

4. u1 → u1 + ρt, u2 → u2 exp(ρt),

5. u1 → exp(ωt)u1, u2 → u2 + ωt,

6. u1 → u1, u2 → u2 + ρtu1,

7. u1 → exp(ωt)u1, u2 → u2 + ω
t2

2
,

8. u1 → exp(ωt)u1, u2 → u2 + κtu1 + ρ
t2

2
,

9. u1 → u1, u2 → u2 − ρtu1 + ρλ
t2

2
,

10. u1 → exp(ρt)u1, u2 → u2 − κρt,

11. u1 → exp(ρt)u1, u2 → exp(ρt)
(
u2 + ερ

t2

2
u1

)
,

12. u1 → u1 + ρt+ νx2, u2 → u2 − ρt− νx2,

13. u1 → u1 + ρt, u2 → e−
ρ
ν
tu2,

14. u1 → u1 + ρt, u2 → u2 + ρtu1 + ρ
t2

2
,

15. u1 → u1 cosωt− u2 sinωt, u2 → u2 cosωt+ u1 sinωt,

16. u1 → exp(ωt)u1, u2 → exp(ωt)(u2 − ωtu1)

17. Transformations (11.2) valid for equations with matrix A

of type V only.

(2.10)

Here the Greek letters denote parameters which are either arbitrary
or specified in the tables presented below. We stress once more that in
contrast with (2.4), equivalence transformations (2.10) are admitted by
some particular equations (1.3), which will be specified in the following.
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3. An Algorithm for Description of Symmetries for the
Systems (1.3)–(1.5)

Let us investigate Lie symmetries of systems (1.3)–(1.5), i.e., find all
continuous groups of transformations for u, t, x which keep these equa-
tions invariant. In contrast with the equivalence transformations, sym-
metry transformations do not change functions f1 and f2.

In as much as any term in (1.3) does not depend on t and x explic-
itly, this equation with arbitrary functions f1 and f2 admits obvious
symmetry w.r.t. translations of all independent variables and rotations
of spatial variables present in (2.3). For equations (1.4) and (1.5) such
symmetries also have the form (2.3) where the indices of Rµν runs over
the values 1, 2, . . . ,m− 1.

To find all Lie symmetries we require form-invariance of the systems
of reaction diffusion equations with respect to the one-parameter groups
of transformations:

t→ t′(t, x, ε), x→ x′(t, x, ε), u→ u′(t′, x′, ε), (3.1)

where ε is a group parameter. In other words, we require that u′(t′, x′, ε)
satisfies the same equation as u(t, x):

L′u′ = f(u′), (3.2)

where L are the linear differential expressions involved into equations
(1.3)–(1.5), i.e.,

L =
∂

∂t
−A

∑

i

∂2
i

∂x2
i

−B
∂

∂xm
, L′ =

∂

∂t′
−A

∑

i

∂2
i

∂x′i
2
−B

∂

∂x′m
.

Here B is the zero matrix for equation (1.3), B =

(
0 0
p 0

)
for equations

(1.4) and B =

(
0 0
0 p

)
for equation (1.5).

Starting with the infinitesimal transformations:

t→ t′ = t+ ∆t = t+ εη, xa → x′a = xa + ∆xa = xa + εξa,

ua → u′a = ua + ∆ua = ua + επa
(3.3)

we obtain the following representation for the operator L′:

L′ =

[
1 + ε

(
η
∂

∂t
+ ξa

∂

∂xa

)]
L

[
1 − ε

(
η
∂

∂t
+ ξa

∂

∂xa

)]
+O(ε2). (3.4)
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Using the Lie algorithm one can find find the determining equations
for the functions η, ξa and πa which specify the generator X of the
symmetry group:

X = η
∂

∂t
+ ξa

∂

∂xa
− πb

∂

∂ub
(3.5)

where a summation from 1 to m and from 1 to n is assumed over repeated
indices a and b respectively. We will obtain these determining equations
directly.

First we notice that without loss of generality it is possible to restrict
ourselves to such functions η, ξa, πa which satisfy the conditions

∂η

∂ua
= 0,

∂ξa

∂ub
= 0,

∂2πa

∂uc∂ub
= 0. (3.6)

This is nothing but a consequence of results of paper [2] were PDE are
classified whose symmetries satisfy (3.6). These results admit a straight-
forward generalization to the case of systems (2.2) with invertible matrix
A.

Substituting (3.3), (3.4) into (3.2), using (1.3)–(1.5) and neglecting
the terms of order ε2 we find that:

[Q,L]u− Lω = πf +
∂f

∂ua

(
−πabub − ωa

)
, (3.7)

where

Q = η
∂

∂t
+ ξa

∂

∂xa
+ π

[Q,L] = QL − LQ is a commutator of operators Q and L and π is a
matrix whose elements are πab, so that [23] πa = πabub + ωa, with πab

and ωa being functions of independent variables t, x.
Equation (3.7) is compatible with (1.3)–(1.5) and does not impose

new nontrivial conditions for u if the commutator [Q,L] admits the rep-
resentation:

[Q,L] = ΛL+ ϕ (3.8)

where Λ and ϕ are 2 × 2 matrices dependent on t, x.
Substituting (3.8) into (3.7) the following classifying equations for f

are obtained:

(
Λkb + πkb

)
f b + ϕkbub + (Lω)k = (ωa + πabub)

∂fk

∂ua
. (3.9)

Thus, to find all non-linearities fk generating Lie symmetries for equa-
tions (1.3)–(1.5) it is necessary to solve operator equations (3.8) and find
the general form of matrices Λ, π, ϕ and functions η, ξ. In the second
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step we find the non-linearities fa solving the system (3.9) with its known
coefficients.

We stress that the described procedure of group classification of equa-
tions (1.3)–(1.5) is equivalent to the standard Lie algorithm but is more
straightforward. In addition, it is rather convenient, and till an appro-
priate moment all equations (1.3) with non-singular matrices A can be
analyzed in a parallel way.

4. Determining Equations

Evaluating the commutator in (3.8) and equating the coefficients
for linearly independent differential operators we obtain the determin-
ing equations:
(
∂ξa

∂xb
+
∂ξb

∂xa

)
A = −δab(ΛA+ [A, π]),

∂2η

∂t∂xa
= 0,

∂η

∂t
= Λ, (4.1)

∂ξa

∂t
− 2

∂

∂xa
Aπ − ∆Aξa = 0, ϕ =

∂π

∂t
− ∆Aπ (4.2)

where δab is the Kronecker symbol.
The general expressions for coefficient functions η, ξa and π of sym-

metry X (3.5) can be obtained evaluating determining equations (4.1)
and (4.2). We shall not reproduce this procedure here but present the
general form of the related generator (3.5) found in [23]:

X = λK + σαGα + ωαĜα + µD − 2(Cabub +Ba)
∂

∂ua
+ Ψµνxµ∂ν + ν∂t + ρµ∂µ (4.3)

where the Greek letters denote arbitrary constants moreover Ψµν =
−Ψνµ, Ba are functions of t, x, and Cab are functions of t satisfying

CabAbk −AabCbk = 0 (4.4)

and

K = 2t
(
t
∂

∂t
+ xµ

∂

∂xµ

)
− x2

2
(A−1)abub

∂

∂ua
− tm

(
u1

∂

∂u1
+ u2

∂

∂u2

)
,

Gα = t∂α +
1

2
xα(A−1)abub

∂

∂ua
,

Ĝα = eγt
(
∂α +

1

2
γxα(A−1)abub

∂

∂ua

)
,

D = 2t
∂

∂t
+ xµ

∂

∂xµ
.

(4.5)
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If a = 0 then the related generator X again has the form (4.3) where
however λ = σµ = ωµ = C2 = 0 and B2 is a function of t, x and u.

Formula (4.3) presents a symmetry operator for equation (1.2) iff the
related classifying equations (3.9) for f1 and f2 are satisfied, i.e.,

(λt(m+ 4) + µ)fa +
(1

2
λx2 + σµxµ + γeγtωµxµ

)
(A−1)abf b

+ Cabf b + Cabt ub +Ba
t − ∆AabBb

=
(
Bs + Csbub + λtmus +

(1

2
λx2 + σµxµ

+ γeγtωµxµ

)
(A−1)skuk

) ∂

∂us
fa. (4.6)

Thus the group classification of equations (1.3) with a non-singular
matrix A reduces to solving equation (4.6) where λ, µ, σν , ων , γ are arbi-
trary parameters, Ba and Cab are functions of (t, x) and t respectively.
Moreover, matrix C with elements Cab should commute with A.

We notice that relations (4.3)–(4.6) are valid for group classification of
systems (1.3) of coupled reaction-diffusion equations including arbitrary

number n of dependent variables u = (u1, u2, . . . un) provided the related
n × n matrix A be invertible [23]. In this case indices a, b, s, k in (4.3)–
(4.6) run over the values 1, 2 . . . n.

Consider now equation (1.4) and the related symmetry operator (3.5).
The determining equations for η, ξµ and πa are easily obtained using
(3.8), (3.9) and have the following form

ηtt = ηxµ =
∂η

∂ua
= 0, ξµt =

∂ξµ

∂ua
= 0,

∂2πa

∂ub∂uc
= 0,

∂πaxµ
∂ub

= 0,
∂π1

∂u2
=
∂π2

∂u1
= 0;

∂π1

∂u1
− ∂π2

∂u2
=

1

2
ηt, if p 6= 0;

ξµxν + ξνxµ = −δµνηt, µ 6= m

(4.7)

where subscripts denote derivatives w.r.t. the corresponding independent
variable, i.e., ηt = ∂η

∂t , ξ
µ
xν = ∂ξµ

∂xν
, etc.

Integrating system (4.7) we obtain the general form of operator X:

X = ν∂t+ρν∂ν+Ψµν∂νxµ+µD−2Ba ∂

∂ua
−2Fu1

∂

∂u1
−2Gu2

∂

∂u2
; (4.8)

µ = 2(F −G) if p 6= 0 (4.9)
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where Ba are functions of (t, x), F and G are functions of t and summa-
tion over the indices µ, ν is assumed with µ, ν = 1, 2, · · · , n− 1.

The classifying equations (3.9) reduce to the following ones

(µ+ F )f1 + Ftu1 + (∂t − ∆)B1

=
(
B1 ∂

∂u1
+B2 ∂

∂u2
+ Fu1

∂

∂u1
+Gu2

∂

∂u2

)
f1,

(µ+G)f2 +Gtu2 +B2
t − pB2

xm

=
(
B1 ∂

∂u1
+B2 ∂

∂u2
+ Fu1

∂

∂u1
+Gu2

∂

∂u2

)
f2.

(4.10)

Relations (4.8)–(4.10) are valid for p 6= 0 and p = 0 as well (in the
last case condition (4.9) should be omitted). Solving (4.10) we specify
both the coefficients of infinitesimal operator (4.8) and the related non-
linearities f1 and f2.

For equations (1.5) we obtain in analogous way that generator (3.5)
reduces to

X = µ

(
3t∂t + 2xν∂ν − u2

∂

∂u2

)
− F

(
u1

∂

∂u1
+ u2

∂

∂u2

)
−Ba ∂

∂ua
(4.11)

while the classifying equations are

(3µ+ F )f1 + Ftu1 +B1
t − pB2

xm

=
(
B1 ∂

∂u1
+B2 ∂

∂u2
+ Fu1

∂

∂u1
+ (F + µ)u2

∂

∂u2

)
f1,

(4µ+ F )f2 + Ftu2 +B2
t − ∆B1

=
(
B1 ∂

∂u1
+B2 ∂

∂u2
+ Fu1

∂

∂u1
+ (F + µ)u2

∂

∂u2

)
f2

(4.12)

where F and B1, B2 are unknown functions of t and t, x respectively.
The determining equations for symmetries of equation (1.5) with p =

0 are qualitatively different for the cases, when the number m of spatial
variables x1, x2, . . . xm ism = 1, m = 2 andm > 2. The related generator
(3.5) has the form

X = αD +

(∫
(N −M)dt

)
∂

∂t
+ 2mHa

∂

∂xa

−
(
N + (m− 2)

∂Ha

∂xa

)
u1

∂

∂u1
−
(
M + (m+ 2)

∂Ha

∂xa

)
u2

∂

∂u2

−B1 ∂

∂u1
−B2 ∂

∂u2
−B3u1

∂

∂u2
(4.13)
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where summation from 1 to m is imposed over repeating indices, the
Greek letters denote arbitrary parameters,M,N are functions of t, B1, B2

are functions of t, x, B3 is a function of t, x, u1 and Ha = 2λbxbxa−x2λa
for m > 2 . For m = 2 Ha are arbitrary functions satisfying the Caushy-
Rieman conditions ∂H1

∂x1
= ∂H2

∂x2
, ∂H1
∂x2

= −∂H2
∂x1

; for m = 1 H1 is a function
of x and the sums with respect to a in (4.13) are degenerated to one
terms.

The corresponding classifying equations have the form

(α
2

+ 2N −M + (m− 2)
∂Ha

∂xa

)
f1 +Ntu1 +B1

t

=
(
B1 ∂

∂u1
+B2 ∂

∂u2
+B3u1

∂

∂u2
+
(
N + (m− 2)

∂Ha

∂xa

)
u1

∂

∂u1

+
(
M + (m+ 2)

∂Ha

∂xa

)
u2

∂

∂u2

)
f1,

(4.14)
(α

2
+N + (m+ 2)

∂Ha

∂xa

)
f2 +B3f1 +Mtu2 +B3

t u1 +B2
t

− ∆B1 + (2 −m)
(
∆
∂Ha

∂xa

)
u1 =

(
B1 ∂

∂u1
+B2 ∂

∂u2

+B3u1
∂

∂u2
+
(
N + (m− 2)

∂Ha

∂xa

)
u1

∂

∂u1

+
(
M + (m+ 2)

∂Ha

∂xa

)
u2

∂

∂u2

)
f2.

We notice that in this case symmetry classification appears to be
rather complicated and cumbersome. Nevertheless, the classifying equa-
tions can be effectively solved using the approach outlined in the following
sections.

Thus the group classification of equations (1.3), (1.4) and (1.5) re-
duces to searching for general solutions of equations (4.6), (4.10), (4.12)
and (4.14). To solve these equation it is necessary to make an effective
separation of independent variables. To do this we will use an approach
which includes a priori specification and simplification of possible forms
of generators X (4.3), (4.8), (4.11) and (4.13) using the condition that X
belong to n-dimensional Lie algebra with n = 1, 2, . . .. This specification
will be based on classification of algebras of 3×3 matrices of special form.

5. Basic, Main and Extended Symmetries

Let us start with equation (1.3). The general form for the related
symmetries and the classifying equation for nonlinearities f1, f2 are given
by relation (4.3) and (4.6) respectively.
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Equation (4.6) does not include parameters Ψµν , ν and ρν present in
(4.3) thus for any f1 and f2 equation (1.3) admits symmetries generated
by the following operators

P0 = ∂t, Pλ = ∂λ, Jµν = xµ∂ν − xν∂µ. (5.1)

For some classes of nonlinearities f1 and f2 the invariance algebra of
equation (1.3) is more extended but includes (5.1) as a subalgebra. We
will refer to (5.1) as to basic symmetries.

Operators (5.1) generate the maximal local Lie group which is admit-
ted by equations (1.3) for any functions f1 and f2. In other words the
basic symmetries generate the kernel of the invariance group of equation
(1.3).

Let us specify main symmetries for equation (1.3), whose generator
X̃ has the form (4.3) with Ψµν = ν = ρν = σν = ων = 0, i.e.,

X̃ = µD + Cabub
∂

∂ua
+Ba ∂

∂ua
. (5.2)

The classifying equation for symmetries (5.2) can be obtained from (4.6)
by setting µ = σa = ωa = 0. As a result we get

(µδab + Cab)f b + Cabt ub +Ba
t − ∆AabBb = (Cnbub +Bn)

∂fa

∂un
. (5.3)

Operator (5.2) is a particular case of (4.3). Moreover, it is easily veri-
fied that operators (5.2) and (5.1) form a Lie algebra which is a subalgebra
of symmetries for equation (1.3). On the other hand, if equation (1.3) ad-
mits a more general symmetry (4.3) with σa 6= 0 or (and) λ 6= 0, ωµ 6= 0
then it has to admit symmetry (5.2) also. To prove this we will calculate
multiple commutators of (4.3) with the basic symmetries (5.1) and use
the fact that such commutators have to belong to symmetries of equation
(1.3).

Let equation (1.3) admits extended symmetry (4.3) with σν 6= 0, Ψµν

= ρµ = ν = λ = ωk = 0, i.e.,

X = σαGα + µD + (Cabub +Ba)
∂

∂ub
. (5.4)

Commuting Y with Pα we obtain one more symmetry

Yα = −σα
2

(A−1)abub
∂

∂ua
+Ba

xα

∂

∂ua
+ µPxα . (5.5)

The latest term belongs to the basic symmetry algebra (5.1) and so
can be omitted. The remaining terms are of the type (5.2).
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Thus supposing the extended symmetry (5.4) is admissible we con-
clude that equation (1.3) has to admit the main symmetry also.

Commuting (5.5) with P0 and Pλ we come to the following symme-
tries:

Yµν = Ba
xµxν

∂

∂ua
, Yµt = Ba

xµt

∂

∂ua
. (5.6)

Any symmetry (5.4)–(5.6) generates this own system (4.6) of classify-
ing equations. After straightforward but rather cumbersome calculations
we conclude that all these systems are compatible provided the following
condition is satisfied

(A−1)abf b = (A−1)nbub
∂fa

∂un
. (5.7)

If (5.7) is satisfied equation (1.3) admits symmetry (5.4) with µ =
Cab = Ba = 0, i.e., Galilei generators Gα of (4.5).

In analogous way, supposing that equation (1.3) admits extended sym-
metry (4.3) with λ 6= 0 and ωa = 0 we prove that it has to admit also
symmetry (5.4) with µ 6= 0 and σν 6= 0. The related functions f1 and f2

should satisfy relations (5.7) and (5.3). Moreover, analyzing possible de-
pendence of Cab and Ba in the corresponding relations (4.6) on t we con-
clude that they should be ether scalars or linear in t, i.e., Cab = µabt+νab.
Moreover, up to equivalence transformations (2.4) we can choose Ba = 0,
and reduce (5.3) to the following system:

(m+ 4)fa + µabf b = (µkbub +muk)
∂fa

∂uk
,

νabf b + µabub = νkbub
∂fa

∂uk

(5.8)

where the parameters νab and µab are distinct from zero in the case of
the diagonal matrix A only.

Finally for general symmetry (4.3) it is not difficult to show that the
condition ων 6= 0 leads to the following equation for fa

(A−1)kb(f b + γub) = (A−1)abub
∂fk

∂ua
. (5.9)

We notice that relations (5.7) and (5.9) are particular cases of (5.3)
for µ = 0, Cab = (A−1)ab and µ = 0, Cab = eγt(A−1)ab respectively.
Thus if relation (5.7) is valid then, in addition to Gα (4.5) equation (1.3)
admits the symmetry

X = (A−1)abub
∂

∂ua
. (5.10)
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Alternatively, if (5.9) is satisfied, equation (1.2) admits symmetry Ĝα
(2.6) and also the following one

X = eγt(A−1)abub
∂

∂ua
, γ 6= 0. (5.11)

Thus it is reasonable first to classify equations (1.3) which admit main
symmetries (5.2) and then specify all cases when these symmetries can
be extended.

The conditions when system (1.3) admits extended symmetries are
given by relations (5.7)–(5.9).

Concerning equations (1.4) and (1.5) we notice that in accordance
with (4.8) and (4.11) they admit basic symmetries only.

Now we are ready to search for solutions to classifying equations
(4.10), (4.12) and (5.3). To present clearly main details of our approach
we start with group classification of systems (1.4), because this problem
appears to be essentially more simple than other ones considered here.

6. Symmetry Algebras of Equations (1.4)

Consider equations (1.4) and suppose that parameter p is nonzero.
Then scaling dependent and independent variables we can reduce its value
to p = 1.

To solve rather complicated classifying equations (4.10), (4.12) and
(5.3) we use the main algebraic property of the related symmetries, i.e.,
the fact that they should form a Lie algebra. In other words, instead
of going throw all non-equivalent possibilities arising via separation of
variables in the classifying equations we first specify all non-equivalent
realizations of the invariance algebra for our equations whose elements are
defined by relations (5.2), (4.8) and (4.11) up to arbitrary constants and
arbitrary functions. Then using the one-to-one correspondence between
these algebras and classifying equations (4.10), (4.12), (5.3) we easily
solve the group classification problems for equations (1.3)–(1.5).

Let us start with classifying equations (4.10) and the related symme-
tries (4.8). For any functions f1 and f2 equations (1.4) admit symmetries
(5.1) where the indices µ, ν and λ run over the values 1, 2, . . .m− 1 and
1, 2, . . .m respectively.

In accordance with (4.8) any symmetry generator extending algebra
(5.1) has the following form

X = µD − 2Ba ∂

∂ua
− 2Fu1

∂

∂u1
+ (µ− 2F )u2

∂

∂u2
. (6.1)
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Let X1 and X2 be operators of the form (6.1) then the commutator
[X1, X2] is also a symmetry whose general form is given by (6.1). Thus
operators (6.1) form a Lie algebra which we denote as A.

Let us specify algebras A which can appear in our classification pro-
cedure. First consider one-dimensional A , i.e., suppose that equation
(1.4) admits the only symmetry of the form (6.1). Then any commutator
of operator (5.1) with (6.1) should be reducible to a linear combination
of operators (5.1) and (6.1). This condition presents us the following
possibilities only:

X = X1 = µD − 2αa
∂

∂ua
− 2βu1

∂

∂u1
− (2β − µ)u2

∂

∂u2
,

X = X2 = eνt
(
αa

∂

∂ua
+ βu1

∂

∂u1
+ βu2

∂

∂u2

)
,

X = X3 = eνt+ρ·xαa
∂

∂ua

(6.2)

where the Greek letters again denote arbitrary parameters and ρ · x =
ρµxµ.

All the other choices of arbitrary functions F and Ba in (6.1) corre-
spond to algebras A whose dimension is larger than one.

The next step is to specify all non-equivalent sets of arbitrary con-
stants in (6.2) using the equivalence transformations (2.4).

If the coefficient for ua ∂
∂ua

(a is fixed) is non-zero then translating ua
we reduce to zero the related coefficient αa in X1 and X2; then scaling
ua we can reduce to ±1 all non-zero αa in (6.2). In addition, all op-
erators (6.2) are defined up to constant multipliers. Using these simple
arguments we come to the following non-equivalent versions of operators
(6.2) belonging to one-dimensional algebras A:

X
(1)
1 = µD − u1

∂

∂u1
+ (µ− 1)u2

∂

∂u2
,

X
(2)
1 = D + u2

∂

∂u2
+ ν

∂

∂u1
,

X
(3)
1 = D − u1

∂

∂u1
− ∂

∂u2
,

X
(ν)
2 = eνt+ρ2·x

(
u1

∂

∂u1
+ u2

∂

∂u2

)
;

X
(1)
3 = eσ1t+ρ1·x

( ∂

∂u1
+

∂

∂u2

)
,

X
(2)
3 = eσ2t+ρ2·x ∂

∂u1
, X

(3)
3 = eσ3t+ρ3·x ∂

∂u2
.

(6.3)
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To describe two-dimensional algebras A we represent one of the re-
lated basis element X in the general form (6.1) and calculate the com-
mutators

Y = [P0, X] − 2µP0, Z = [P0, Y ], W = [X,Y ]

where P0 is operator given in (5.1), Y,Z and W are symbols denoting the
terms in the r.h.s.. After simple calculations we obtain

Y = Ft

(
u1

∂

∂u1
+ u2

∂

∂u2

)
+Ba

t

∂

∂ua
,

Z = Ftt

(
u1

∂

∂u1
+ u2

∂

∂u2

)
+Ba

tt

∂

∂ua
,

W = 2µtZ + µxbB
a
txb

∂

∂ua
.

(6.4)

By definition, Y , Z and W belong to A. Let Ft 6= 0 than it follows
from (6.4) that

µ 6= 0 : Ba
tt = Ftt = Ba

tb = 0, (6.5)

µ = 0 : Ftt = αFt + γaBa
t , Ba

tt = γaFt + βabBb
t , (6.6)

otherwise the dimension of A is larger than 2. The Greece letters in (6.5)
and (6.6) denote arbitrary parameters.

Starting with (6.5) we conclude that up to translations of t the coef-
ficients F and Ba have the following form

F = σt or F = β; Ba = νat+ αa if µ 6= 0.

If F = σt then the change

ua → uae
−σt − νa

µ
t (6.7)

reduces the related operator (4.8) to the following form:

X = µ

(
D + u2

∂

∂u2

)
− 2αa

∂

∂ua
, (6.8)

i.e., X coincides with X1 of (6.2) for β = 0. Moreover it is possible
to show that (6.7) gives the equivalence transformation for the related
equations (1.4) (i.e., for equations (1.4) which admit symmetry (6.8)).
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The choice F = β corresponds to the following operator (6.1)

X = X4 = X1 − 2tαa
∂

∂ua
(6.9)

where X1 is given in (6.2).
Thus if one of basis elements of two dimension algebra A is of general

form (6.1) with µ 6= 0 then it can be reduced to (6.8) or (6.9). We denote
such basis element as e1. Without loss of generality the second basis
element e2 of A is a linear combination of operators X(ν)

2 and X(a)
3 (6.3).

Going over possible pairs (e1, e2) and requiring [e1, e2] = α1e1 + α2e2 we
come to the following two dimensional algebras

A1 =
〈
D + u2

∂

∂u2
, X

(0)
2

〉
, A2 = 〈X(2)

1 , X
(3)
3 〉,

A3 = 〈X(3)
1 , X

(3)
3 〉, A4 = 〈X(1)

1 , X
(3)
3 〉, A5 = 〈X(1)

1 , X
(3)
3 〉,

A6 =
〈
D + 2u2

∂

∂u2
+ u1

∂

∂u1
+ νt

∂

∂u2
, X

(2)
3

〉

A7 =
〈
D + 2u1

∂

∂u1
+ 3u2

∂

∂u2
+ 3νt

∂

∂u1
, X

(1)
3

〉
.

(6.10)

The form of basis elements in (6.10) is defined up to transformations (6.7)
(2.4).

If A does not include operators (6.1) with non-trivial parameters µ
then in accordance with (6.7) its elements are of the following form

ea = F(a)

(
u1

∂

∂u1
+ u2

∂

∂u2

)
+Bb

(a)

∂

∂ub
, a = 1, 2 (6.11)

where F(α) and Bb
(a) are solutions of (6.6).

Formulae (6.10), (6.11) define all non-equivalent two-dimensional al-
gebras A which have to be considered as possible symmetries of equations
(1.4). We will see that asking for invariance of (1.4) w.r.t. these algebras
the related arbitrary functions fa are defined up to arbitrary constants,
and it is impossible to make further specification of these functions by
extending algebra A.

7. Group Classification of Equations (1.4)

To classify equations (1.4) which admit one- and two- dimension ex-
tensions of the basis invariance algebra (5.1) it is sufficient to solve clas-
sifying equations (4.10) for fa with known coefficient functions Ba and
F of symmetries (6.1). These functions are easily found comparing (4.8)
with (6.3), (6.10) and (6.11).
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Let us present an example of such calculation which corresponds to
algebra A1 whose basis elements are X1 = 2t∂t + xa∂a + u2

∂
∂u2

and

X
(0)
2 = u1

∂
∂u1

+ u2
∂
∂u2

, refer to (6.10). Operator X(0)
2 generates the

following form of equation (4.10):

fa =

(
u1

∂

∂u1
+ u2

∂

∂u2

)
fa, a = 1, 2

whose general solution is

f1 = u1F1

(
u2

u1

)
, f2 = u1F2

(
u2

u1

)
. (7.1)

Here F1 and F2 are arbitrary functions of u2
u1

.

Equations (1.4) with non-linearities (7.1) admit symmetry X
(0)
2 . In

order this equation be invariant w.r.t. X1 also, functions f1, f2 have to
satisfy equation (4.10) with F = 0, i.e.,

f1 = −u1
∂f1

∂u1
; f2 = −1

2
u1
∂f2

∂u1
. (7.2)

It follows from (7.1), (7.2) that

f1 = αu3
1u

−2
2 , f2 = λu2

1u
−1
2 . (7.3)

Thus equation (1.4) admits symmetries X(2)
0 and X1 which form al-

gebra A1 (6.10) provided f1 and f2 are functions given in (7.3). These
symmetries are defined up to arbitrary constants α and λ. If one of them
is nonzero, than it can be reduced to +1 or −1 by scaling independent
variables.

In analogous way we solve equations (4.10) corresponding to other
symmetries indicated in (6.3) and (6.10). For one-dimension algebras
(6.3) the related non-linearities f1 and f2 are defined up to arbitrary
functions F1 and F2 while for two dimension algebras (6.10) functions
f1 and f2 are defined up to two integration constants. We shall not
reproduce the related rather routine calculations but present their results
in Table 1.
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Table 1. Non-linearities and symmetries for equation (1.4)
with p=1

No Non-linearities Arguments Symmetries
of F1 F2

1. f1 = u2µ+1
1 F1,

f2 = uµ+1
1 F2

u2u
µ−1
1 µD − u1

∂
∂u1

+ (µ− 1)u2
∂
∂u2

2. f1 = F1u
−2
2 ,

f2 = F2u
−1
2

u1 − ν lnu2 D + u2
∂
∂u2

+ ν ∂
∂u1

3. f1 = u1(F1 + λ lnu1),
f2 = u2(F2 + λ lnu1)

u2

u1
eλt
(
u1

∂
∂u1

+ u2
∂
∂u2

)

4. f1 = u3
1F1,

f2 = u2
1F2

u2 − lnu1 D − u1
∂
∂u1

− ∂
∂u2

5. f1 = F1,
f2 = F2 + νu2

u2 eνtΨ(x) ∂
∂u2

6. f1 = αu1 + F1,
f2 = λu+ F2

u1
eλt+νxmΨ̃µ(x̃)

∂
∂u1

,

µ = λ− ν2 − α

7. f1 = σu+ F1,
f2 = λv + F2

u− v eλt e
xm+t

2 Ψµ(x̃, xm + t)
(

∂
∂u1

+ ∂
∂u2

)
, µ = λ− σ + 1

4

8. f1 = αu3
1u

−2
2 ,

f2 = βu2
1u

−1
2

D + u2
∂
∂u2

, u1
∂
∂u1

+ u2
∂
∂u2

9. f1 = αe−2u1 ,
f2 = λe−u1

D + u2
∂
∂u2

+ ∂
∂u1

, Ψ(x) ∂
∂u2

10. f1 = λe3u2 ,
f2 = αe2u2

D − u1
∂
∂u1

− ∂
∂u2

,

Φ̃0(t, x̃)
∂
∂u1

11. f1 = αu2µ+1
1 ,

f2 = λuµ+1
1

µD − u1
∂
∂u1

+ (µ− 1)u2
∂
∂u2

,

Ψ(x) ∂
∂u2

12. f1 = λu3µ−2
2 ,

f2 = αu2µ−1
2

(µ− 1)D − µu1
∂
∂u1

− u2
∂
∂u2

,

Φ̃0(t, x̃)
∂
∂u1

13. f1 = α
u1
, f2 = lnu1 D + 2u2

∂
∂u2

+ u1
∂
∂u1

+ t ∂
∂u2

,

Ψ(x) ∂
∂u2

14. f1 = lnu2, f
2 = αu

1
3

2
D + 2u1

∂
∂u1

+ 3u2
∂
∂u2

+ 3t ∂
∂u1

,

Φ̃0(t, x̃)
∂
∂u1
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HereD is the dilatation operator given in (4.5), x̃=(x1, x2, . . . , xm−1),
Ψ(x) is an arbitrary function of spatial variables; Ψ̃µ(x̃),Ψµ(x̃, xm + t)
and Φ̃µ(t, x̃) are solutions of the Laplace and linear heat equations

∆̃Ψ̃µ = µΨ̃µ, ∆Ψµ = µΨµ, (
∂

∂t
− ∆̃)Φ̃0 = 0,

∆̃ =
∂2

∂x2
1

+
∂2

∂x2
2

+ · · · + ∂2

∂x2
m−1

, ∆ = ∆̃ +
∂2

∂x2
m

.
(7.4)

We notice that equations (1.4) with non-linearities 5, 6, 9-14 of Table
1 admit infinite-dimension algebras A because the related symmetries are
defined up to arbitrary functions Ψ(x) or arbitrary solutions of equations
(7.4). Nevertheless, the form of these non-linearities was fixed requiring
invariance w.r.t. one- and two-dimension algebras enumerated in (6.3),
(6.10).

The second note is that equations (1.4) with non-linearities given in
Item 8 of Table 1 admit additional equivalence transformations uα →
eσtuα while for Items 9, 11, 13 and 10, 12, 14 we have in our disposal
transformations 3 and 2 respectively from the list (2.10).

8. Group Classification of Equations (1.5)

Like (1.4), equations (1.5) with arbitrary functions f1 and f2 ad-
mit the basic symmetries (5.1) were µ, ν = 1, 2, . . . ,m − 1. To classify
equations admitting other symmetries it is sufficient to find the general
solution for equations (4.12).

We will solve (4.12) using the technique applied in Sections 5 and
6. Comparing (4.11) and (6.1) we conclude that generators of extended
symmetry for equations (1.4) and (1.5) are rather similar and so we can
essentially exploit the algebra classification scheme used in Section 5. As
a result we easily come to the following list of one-dimension algebras A
(compare with (6.3))

X̃
(1)
1 = µD̃ − u1

∂

∂u1
− u2

∂

∂u2
,

X̃
(2)
1 = D̃ − ν

∂

∂u1
, X̃

(ν)
2 = eνt

(
u1

∂

∂u1
+ u2

∂

∂u2

)
,

X̃
(3)
1 = D̃ + u1

∂

∂u1
+ u2

∂

∂u2
+ ν

∂

∂u2
,

X̃
(3)
3 = eσ3t+ρ3x

(
∂

∂u1
+

∂

∂u2

)
,

X̃
(j)
3 = eσit+ρi·x

∂

∂uj
, j = 1, 2

(8.1)
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where D̃ = 3t∂t + 2xν∂ν − u2
∂
∂u2

. The two-dimension algebras are given
by the following relations (compare with (6.10)):

Ã1 = 〈D̃, X̃(0)
2 〉, Ã2 = 〈X̃(2)

1 , X
(3)
3 〉,

Ã3 = 〈X̃(3)
1 , X̃

(1)
3 〉, Ã4 = 〈X̃(1)

1 , X̃
(2)
3 〉, Ã5 = 〈X̃(1)

1 , X̃
(1)
3 〉,

Ã6 =
〈
D̃ + 4

(
u2

∂

∂u2
+ u1

∂

∂u1
+ t

∂

∂u2

)
, X

(2)
3

〉
,

Ã7 =
〈
D̃ + 3

(
u1

∂

∂u1
+ u2

∂

∂u2
+ t

∂

∂u1

)
, X

(1)
3

〉
.

(8.2)

Using (8.1), (8.2) and solving the related classifying equations (4.12)
we find non-linearities f1, f2 which are given in Table 2. In six cases
enumerated in the table the corresponding equations (1.5) admit infinite
dimension symmetry algebras whose generators are defined up to arbi-
trary functions, see Items 5–7, 9–14 here.

Table 2. Non-linearities and symmetries for equation (1.5)
with p = 1

No Non-linearities Arguments Symmetries
of F1 F2

1. f1 = u1+3µ
1 F1,

f2 = u1+4µ
1 F2

u2u
−µ−1
1 µD̃ − u1

∂
∂u1

− u2
∂
∂u2

2. f1 = u3
2F1,

f2 = u4
2F2

u1 − ν lnu2 D̃ − ν ∂
∂u1

3. f1 =u1(F1+ν lnu1),
f2 =u2(F2+ν lnu1)

u2

u1
eνt
(
u1

∂
∂u1

+ u2
∂
∂u2

)

4. f1 = u−2
1 F1,

f2 = u−3
1 F2

u2 − ν lnu1 D̃ + u1
∂
∂u1

+ u2
∂
∂u2

+ ν ∂
∂u2

5. f1 = λu1 + F1,
f2 = −µu1 + F2

u2 eλtΨµ(x)
∂
∂u1

6. f1 = νu2 + F1,
f2 = λu2 + F2

u1 eλt−νxmΨ(x̃) ∂
∂u2

7. f1 = αu1 + F1,
f2 = σu2 + F2

u1 − u2 eλt e
xm−t

2 Ψµ(x̃, xm + t)
(

∂
∂u1

+ ∂
∂u2

)
,

µ = λ− σ + 1
4
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8. f1 = αu−2
1 u3

2,
f2 = νu−3

1 u4
2

D̃, u1
∂
∂u1

+ u2
∂
∂u2

9. f1 = αe3u1 ,
f2 = νe4u1

D̃ − ∂
∂u1

, Ψ(x̃) ∂
∂u2

10. f1 = αe−2u2 ,
f2 = νe−3u2

D̃ + u1
∂
∂u1

+ u2
∂
∂u2

+ ∂
∂u2

,

Ψ0(x)
∂
∂u1

11. f1 = αu3µ+1
1 ,

f2 = νu4µ+1
1

µD̃ − u1
∂
∂u1

− u2
∂
∂u2

,

Ψ(x̃) ∂
∂u2

12. f1 = αu2ν+1
2 ,

f2 = νu3ν+1
2

νD̃ − u1
∂
∂u1

− u2
∂
∂u2

,

Ψ0(x)
∂
∂u1

13. f1 = αu
1
4

1 ,
f2 = ν lnu1

D̃ + 3u2
∂
∂u2

+ 4u1
∂
∂u1

+ 4νt ∂
∂u2

,

Ψ(x̃) ∂
∂u2

14. f1 = ν lnu2,
f2 = α√

u2

D̃ + 3u1
∂
∂u1

+ 2u2
∂
∂u2

+ 2νt ∂
∂u1

,

Ψ0(x)
∂
∂u1

Here Ψµ(x) and Ψµ(x̃, xm + t) are arbitrary solutions of the Laplace
equation ∆Ψµ = µΨµ, µ, ν and λ are arbitrary parameters satisfying
νλ 6= 0.

Equations (1.5) with the non-linearities given in Item 8 of Table 2
admit additional equivalence transformation uα → eσtuα. Besides, for
Items 9,11,13 and 10,12, 14 we have transformations 3 and 2 from the
list (2.10) respectively.

9. Group Classification of Equations (1.3) with Invertible
Diffusion Matrices

In this Section we present the group classification of systems of cou-
pled reaction-diffusion equations (1.3) with invertible matrix A. In ac-
cordance with the plane outlined in Section 4 we first describe the main
symmetries generated by operators (5.2) and then indicate extensions of
these symmetries.

Like in Sections 5, 7 the first step of our analysis consists in description
of realizations of Lie algebras A generating basic symmetries of equation
(1.3). However, the basis elements of A are now of the general form (5.2)
while in Sections 5 and 7 we were restricted to the representations (6.1)
and (4.11) respectively which are particular cases of (5.1).
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Thus the first step of our analysis is to describe non-equivalent re-
alizations of finite dimension algebras A whose basis elements have the
form (5.2).

Let us specify all non-equivalent “tails” of operators (5.2), i.e., the
terms

π = Cabub
∂

∂ua
+Ba ∂

∂ua
. (9.1)

These terms can either be a constituent part of a more general sym-
metry (5.2) or represent a particular case of (5.2) corresponding to µ = 0.

If equation (1.3) admits a one-dimensional invariance algebra A then
commutators of π with the basic symmetries P0 and Pa should be equal
to a linear combination of π and operators (5.1). In other words, there
are three possibilities:

1. Cab = µab, Ba = µa, (9.2)

2. Cab = eλtµab, Ba = eλtµa, (9.3)

3. Cab = 0, Ba = eλt+ω·xµa (9.4)

where µab, µa, λ, and ω are constants.
In any case the problem of classification of one-dimension algebras

A includes the subproblem of classification of non-equivalent linear com-
binations (9.1) with constant coefficients µab and µa. To describe such
linear combinations we will use the isomorphism of (9.1) with 3 × 3 ma-
trices of the following form

g =




0 0 0
B1 C11 C12

B2 C21 C12


 ∼




0 0 0
µ1 µ11 µ12

µ2 µ21 µ12


 . (9.5)

Equations (1.3) admit equivalence transformations (2.4) which change
the term π (9.1) and can be used to simplify it. The corresponding
transformation for matrix (9.5) can be represented as

g → g′ = UgU−1 (9.6)

where U is a 3 × 3 matrix of the following special form

U =




1 0 0
b1 K11 K12

b2 K21 K22


 . (9.7)
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We will use relations (9.2)–(9.4) and equivalence transformations (9.6)
to construct basis elements of basic symmetry algebras. For different
forms of matrix A specified in (2.2) the transformation matrix (9.7) needs
further specification in accordance with (2.5)–(2.8).

The obtained non-equivalent realizations of low dimension algebras
A are present in Appendix. Starting with these realizations one easily
solves the related determining equations (4.6) for non-linearities f1 and
f2 and specify all cases when the main symmetries can be extended (i.e.,
when relations (5.7)–(5.9) are satisfied). In addition we have to control
all cases when basis elements of A depend on arbitrary solutions Ψ of
the linear heat equation. Such algebras (whose basis elements can be
obtained from (A.1.10), (A.1.11), (A.1.15)–(A.1.18) changing g5 and g3
by Ψg5 and Ψg3) are infinite dimensional but generate the same number
of determining equations as the low-dimension algebras.

10. Classification Results

We will not reproduce the related exact calculations but present the
results of group classification in Tables 3-9. In addition to equations with
invertible diffusion matrix we present here the results of classification
which are related to the diffusion matrix of type IV while the type V
is will be considered separately (see (2.2) for classification of diffusion
matrices).

The Tables 3–9 present the classification results for different types of
equations (1.3) corresponding to non-equivalent diffusion matrices enu-
merated in (2.2). The type of diffusion matrix is indicated in the fourth
columns of Tables 3, 4 and third columns of Tables 5 and 6. In Tables 7-9
the results of symmetry classification of special equations are presented;
these equations are indicated in the table titles. In the last columns of
Tables 3, 5 and 6 the additional equivalence transformations (AET) are
specified, which are possible for the related class of non-linearities. Fi-
nally, the symbols D, Gα, Ĝα denote generators (4.5), ψµ denotes an
arbitrary solution of the linear heat equation ∂

∂tψµ − ∆ψµ = µψµ,

ψ̃ν =

{
ψν for Class III
eνtΨ(x) for Class IV

and Ψ(x), Ψν(x) have the same meaning as in Tables 1,2.

The results of group classification are briefly discussed in Section 12.
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Table 3. Non-linearities with arbitrary functions and
extendible symmetries for equations (1.3), (2.2)

No Nonlinear Argu- Type Main Addi- AET
terms ments of sym- tional (2.10)

of F1 F2 matrix metries sym-
A metries

1.
f1 = uν+1

1 F1,

f2 = uν+µ1 F2

u2

uµ1

I, IV,
µ 6= 1;
I − IV,
µ = 1

ν
2
D

−u1
∂
∂u1

−µu2
∂
∂u2

For I :
Gα, if
ν = 0,
aµ = 1

1, ρ
= µω

if
ν = 0

2.
f1 = u1(F1

+ε lnu1),
f2 = u2(F2

+εµ lnu1)

u2

uµ1

I, IV,
µ 6= 1;
I − IV,
µ = 1

eεt
(
u1

∂
∂u1

+µu2
∂
∂u2

)
For I :

Ĝα, if
aµ = 1

3.

f1 = u1F1 + νu2,
f2 = ν u2

u1
(u1

+u2) + u1F2

+u2F1,
ν 6= 0

u1e
− u2

u1 I∗, III

eνt
(
u1

∂
∂u2

+u1
∂
∂u1

+u2
∂
∂u2

)
For III :

Ĝα, if
a = −1

4.
f1 = uν+1

1 F1,

f2 = uν1 (F1u2

+F2u1)
u1e

− u2
u1 I∗, III

ν
2
D

−u1
∂
∂u2

−u1
∂
∂u1

−u2
∂
∂u2

For III :
Gα, if
ν = 0,
a = −1

5. f1 = e
ν

u2
u1 F1u1,

f2 = e
ν

u2
u1 (F1u2

+F2)

u1 I∗, III
ν
2
D

−u1
∂
∂u2

For I∗ :
u2

∂
∂u2

,

if ν = 0,
F2 = 0

6 if
ν = 0

For I∗ :
ψ0

∂
∂u2

,

D
+2u2

∂
∂u2

,

if
F1 = 0,
ν = 0

3,6

6.
f1 = u1(F1 − ν),
f2 = F1u2 + F2,
ν 6= 0

u1 I∗, III eνtu1
∂
∂u2

ψµ
∂
∂u2

,

if
F1 = µ

3 if
F1 =0

7.
f1 = u1F1 + u2F2

−νz(µu1 + u2),
f2 = u2F1 − u1F2

+νz(u1 − µu2);

Reµz I∗, II
eνt
(
µR ∂

∂R

− ∂
∂z

)
For II :

Ĝα, if
µ = a,
ν 6= 0; 15 if

R=(u2
1 + u2

2)
1
2,

z = tan−1
(
u2

u1

)
Gα, if
µ = a,
ν = 0

µ = 0
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Table 4. Non-linearities with arbitrary functions and
non-extendible symmetries for equations (1.3), (2.2)

No Nonlinear terms
Argu-
ments
of Fa

Type
of mat-
rix A

Symmetries and
AET (2.10) [in square
brackets]

1.
f1 = uν2F1,

f2 = uν+1
2 F2

u2e
u1 I, IV

νD − 2u2
∂
∂u2

+ 2 ∂
∂u1

[4 if ν = 0]

2.
f1 = F1 + εu1,

f2 = F2u2 + εu1u2

u2e
u1 I, IV eεt

(
u2

∂
∂u2

− ∂
∂u1

)
,

3.
f1 = eνu1F1,

f2 = eνu1(F2 + F1u1)

2u2

−u2
1

I∗, III νD − 2u1
∂
∂u2

− 2 ∂
∂u1

4.
f1 = νu1 + F1,

f2 = νu2
1 + F1u1 + F2

2u2

−u2
1

I∗, III ψ̃ν
(
u1

∂
∂u2

+ ∂
∂u1

)

5.
f1 = νu1 + F1,
f2 = −µu1 + F2

u2 II, III

For II : e(ν−aµ)tΨµ
∂
∂u1

,

For III : e(ν+σa)tΨσ,
µ = σa

6.
f1 =eνz (F1u2+F2u1),
f2 =eνz (F2u2−F1u1)

Re−µz I∗, II
νD−2µ

(
u1

∂
∂u1

+u2
∂
∂u2

)

−2
(
u1

∂
∂u2

− u2
∂
∂u1

)

7. f1 = 0, f2 = F u2 I, IV
ψ0

∂
∂u1

, u1
∂
∂u1

,

[ 2; 1, ρ = 0]

8. f1 = 0, f2 = F u1
I, a 6= 1,
IV

D + 2u2
∂
∂u2

, ψ̃0
∂
∂u2

,

[3, 6]

9.
f1 = F1,

f2 = F2 + νu2

u1 I, III, IV ψ̃ν
∂
∂u2

10.
f1 = F1 + (ν − µ)u1,

f2 = F2 + (ν − aµ)u2

u2−u1
I, a 6= 1
IV

eνtΨµ(x)
(

∂
∂u1

+ ∂
∂u2

)

11.
f1 = αu1 + µ,

f2 = νu2 + F,
αµ = 0

u1 I∗, III
ψ̃ν

∂
∂u2

,

e(ν−α)t (u1 − µt) ∂
∂u2

12.
f1 = u2

1,
f2 = u1u2 + νu2 + F,

u1 I∗, III
eνtu1

∂
∂u2

,

eνt
(

∂
∂u2

+ tu1
∂
∂u2

)

13.
f1 =

(
u2

1 − 1
)
,

f2 = (u1 + ν)u2 + F
u1 I∗, III

e(ν+1)t
(
u1

∂
∂u2

+ ∂
∂u2

)
,

e(ν−1)t
(
u1

∂
∂u2

− ∂
∂u2

)

14.
f1 =

(
u2

1 + 1
)
,

f2 = (u1 + ν)u2 + F
u1 I∗, III

eνt(cos tu1
∂
∂u2

−sin t ∂
∂u2

),

eνt(sin tu1
∂
∂u2

+cos t ∂
∂u2

)

15.
f1 = eνu2F1,
f2 = eνu2F2

µu2

−u1

I, IV
µ 6= 0;
II, III
µ = 0

νD − 2
(
µ ∂
∂u1

+ ∂
∂u2

)

16.
f1 = eνu1F1,
f2 = eνu1F2

u2 III νD − 2 ∂
∂u1
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Table 5. Non-linearities with arbitrary parameters and
extendible symmetries for equations (1.3), (2.2)

No
Nonlinear
terms

Type
of mat-
rix A

Main
symmetries

Additional
symmetries

AET
(2.10)

1.
f1 =λuν+1

1 uµ2 ,

f2 =σuν1u
µ+1
2

I, IV
µD−2u2

∂
∂u2

,

νD−2u1
∂
∂u1

Gα if aν = −µ
6= 0 & K if
ν = 4

m(1−a) , a 6= 1;

1, νω
+µρ
= 0

ψ0
∂
∂u1

if σ = 0,

ν = −1 & Gα
if µ = a 6= 0
& K if a = 1 + m

4
;

2; 1,
νω
+µρ
= 0

ψ0
∂
∂u1

, u2
∂
∂u1

if σ = 0,
ν = −1, a = 1;

2; 1,
νω
+µρ
= 0

Gα,K if
σ = 1, λ 6= 1
µ = −ν = a = 1;

1, νω
+µρ
= 0

u1
∂
∂u2

if µ = 0,

λ = σ, a = 1
& ∂

∂u2
+ tu1

∂
∂u2

if ν = 1

1, νω
+µρ
= 0

2.
f1 = λuν+1

1 ,

f2 = σuν+µ1 ,
I, IV

νD−2u1
∂
∂u1

−2µu2
∂
∂u2

,

(u1 − λt) ∂
∂u2

if

−ν = a = 1;
3

λσ 6= 0 ψ̃0
∂
∂u2

Gα if
ν = 0, aµ = 1;

3

e−λtu1
∂
∂u2

if

ν = 0, a = 1, &

eλt
(
σu1

∂
∂u2

+λ ∂
∂u1

)

if µ = 2

3;
1, ρ
=µω

3.
f1 = λu1,
f2 = σuµ1

III
ψ0

∂
∂u2

,

e−λtu1
∂
∂u2

eλt
(
u1

∂
∂u2

+ λ ∂
∂u1

)

if µ = 2

3;
6 if
λ=0

4.
f1 =λeνu1 ,

f2 =σe(ν+1)u1,
I, IV

νD − 2u2
∂
∂u2

−2 ∂
∂u1

,

u2
∂
∂u2

if σ = 0

& u2
∂
∂u1

if a = 1;

3; 1,
ω=0

λ 6= 0 ψ̃0
∂
∂u2

(u1 − λt) ∂
∂u2

if ν = 0, a = 1
3,4

5.
f1 = λeu1 ,
f2 = σeu1

III
D − 2 ∂

∂u1
,

ψ̃0
∂
∂u2

u1
∂
∂u2

if λ = 0
3;
6 if
λ=0

6.
f1 = λeu2 ,
f2 = σeu2 ,
λ 6= 0

I, IV
D − 2 ∂

∂u2
,

ψ0
∂
∂u1

u1
∂
∂u1

+ ∂
∂u2

if σ = 0
& for I u2

∂
∂u1

if a = 1

2; 5 if
σ = 0
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7. f1 = λuν+1
1 e

µ
u2
u1, I∗, III µD − 2u1

∂
∂u2

,
For I∗ : Gα
if ν = 0;

1,
ρ = ω;

6 if
µ = 0

f2 = e
µ

u2
u1 (λu2

+σu1)u
ν
1

νD − 2u1
∂
∂u1

−2u2
∂
∂u2

For III : Gα
if µ = aν

& K if ν = 4
m

1,
ρ = ω

if
ν = 0;
6 if
µ = 0

8. f1 = eµzRν(λu1

−σu2),
I∗, II

νD − 2u1
∂
∂u1

−2u2
∂
∂u2

,
For I∗ :
Gα if ν = 0;

1,
ρ = ω

f2 = eµzRν(λu2

+σu1)

µD − 2u1
∂
∂u2

+2u2
∂
∂u1

For II : Gα
if µ = aν

& K if ν = 4
m

1,
ρ = ω

if
ν = 0

9.
f1 = εuµ+1

1 ,

f2 = εuµ1 (u2

− lnu1), µ 6= 0,

I∗
µD−2u1

∂
∂u1

−2 ∂
∂u2

,

u1
∂
∂u2

∂
∂u2

+ tu1
∂
∂u2

if µ = 1
6

10.
f1 = λ,
f2 = ε lnu1

I − IV

1
2
D + u1

∂
∂u1

+u2
∂
∂u2

+εt ∂
∂u2

,

For I, a 6= 1, IV :
u1

∂
∂u1

+ εt ∂
∂u2

if λ = 0;

3, 7, 9
(for II :

3, 7)

ψ̃0
∂
∂u2

For I∗, III

(u1 − λt) ∂
∂u2

;

& (for I∗)
u1

∂
∂u1

+ εt ∂
∂u2

if λ = 0

3, 9;
& 6, 7

if
λ = 0

(7 for I∗

only)

11. f1 = 0,
f2 = εu2 + lnu1

I, IV

µu1
∂
∂u1

−ε ∂
∂u2

,

ψ̃ε
∂
∂u2

eεtu1
∂
∂u2

if a = 1

10,
κ = ε

12. f1 = λu1 lnu1,
f2 = νu2 + lnu1

I, IV ψ̃ν
∂
∂u2

eνt
(
u1

∂
∂u1

+t ∂
∂u2

)

if ν = λ;

10,
κ = ν

eλt
(
(λ− ν)u1

∂
∂u1

+ ∂
∂u2

)
if ν 6= λ

10,
κ = ν

13.
f1 = λuµ+1

1 ,

f2 = σuµ+1
1 ,

λσ = 0

III

µD − 2u1
∂
∂u1

−2u2
∂
∂u2

,

ψ̃0
∂
∂u2

u1
∂
∂u2

if λ = 0

3;
6 if
λ = 0

Here and in the following ε = ±1, K is generator defined in (4.6), K =

K + 2
λ−1

[
t
(
λu1

∂
∂u1

+ (2 − λ)u2
∂
∂u2

)
+ u1

∂
∂u2

]
. In the following table

Q = 2
(
(µ− aν)t− ν

2mx
2
)

for version II and Q = 2
(
(µ− ν)t− ν

2amx
2
)
,

a 6= 0 for version III.
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Table 6. Non-linearities with arbitrary parameters and
non-extendible symmetries for equations (1.3), (2.2)

No Nonlinear terms
Type

of mat-
rix A

Symmetries
AET
(2.10)

1.
f1 = λuν+1

2 ,
f2 = µuν+1

2

II, III

νD − 2u1
∂
∂u1

−2u2
∂
∂u2

,

Ψ0(x)
∂
∂u1

2

2.
f1 = λ (u1 + u2)

ν+1 ,

f1 = µ (u1 + u2)
ν+1

I, a 6= 1
IV

νD − 2u1
∂
∂u1

−2u2
∂
∂u2

,

Ψ0(x)
(

∂
∂u1

− ∂
∂u2

) 12

3.
f1 = λuν+1

1 ,
f2 = uν1 (λu2 + µuσ1 ) ,
ν + σ 6= 0, 1, µ 6= 0

I∗
νD − 2u1

∂
∂u1

−2σu2
∂
∂u2

,

u1
∂
∂u2

6

4.
f1 = λeu2 ,
f2 = σeu2

II, III
D − 2 ∂

∂u2
,

Ψ0(x)
∂
∂u1

2

5.
f1 = λe(u1+u2),

f2 = σe(u1+u2)

I, a 6= 1,
IV

D − 2 ∂
∂u2

,

Ψ0(x)
(

∂
∂u1

− ∂
∂u2

) 12

6.
f1 = λuν2e

u1 ,
f2 = σuν+1

2 eu1 ,
ν2 + (a− 1)2 6= 0

I, IV
D − 2 ∂

∂u1
,

u2
∂
∂u2

− ν ∂
∂u1

13 if
σ = 0

7.
f1 = λeu1 ,
f2 = σu1e

u1
I∗, III

D − 2 ∂
∂u1

− 2u1
∂
∂u2

,

ψ0
∂
∂u2

(& u2
∂
∂u2

for I∗)

3; 6 if
λ = 0

8.
f1 = εeu1 , ε = ±1,
f2 = λu1

I, IV
D + 2u2

∂
∂u2

− 2 ∂
∂u1

−2λt ∂
∂u2

, ψ̃0
∂
∂u2

3

9.
f1 = νeλ(2u2−u2

1),

f2 = (νu1 + µ) eλ(2u2−u2
1)

I∗, III
λD − ∂

∂u2
,

∂
∂u1

+ u1
∂
∂u2

14

10.
f1 = λ ln(2u2 − u2

1),
f2 = σ(2u2 − u2

1)
+λu1 ln(2u2 − u2

1)
I∗

D + 2u1
∂
∂u1

+ 4u2
∂
∂u2

+4λt
(

∂
∂u1

+u1
∂
∂u2

)
,

∂
∂u1

+u1
∂
∂u2

14

11.
f1 = µ lnu2,
f2 = ν lnu2

II, III

Ψ0(x)
∂
∂u1

,

D + 2u1
∂
∂u1

+2u2
∂
∂u2

+Q ∂
∂u1

2

12.
f1 = ε ln (u1 + u2) ,
f2 = ν ln (u1 + u2)

I, a 6= 1,
IV,
a = 0

Ψ0(x)
(

∂
∂u1

− ∂
∂u2

)
,

(a− 1)
(
D + 2u1

∂
∂u1

+2u2
∂
∂u2

)
+ (2(aε+ ν)t

+ ε+ν
m
x2
) (

∂
∂u1

− ∂
∂u2

)
12
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13.
f1 = λuν+1

1 ,
f2 = lnu1,
λ(ν + 1) 6= 0

I, IV

ν
(
D + 2u2

∂
∂u2

)

−2u1
∂
∂u1

− 2t ∂
∂u2

,

ψ̃0
∂
∂u2

3

14.
f1 = λuν+1

1 ,
f2 = λuν+1

1 lnu1
I∗, III

νD − 2
(
u1

∂
∂u1

+u2
∂
∂u2

+ u1
∂
∂u2

)
,

ψ0
∂
∂u2

3

15.
f1 = λuν+1

1 ,
f2 = λuν1u2 + u1 lnu1,
λ(ν − 1) 6= 0

I∗
νD − 2u1

∂
∂u1

−2tu1
∂
∂u2

−2(1 − ν)u2
∂
∂u2

, u1
∂
∂u2

6

16.

f1 =λ
(
2u2 − u2

1

)ν+ 1
2 ,

f2 =λu1

(
2u2 − u2

1

)ν+ 1
2

+µ
(
2u2 − u2

1

)ν+1

I∗

νD − u1
∂
∂u1

− 2u2
∂
∂u2

,
∂
∂u1

+ u1
∂
∂u2(

& 2λt
(

∂
∂u1

+ u1
∂
∂u2

)

+ ∂
∂u2

if µ=0, ν= 1
2

)

14; 1,
ρ = 2ω

if
ν = 0

17.
f1 = 2νu1 lnu1 + u1u2,
f2 = −(ν − µ)2 lnu1

+2µu2

I, IV

X = e(µ+ν)t
(
u1

∂
∂u1

+(µ− ν) ∂
∂u2

)
,

tX + e(µ+ν)t ∂
∂u2

10,
κ = 2ν

if
µ+ ν
= 0

18.
f1 = 2νu1 lnu1 + u1u2,
f2 = 2µu2

+
(
1 − (ν − µ)2

)
lnu1

I, IV

X± = eλ±t
(
u1

∂
∂u1

+(λ± − 2ν) ∂
∂u2

)
,

λ± = µ+ ν ± 1

10,
κ = 2ν

if
µ+ ν
= ±1

19.
f1 = 2νu1 lnu1 + u1u2,
f2 = 2µu2

−
(
1 + (ν − µ)2

)
lnu1

I, IV

e(µ+ν)t
[
cos tu1

∂
∂u1

−(sin t+ (ν

−µ) cos t) ∂
∂u2

]
,

e(µ+ν)t
[
sin tu1

∂
∂u1

+(cos t+ (µ

−ν) sin t) ∂
∂u2

]

20.

f1 = ε(2u2 − u2
1),

f2 = (µ+ εu1)
(
2u2 − u2

1

)

−µ2

2
εu1, µ 6= 0

I∗, III

X1 = eµt
(
2 ∂
∂u1

+2u1
∂
∂u2

+ εµ ∂
∂u2

)
,

tX1 + εeµt ∂
∂u2

21.

f1 = ε(2u2 − u2
1),

f2 = (µ+ εu1)
(
2u2 − u2

1

)

+ 1−µ2

2
εu1

I∗, III

X± = eµ±1
(
2 ∂
∂u1

+2u1
∂
∂u2

+ε(µ± 1) ∂
∂u2

)
14 if
µ2 = 1

22.

f1 = ε(2u2 − u2
1),

f2 = − 1+µ2

2
εu1

+(µ+ εu1)
(
2u2 − u2

1

) I∗, III

eµt
(
2ε cos t

(
∂
∂u1

+u1
∂
∂u2

)
+ (µ cos t

− sin t) ∂
∂u2

)
,

eµt
(
2ε sin t

(
∂
∂u1

+u1
∂
∂u2

)
+ (µ sin t

+ cos t) ∂
∂u2

)
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Table 7. Symmetries of equations (1.3) with diagonal matrix A
and non-linearities

f1 = u1 (µ lnu1 + λ lnu2) , f
2 = u2 (ν lnu2 + σ lnu1)

No Conditions Main symmetries Additional
for coefficients symmetries
and notations

1.
λ = 0,
µ = ν

eµtu2
∂
∂u2

,

eµt
(
u1

∂
∂u1

+ σtu2
∂
∂u2

) Ĝα, if a 6= 0,
σ = 0, µ 6= 0

2.
λ = 0,
µ 6= ν

eνtu2
∂
∂u2

,
Ĝα if µ 6= 0,

µ− ν = aσ

eµt
(
(µ− ν)u1

∂
∂u1

+σu2
∂
∂u2

) Gα if aσ = −ν,
µ = 0;

ψ0
∂
∂u2

if

σ = ν = 0;

ψ0
∂
∂u1

if

σ = µ = 0;

u1
∂
∂u2

, Ĝα

if a = 1, ν = 0
µ = σ 6= 0

3.
δ = 1

4
(µ− ν)2

+λσ = 0,
µ+ ν = 2ω0

X2 = eω0t
(
2λu1

∂
∂u1

+ (ν − µ)u2
∂
∂u2

)
,

Ĝα if ν 6= −µ,
2λ = a(ν − µ)

λσ 6= 0 eω0t2u2
∂
∂u2

+ tX2
Gα if λ = aν

µ = −ν 6= 0

4.
λσ 6= 0,
δ = 1,

eω+t
(
λu1

∂
∂u1

+ (ω+ − µ)u2
∂
∂u2

)
,

Ĝα if µν 6= λσ,
λ = a(ν − µ+ aσ)

ω± = ω0 ± 1
eω−t

(
λu1

∂
∂u1

+ (ω− − µ)u2
∂
∂u2

) Gα if νµ = λσ,
λ = −aµ

5. δ = −1

eω0t
(
2λ cos tu1

∂
∂u1

+ ((ν − µ) cos t

−2 sin t)u2
∂
∂u2

)
,

eω0t
(
2λ sin tu1

∂
∂u1

+ ((ν − µ) sin t

+2 cos t)u2
∂
∂u2

)

none

Equations (1.3) with the nonlinearities present in Table 7 admit equiv-
alence transformation 1 from the list (2.10) provided µν = λσ. The re-
lated parameters ρ and ω should satisfy µω + λρ = 0. In addition, the
equations corresponding to the last version enumerated in Item 2 admit
additional equivalence transformation 6 given by formula (2.10).
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Table 8. Symmetries of equations (1.3) with matrix A of type
I∗, II and non-linearities f1 = (µu1 − σu2) lnR+ z(λu1 − νu2),

f2 = (µu2 + σu1) lnR+ z(λu2 + νu1)

No Conditions Main symmetries Additional
for coefficients symmetries

1.
λ = 0,
µ = ν

eµt ∂
∂z
,

For II : Ĝα

if aσ = 0, µ 6= 0

eµt
(
R ∂
∂R

+ σt ∂
∂z

) For II : Gα

if a = ν = 0, σ 6= 0

For I∗ : Ĝα

if σ = 0, µ 6= 0

2.
λ = 0,
µ 6= ν,

eνt ∂
∂z
,

eµt
(
σ ∂
∂z

+ (µ− ν)R ∂
∂R

)
For II : Ĝα if aσ=ν − µ,

µ 6= 0 or a = 0, µ 6= 0

For II : Gα

if aσ = ν, µ = 0

For I∗ : Ĝα

if µ 6= 0, σ = 0

For I∗ : Gα

if µ = 0, σ = 0

3.
δ = 0,
λ 6= 0

X3 = eω0t
(
2λR ∂

∂R

+ (ν − µ) ∂
∂z

)
,

For II : Ĝα

if µ 6= −ν
a(µ− ν) = 2λ

For II : Gα

if aν = −λ, ω0 = 0

For I∗ : Ĝα

if µ = ν 6= 0

For I∗ : Gα

if µ = ν = 0

4.
λ 6= 0,
δ = 1

eω+t
(
λR ∂

∂R

+ (ω+ − µ) ∂
∂z

)
,

Ĝα if µν 6= λσ,
λ = a(ν − µ+ aσ)

eω−t
(
λR ∂

∂R

+ (ω− − µ) ∂
∂z

) Gα if νµ = λσ, λ = −aµ

For I∗ : Ĝα

if σ = 0, µ 6= 0

For I∗ : Gα

if σ = µ = 0

5. δ = −1

exp(ω0t)
[
2λ cos tR ∂

∂R

+ ((ν − µ) cos t

−2 sin t) ∂
∂z

]
,

exp(ω0t)
[
2λ sin tR ∂

∂R

+ ((ν − µ) sin t
+2 cos t) ∂

∂z

]

none
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All equations enumerated in Table 8 admit additional equivalence
transformations 15 from the list (2.10).

Table 9. Symmetries of equations (1.3) with non-linearities

f1 = λu2 + µu1 lnu1, f
2 = λ

u2
2
u1

+ (σu1 + µu2) lnu1 + νu2 and
matrices A of type III (and I∗ if a = 0)

No Conditions Main symmetries Additional
for coefficients symmetries

1.
λ = 0,
µ 6= ν

eνtu1
∂
∂u2

,
ψν

∂
∂u2

if µ = 0,

& Gα if
aν = σ 6= 0

eµt
(
(µ− ν)R ∂

∂R
+ σu1

∂
∂u2

) Ĝa, if µ 6= 0,

σ = a(ν − µ) 6= 0

2. λ = 0, µ = ν
eµtu1

∂
∂u2

,

eµt
(
R ∂
∂R

+ σtu1
∂
∂u2

)
ψ0

∂
∂u2

if µ = 0,

σ 6= 0
& D + u2

∂
∂u2

if a = 0

Ĝa if σ = 0, µ 6= 0

3.
σ = 0,
µλ 6= 0,

eνt (λR∂R + (µ− ν)u∂v)
Ga if ν = 0,

µ = −λ

µ 6= ν, a = 1 eµtR∂R Ĝa if ν − µ = λ

4.
δ = 0
µ+ ν = 2ω0,
λ 6= 0

X4 = eω0t
(
2λR ∂

∂R

+(ν − µ)u1
∂
∂u2

)
,

Ga if ω0 = 0,

ν = −aλ &
D + 2u1

∂
∂u1

if a = 0

2eω0tu1
∂
∂u2

+ tX4
Ĝa, if ω0 6= 0,

2aλ = µ− ν

5.
λ 6= 0,
δ = 1,

eω+t
(
λR ∂

∂R
+(ω+ − µ)u1

∂
∂u2

)
,

Ga, if µ = aλ,

µν = λσ

ω± = ω0 ± 1 eω−t
(
λR ∂

∂R
+(ω− − µ)u1

∂
∂u2

) Ĝα, if µν 6= λσ,

µ− ν = λ− σ,
a = 1 or
σ = a = 0, µ 6= 0

6. δ = −1,

eω0t[2λ cos tR ∂
∂R

+((ν−µ) cos t− 2 sin t)u1
∂
∂u2

],

eω0t[2λ sin tR ∂
∂R

+((ν−µ) sin t+ 2 cos t)u1
∂
∂u2

]

none

If λ = µ = 0 or λ = ν = 0 then the related equation (1.3) admits
additional equivalence transformations 16 or 6 from the list (2.10) corre-
spondingly.

Tables 3–9 present results of group classification of equations (1.3)
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with invertible diffusion matrix A. The results present in Tables 3–7 are
valid for equations with the singular matrix A of type IV also but do not
exhaust all non-equivalent non-linearities for such equations. Moreover,
the equations with singular diffusion matrix admit strong equivalence
transformations u1 → u1, u2 → ε(u2) where ε(u2) is an arbitrary function
of u2 which reduce the number of non-equivalent symmetries in Tables
3–9 for a = 0.

The completed group classification of equations (1.3) with matrix A
of type IV is given in paper [21]

11. Classification of Reaction-Diffusion Equations
with Nilpotent Diffusion Matrix

To complete the classification of systems (1.3) we need to consider the
remaining class of these equations when matrix A belongs to type V , i.e.,
is nilpotent. The procedure of classification of such equations appears to
be more complicated then in the case of invertible or diagonalizable dif-
fusion matrix. The general form of symmetry admitted by this equation
is given by equation (4.13) while the classifying equations take the form
(4.14).

A specific feature of symmetries (4.13) is that the coefficient B3 can be
a function of u1. One more specific point in the classification of equations
with matrix A of type V is that they admit powerful equivalence relations

u1 → u1, u2 → u2 + Φ(u1) (11.1)

and
u1 → u1, u2 → u2 + Φ̂(u1, t, x) (11.2)

which did not appear in our analysis presented in the previous sections.
Transformation (11.1) (where Φ(u1) is an arbitrary function of u1) are

admitted by any equation (1.3) with matrix A of type V . Transformations
(11.2) are valid for the cases when f1 does not depend on u2 and at the
same time f2 is linear in u2. Moreover, the related functions Φ̂(u1, t, x)
should satisfy the following system of equations

f2
u2

Φ̂t − Φ̂tt − f1Φ̂tu1 = 0,

f2
u2

Φ̂xν − Φ̂txν − f1Φ̂u1xν = 0
(11.3)

Thus the group classification of equation (1.3) with the nilpotent diffu-
sion matrix is reduced to solving the classifying equations (4.14) with ap-
plying the equivalence transformations discussed in Section 2 and trans-
formations (11.1), (11.2) as well. To do this we again use the analysis
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of low dimension algebras A whose results are given in the Appendix.
We will not reproduce the related routine calculations but present the
classification results in Tables 8–10.

In Tables 8–10 we use without explanations all the notations applied
in Tables 1–9. In addition, a number of classified equations appear a
specific symmetry W∂u2 where W is a function of t, x and u1 which solve
the following equation:

f2
u2

−Wt −Wu1f
1 = 0.

Table 10. Non-linearities with arbitrary functions for
equations (1.3) with nilpotent diffusion matrix

No Nonlinear terms
Argu-
ments
of Fα

Symmetries

1.
f1 = F1u

µ−ν
1 ,

f2 = F2u
µ
1

u
ν+1
1

u2

Q1 = (µ− 1)D − νt ∂
∂t

−u1
∂
∂u1

− (ν + 1)u2
∂
∂u2

& (m− 2)x2 ∂
∂xa

− xaQ1

if ν(m− 2) = 4,

µ(m− 2) = m+ 2, m 6= 2

2.

f1 = F1u1u
µ−1
2 ,

f2 = F2u
µ
2 ,

F2 6= 0

u1

µD − t ∂
∂t

− u2
∂
∂u2

& eW ∂
∂u2

if µ = 1

& Ha ∂
∂xa

−Hb
xb
u2

∂
∂u2

if m = 2

3.
f1 = F1u

−1
2 ,

f2 = F2 + νu2

u1

eνt
(
∂
∂t

+ νu2
∂
∂u2

)

& eW ∂
∂u2

if F1 = 0

4.
f1 = F1u

µ−1
2 ,

f2 = F2u
µ
2

u2e
u1 µD − t ∂

∂t
− u2

∂
∂u2

+ ∂
∂u1

5.
f1 = F1

u2
+ ν,

f2 = F2 + νu2

u2e
u1 eνt

(
∂
∂t

+ νu2
∂
∂u2

− ν ∂
∂u1

)

6. f1 = 0, f2 = F2 u2

Ψ0(x)
∂
∂u1

,

xa
∂
∂xa

+ 2u1
∂
∂u1

7. f1 = F1, f
2 = 0 u1

eW ∂
∂u2

,

xa
∂
∂xa

− 2u2
∂
∂u2

8.

f1 = ν
µ−1

u1 + F1u
2−µ
1 ,

f2 = µν

µ−1
u2 + F2u1,

µ 6= 1

u2u
−µ
1

eνt
(
(1 − µ)t ∂

∂t
− νu1

∂
∂u1

−νµu2
∂
∂u2

)
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9.
f1 = u1F1, m = 1

f2 = u2F2 + u1

u2u
3

Q2 =cos(2x)
(
u1

∂
∂u1

− 3u2
∂
∂u2

)

+ sin(2x)x ∂
∂x
, Q3 = (Q2)x

10.
f1 = u1F1, m = 1
f2 = u2F2 − u1

u2u
3
1

Q4 =e2x
(
∂
∂x

+ u1
∂
∂u1

− 3u2
∂
∂u2

)
,

Q5 =e−2x
(
∂
∂x

− u1
∂
∂u1

+ 3u2
∂
∂u2

)

11.

f1 = F1,

f2 = u2F2,

m = 2

u2e
u1 Ha ∂

∂xa
−Hb

xb

(
u2

∂
∂u2

− ∂
∂u1

)

12. f1 = νe
u2
u1 ,

f2 = e
u2
u1 F

u1 D − u1
∂
∂u2

13.
f1 = F1,

F2 = u2F2 + F3

u1 eW ∂
∂u2

14.
f1 = eνu2F1,

f2 = eνu2F2

u1 νD − ∂
∂u2

15.
f1 = eνu1F1,

f2 = eνu1F2

u2 νD − ∂
∂u1

16.
f1 = νu1 + F1,

f2 = µu1 + F2

u2 e(ν−aµ)tΨµ(x)
∂
∂u1

17.

f1 = u1(F1 + ν lnu1),

f2 = u2(F2 + ν lnu1),

ν 6= 0

u1

u2
eνt(u1

∂
∂u1

+ u2
∂
∂u2

)

18.

f1 = u1F1 − νu2,

f2 = ν u2

u1
(u2 − u1)

+u1F2 − u2F1

u1e
u2
u1

eνt
(
u1

∂
∂u2

− u1
∂
∂u1

− u2
∂
∂u2

)

& Ĝα if a = 1

19.
f1 = uν+1

1 F1,

f2 = uν1 (F2u1 − F1u2)
u1e

u2
u1

νD + u1
∂
∂u2

− u1
∂
∂u1

− u2
∂
∂u2

& Gα if ν = 0, a = 1

20.
f1 = uµ+1

1 F1,

f2 = uµ+1
1 F2

u2

u1
µD − u1

∂
∂u1

− u2
∂
∂u2

For the non-linearities enumerated in Items 2 (when µ = 1), 3 (when
F1 = 0), 4 and 8 of Table 8 the related equation (1.3) admits additional
equivalence transformations (11.2). In addition, transformations (2.4)
and (11.1) and some equivalence transformations from the list (2.10) are
admissible, namely, transformations 9 for the non-linearities given in Item
1 (when ν = −1, µ = 0) and Item 6, Item 6,Item 18, Item 19 and Item 20
transformations 1 with ρ = ω for the non-linearities from Item I (when
ν = 1, µ = 0), Item 20 (when µ = 0) and Items 18, 19. Finally for f1

and f2 present in Item 7 transformation 3 of (2.10) is admissible.
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Table 11. Non-linearities with arbitrary parameters and
extendible symmetries for equations (1.3) with nilpotent

diffusion matrix

No Non-linearities
Main
symmetries

Additional
symmetries

AET
(2.10)

1.
f1 = λuν+1

1 uµ2 ,

f2 = σuν1u
µ+1
2

(µ+ ν)t ∂
∂t

−(µ+ 1)u1
∂
∂u1

+(ν − 1)u2
∂
∂u2

xaQ6 − 2κx2 ∂
∂xa

if

κ(m+ 2) = ν,
κ(2 −m) = µ

Q6 = 2µu1
∂
∂u1

+(µ+ ν)xa
∂
∂xa

−2νu2
∂
∂u2

eW ∂
∂u2

if λ = 0,

µ = −1 & 2x2 ∂
∂xa

−(m− 2)xaQ6 if
ν = m+2

m−2
, m 6= 2

17,
3, 6

Ψ0(x)
∂
∂u1

, if

σ = 0, ν = −1, &
xaQ6 + 2

m+2
x2 ∂

∂xa

if µ = m−2
m+2

, m 6= 2

17,
9

Ψ0(x)
∂
∂u1

if λ = ν = 0

17,
9

eW ∂
∂u2

if µ = 0 &

Ha ∂
∂xa

− ∂Ha

∂xa
u2

∂
∂u2

if m = 2

17 &
6 if
λ = σ

2.
f1 = λuν+1

1 u−1
2 ,

f2 = σuν1 + εu2,
eεt
(
∂
∂t

+ εu2
∂
∂u2

)
,

Q′
6 = Q6|µ=−1

xaQ
′
6 −

2
m−2

x2 ∂
∂xa

if ν = m+2
m−2

, m 6= 2

λ 6= 0
Ψ0(x)

∂
∂u1

if

σ = 0, ν = −1
9

u2
∂
∂u2

+ u1
∂
∂u1

if σ = 0, ν = 1
1

3.
f1 = λeνu1 ,

f2 = σe(ν+1)u1 ,

(ν + 1)D − u2
∂
∂u2

−t ∂
∂t

− ∂
∂u1

,

eW ∂
∂u2

ν
(
u2

∂
∂u2

+ t ∂
∂t

)

− ∂
∂u1

if σ = 0

17,
3

λσ = 0 u2
∂
∂u2

+ t ∂
∂t

if λ = 0

10,
3, 6

4.
f1 = λe(ν+1)u2 ,
f2 = σeνu2

(ν − 1)D − u1
∂
∂u1

+t∂t −
∂
∂u2

,

Ψ0(x)
∂
∂u1

ν
(
u1

∂
∂u1

− t ∂
∂t

)

+ ∂
∂u2

if λ = 0

9
for

any λ

5.
f1 = λuµ−1

2 eu1 ,
f2 = σuµ2 e

u
1

D − ∂
∂u1

,

t∂t+u2
∂
∂u2

−µ ∂
∂u1

eW if µ = 1 &

Ha ∂
∂xa

− ∂Ha

∂xa
u2

∂
∂u2

if m = 2

17 if
µ = 1

6.
f1 = λ lnu2,

f2 = σu
µ+1

2

2

µD − µ+1
2
t ∂
∂t

− 1−µ
2
u1

∂
∂u1

−u2
∂
∂u2

− λt ∂
∂u1

,

Ψ0(x)
∂
∂u1

xa
∂
∂xa

+ 2u1
∂
∂u1

,

u1
∂
∂u1

+ 2u2
∂
∂u2

+t∂t + 2λt ∂
∂u1

if σ = 0

9
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Table 12. Non-linearities with arbitrary parameters and non
extendible symmetries for equations (1.3) with a = 0

No Non-linearities
Condi-
tions

Symmetries
AET
(2.10)

1.
f1 = λu3µ+1

1 uµ2 ,

f2 = σu3µ
1 uµ+1

2 − αu1,

µ 6= 0,
m = 1,
α = −1

Q7 = 4µt ∂
∂t

−(µ+ 1)u1
∂
∂u1

+(3µ− 1)u2
∂
∂u2

,

Q2, Q3

µ 6= 0,
m = 1,
α = 1

Q4, Q5, Q7

2. f1 = λu−2
1 u−1

2 ,
m = 1,
α = −1

eεt
(
∂
∂t

+ εu2
∂
∂u2

)
,

Q2, Q3

17 if

f2 = σu−3
1 + εu2 − αu1

m = 1,
α = 1

eεt
(
∂
∂t

+ εu2
∂
∂u2

)
,

Q4, Q5

λ=0

3.
f1 = λuµ+1

2 ,

f2 = σuµ−ν+1
2

µ 6= −1

(µ− 2ν)D + νt ∂
∂t

−u2
∂
∂u2

− (ν + 1)u1
∂
∂u1

,

Ψ0(x)
∂
∂u1

9

4. f1 = λu2, f
2 = e−u2 λ 6= 0

2D − t∂t + u1
∂
∂u1

+ ∂
∂u2

+ λt ∂
∂u1

,

Ψ0(x)
∂
∂u1

9

5.
f1 = λeu2 ,

f2 = σeu2

λσ 6= 0 D − ∂
∂u2

, Ψ0(x)
∂
∂u1

9

6.
f1 = λuν+1

1 e
µ

u2
u1 ,

f2 = e
µ

u2
u1 (λu2 + σu1)u

ν
1

µλ 6= 0
µD − u1

∂
∂u2

,

νD − u1
∂
∂u1

− u2
∂
∂u2

7.
f1 = µ lnu2,
f2 = ν lnu2

ν 6= 0

Ψ0(x)
∂
∂u1

,

D + u1
∂
∂u1

+ u2
∂
∂u2

+
(
µt− ν

2m
x2
)

∂
∂u1

9

8. f1 = 0, f2 = ε lnu1 ε = ±1

D − t∂t + u1
∂
∂u1

+εt ∂
∂u2

, t∂t + u2
∂
∂u2

,

Φ(u1, x)
∂
∂u2

3, 6,
17

9.
f1 =ε (lnu2−κ lnu1)u1,
f2 =ε (lnu2−κ lnu1)u2

m 6= 2,
κ 6= m+2

m−2

(1 − κ)xa
∂
∂xa

+2κu2
∂
∂u2

+ 2u1
∂
∂u1

,

e(1−κ)εt
(
u1

∂
∂u1

+ u2
∂
∂u2

)

1,
ρ=ω

if
κ=1

10.
f1 = εu1 ((m+ 2) lnu1

+(2 −m) lnu2) ,
m 6= 1, 2
α = 0

Q1, xaQ1 − x2∂xa,

e4εt
(
u1

∂
∂u1

+ u2
∂
∂u2

)

f2 = εu2 ((m+ 2) lnu1

+(2 −m) lnu2) − αu1

m = 2,
α = 0

Ha ∂
∂xa

−Ha
xa
u2

∂
∂u2

,

e4εt
(
u1

∂
∂u1

+ u2
∂
∂u2

)
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m = 1,
α = 1,
ε = 1

Q2, Q3,

e4t
(
u1

∂
∂u1

+ u2
∂
∂u2

)

m = 1,
α = 1,
ε = −1

Q4, Q5,

e−4t
(
u1

∂
∂u1

+ u2
∂
∂u2

)

11.
f1 = µu1 lnu1,

f2 = µu2 lnu1 + νu2

µ 6= 0
eW ∂

∂u2
,

eµt(u1
∂
∂u1

+ u2
∂
∂u2

)
17

12.

f1 = εu2,

f2 = λ
u2
2

u1
+ 2νu2

+σu1 lnu1

λ = ±1,
σ = ∓ν2

Q8 = eνt(λ(u1
∂
∂u1

+ u2
∂
∂u2

)

+νu1
∂
∂u2

),

eνtu1
∂
∂u2

+ tQ8

λ 6= 0,
ν2 + λσ = 1

X± = eν±1(λ(u1
∂
∂u1

+u2
∂
∂u2

) + (ν ± 1)u1
∂
∂u2

)

1,
ρ=ω

if
σ=0

λ 6= 0,
ν2 + λσ
= −1

eνt(λ cos t(u1
∂
∂u1

+ u2
∂
∂u2

)

+(ν cos t− sin t)u1
∂
∂u2

),

eνt(λ sin t(u1
∂
∂u1

+ u2
∂
∂u2

)

+(ν sin t+ cos t)u1
∂
∂u2

)

12. Discussion

In this paper we present the completed group classification of systems
of two coupled reaction-diffusion equations with general diffusion matrix.
In other words we specify essentially different equations of this type de-
fined up to equivalence transformations and describe their symmetries.

We consider only nonlinear equations, i.e., exclude the cases when f1

and f2 in the right hand side of (1.3) are linear in u1, u2. Such cases are
presented in paper [23].

The analyzed class of equations includes six non-equivalent subclasses
corresponding to different canonical forms of diffusion matrix A enumer-
ated in (2.2). In the particular case when matrix A has the forms I and I∗

from (2.2) our results can be compared with those of [7] and also [3]–[5].
Paper [7] was apparently the first work were the problem of group

classification of equations (1.3) with a diagonal diffusion matrix was for-
mulated and partially solved. Unfortunately, the classification results
presented in [7] are incomplete and in many points incorrect. Thus, all
cases enumerated above in Table 7, Items 1,2 of Table 3, Items 1,2, 7-10,
15 of Table 4, Items 2, 12, 16 and 17 of Table 6, were overlooked, sym-
metries of equations with non-linearities given in Items 1 and 2 of Table
5 were presented incompletely, etc.

In papers [3]–[5] Lie symmetries of the same equations and also of sys-
tems of diffusion equations with the unit diffusion matrix were classified.
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The results obtained in [3]–[5] are much more advanced then the pioneer
Davidov ones, nevertheless they are still incomplete. In particular, the
cases indicated above in Items 5 and 6 of Table 3; Items 12–14 of Table
4; the last line of Item 1, Item 9 and Item 11 for a=1 of Table 5; Items
15 and 22 of Table 6 and Item I for σ = 0, µ 6= 0 of Table 7 were not
indicated in [5], which is in conflict with the statement of Theorem 1
formulated here. Moreover, many of equations presented in [5] as non-
equivalent ones, in fact are equivalent one to another even in frames of
equivalence relations (7) of [3]. The related examples are not enumerated
here in as much as we believe that all non-equivalent equations (1.3) with
different symmetries are present in Tables 1–9.

Except the points mentioned in the previous paragraph our results
concerning equations with a diagonal diffusion matrix are in accordance
with ones obtained in [3]–[5].

Consider examples of well known reaction diffusion equations which
appear to be particular subjects of our analysis.

• The Jackiw-Teitelboim model of two-dimension gravity with the
non-relativistic gauge [19]

∂

∂t
u1 −

∂2u1

∂x2
− 2ku1 + 2u2

1u2 = 0,

∂

∂t
u2 +

∂2u2

∂x2
+ 2ku2 − 2u1u

2
2 = 0

(12.1)

admits the equivalence transformation 1 (2.10) for ρ = −ω. Choos-
ing ρ = 2k we transform equation (12.1) to the form (1.2) where
a = −1, f1 = −2u2

1u2 and f2 = 2u2
2u1. The symmetries corre-

sponding to these non-linearities are given in the first line of Table
5. Symmetries of equations (12.1) were investigated in paper [16].
In accordance with our analysis, generalized equation (12.1) with
two spatial variables admits additional conformal symmetry gener-
ated by operator K (4.5).

• The primitive predator-prey system can be defined by [20]

u̇1 −D
∂2u1

∂x2
= −u1u2, u̇2 − λD

∂2u2

∂x2
= u1u2.

and this is again a particular case of equation (1.2) with the non-
linearities given in the first line of Table 3 where however µ=ν=1,
F1 = −F2 = u1

u2
. In addition to the basic symmetries 〈 ∂∂t , ∂∂x〉 this

equation admits the (main) symmetry:

X =

(
D − 2u1

∂

∂u1
− 2u2

∂

∂u2

)
.
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• The λ− ω reaction-diffusion system

u̇1 = D∆u1 +λ(R)u1 −ω(R)u2, u̇2 = D∆u2 +ω(R)u1 +λ(R)u2,
(12.2)

where R2 = u2
1 + u2

2, has symmetries that were analyzed in paper
[1]. Again we recognize that this system is a particular case of (1.2)
with non-linearities given in Item 6 of Table 4 with µ = ν = 0.
Hence it admits the five dimensional Lie algebra generated by main
symmetries (2.2) with µ, ν = 1, 2 and:

X =

(
u1

∂

∂u2
− u2

∂

∂u1

)
(12.3)

which is in accordance with results of paper [1] for arbitrary func-
tions λ and ω. Moreover, using Table 5, Item 8 we find that for the
cases when

λ(R) = λ̃Rν , ω = σRν (12.4)

equation (12.2) admits additional symmetry with respect to scaling
transformations generated by the operator:

X =

(
u1

∂

∂u2
− u2

∂

∂u1

)
+ νD. (12.5)

The other extensions of the basic symmetries correspond to the
case when λ(R) = µ ln(R), ω(R) = σ ln(R), the related additional
symmetries are given in Table 8 where ν = λ = 0.

• The nonlinear Schrödinger equation (NSE) in m-dimensional space:

(
i
∂

∂t
− ∆

)
ψ = F (ψ,ψ∗) (12.6)

also is a particular case of (1.2). If we denote ψ = u1 + iu2, F =

f1+if2 then (12.6) reduces to the form (1.3) with A =

(
0 −1
1 0

)
.

In other words, any solution given in Tables 3–6, 8 with matrices
A belonging to Class II gives rise for the NSE (9.4) that admits a
main or extended symmetry. Thus our analysis makes it possible to
present the completed group classification of the NSE as a particular
case of general study of systems of reaction-diffusion equations with
arbitrary diffusion matrix. Our results are in complete accordance
with ones obtained in paper [22] where symmetries of the general
NSE were described.
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Among the solutions present in Tables 3–6, 8 we recognize ones
which correspond to the well-known non-linearities [11]

F = F (ψ∗ψ)ψ, F = (ψ∗ψ)kψ, F = (ψ∗ψ)
2
mψ, F = ln(ψ∗ψ)ψ

One more interesting particular case of the NSE with extended
symmetry can be found using Table 6 Item 1 for ν = 2,m = 1:

(
i
∂

∂t
− ∆

)
ψ = (ψ − ψ∗)2

which is a potential equation for the Boussinesq equation for func-
tion V = ∂

∂t(ψ − ψ∗).

• Generalized complex Ginzburg-Landau (CGL) equation

∂W

∂τ
− (1 + iβ)∆W = F (W,W ∗) (12.7)

is a particular case of system (1.3) with matrix A belonging to
Class II with a 6= 0, refer to (2.2). Indeed, representing W and
F as W = (u1 + iu2), F = β(f1 + if2) and changing independent
variable τ → t = βτ we transform (12.7) to the form (1.3) with

A =

(
β−1 −1
1 β−1

)
. All non-equivalent non-linearities f1, f2 and

the corresponding symmetries are given in Table 3, Items 1, 3,
Table 4, Items 5, 6, 15, Table 5, Items 8, 10, Table 6, Items 1, 4, 11
and Table 8. The ordinary CGL equation corresponds to the case
F = W − (1+ iα)W |W |2,m = 2 and admits basic symmetries (5.1)
only.

• Non-autonomous dynamical systems in phase space [8]

∂u1

∂t
− ∂2u1

∂x2
−A(u1, u2) = h1(t, x),

∂u2

∂t
+ α

∂u1

∂t
− ∂2u2

∂x2
− νu1 = h2(t, x)

(12.8)

also are equivalent to a system of type (1.3) at least in the case of
constant h1 and h2. The related matrix A belongs to Type III.
Using the results present in Tables 3–6 and 9 we can specify all cases
when the considered system admits main or extended symmetries.

We see that the class of equations which is classified in present paper
includes a number of important particular systems. Moreover, we present
a priori description of symmetries of all possible systems of two reaction-
diffusion equations with general diffusion matrix.
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Appendix

A.1. Algebras A for Equations (1.3) with Diagonal
Diffusion Matrix

Let us consider equation (1.3) with a diagonal matrix A (version I of
(2.2) where a 6= 0) and find the related low-dimension algebras A. In this
case matrix (9.5) and the equivalence transformation matrix (9.7) reduce
to the forms

g =




0 0 0
B1 C11 0
B2 0 C22


 ∼




0 0 0
µ1 µ11 0
µ2 0 µ22


 (A.1.1)

and

U =




1 0 0
b1 K1 0
b2 0 K2


 . (A.1.2)

Up to equivalence transformations (9.6), (A.1.2) there exist three non-
equivalent matrices (A.1.1), namely

g1 =




0 0 0
0 1 0
0 0 λ


 , g2 =




0 0 0
1 0 0
0 0 1


 , g3 =




0 0 0
λ 0 0
1 0 0


 .

(A.1.3)
In accordance with (9.1)–(9.4) the related symmetry operator can be

represented in one of the following forms

X1 = µD − 2(ga)bcũc
∂

∂ub
, X2 = eλt(ga)bcũc

∂

∂ub
(A.1.4)

or

X3 = eλt+ω·x
(

∂

∂u2
+ µ

∂

∂u1

)
. (A.1.5)

Here (ga)bc are elements of matrices (A.1.3), b, c = 0, 1, 2, ũ = column
(u0, u1, u2), u0 = 1.

Formulae (A.1.4) and (A.1.5) give the principal description of one-
dimension algebras A for equation (1.3), with matrix A of type I.

To describe two-dimension algebras A we classify matrices g (A.1.1)
forming two-dimension Lie algebras. Choosing one of the basis elements
in the forms given in (A.1.3) and the other element in the general form
(A.1.1) we find that up to equivalence transformations (9.6) there exist
six algebras 〈e1, e2〉:

A2,1 = {g̃1, g4}, A2,2 = {g̃1, g̃3}, A2,3 = {g5, g̃3}, (A.1.6)
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A2,4 = {g1, g5}, A2,5 = {g′1, g3}, A2,6 = {g2, g̃3} (A.1.7)

where g̃1 = g1|λ=0, g′1 = g1|λ=1, g̃3 = g3|λ=0, and

g4 =




0 0 0
0 0 0
0 0 1


 , g5 =




0 0 0
1 0 0
0 0 0


 . (A.1.8)

Algebras (A.1.6) are Abelian while algebras (A.1.7) are characterized
by the following commutation relations:

[e1, e2] = e2 (A.1.9)

where e1 is the first element given in the brackets (A.1.7), i.e., for A2,4 e1 =
g1, etc.

Using (A.1.6), (A.1.7) and applying arguments analogous to those
which follow equations (6.2) we easily find pairs of operators (5.2) forming
Lie algebras. Denoting

êα = (eα)abũb
∂

∂ua
, α = 1, 2

we represent them as follows:

〈µD + ê1 + νtê2, ê2〉, 〈µD + ê2 + νtê1, ê1〉,
〈µD − ê1, νD − ê2〉, 〈F1ê1 +G1ê2, F2ê1 +G2ê2〉

(A.1.10)

for e1, e2 belonging to algebras (A.1.6), and

〈µD − ê1, ê2〉, 〈µD + ê1 + νtê2, ê2〉 (A.1.11)

for e1, e2 belonging to algebras (A.1.7).
Here µ and ν are parameters which can take on any (including zero)

finite values, {F1, G1} and {F2, G2} are fundamental solutions of the
following system

Ft = λF + νG, Gt = σF + γG (A.1.12)

with arbitrary parameters λ, ν, σ, γ.
The list (A.1.10)–(A.1.11) does not includes algebras spanned on the

vectors 〈F ê, Gê〉 (with F,G satisfying (A.1.12)) and 〈µD + λeνt+ω·xê,
eνt+ω·xê〉 which are either incompatible with classifying equations (4.6)
or reduce to one-dimension algebras. In the following we ignore algebras
A which include such subalgebras.

All the other two-dimension algebras A can be reduced to one of the
form given in (A.1.10), (A.1.11) using equivalence transformations (2.4),
(6.7).
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There exist one more type of (m+2)-dimensional algebras A generated
by two-dimension algebras (A.1.6), namely:

〈µD + ê1 + (αt+ λσρxσxρ)ê2, xν ê2, ê2〉

where ν, σ, ρ run from 1 to m. The related classifying equations generated
by all symmetries x1ê2, x2ê2, · · · , xmê2 and ê2 coincides and we have the
same number of constrains for f1, f2 as in the case of two-dimension
algebras A.

Up to equivalence there exist three realizations of three-dimension
algebras in terms of matrices (A.1.3), (A.1.8):

A3,1 : e1 = g̃1, e2 = g4, e3 = g̃3,
A3,2 : e1 = g5, e2 = g4, e3 = g̃3,

(A.1.13)

A3,3 : e1 = g′1, e2 = g5, e3 = g̃3. (A.1.14)

Non-zero commutators for matrices (A.1.13) and (A.1.14) are [e2, e3]
= e3 and [e1, eα] = eα(α = 2, 3). The algebras of operators (5.2) corre-
sponding to realizations (A.1.13) and (A.1.14) are of the following general
forms:

〈µD − 2ê1, νD − 2ê2 − 2λtê3, ê3〉 (A.1.15)

and
〈µD − 2ê1 − 2νtê2 − 2σtê3, ê2, ê3〉,
〈ê1, F1ê2 +G1ê3, F2ê2 +G2ê3〉

(A.1.16)

respectively.
In addition, we have the only four-dimension algebra

Â4,1 : e1 = g̃1, e2 = g5, e3 = g̃3, e4 = g4 (A.1.17)

which generates the following algebras of operators (5.2):

〈µD − 2ê1 − 2νtê2, ê2, ê3, ê4〉,
〈µD − 2ê1 − 2νtê3, ê2, ê3, ê4〉,
〈µD − 2ê1, νD − ê4, ê2, ê3〉.

(A.1.18)

Thus we have specified all low dimension algebras A which can be
admitted by equations (1.3) with a diagonal (but not unit) matrix A.
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A.2. Algebras A for Equations (1.3) with A12 6= 0

Consider equation (1.3) with matrix A of type II (refer to (2.3)) and
find the corresponding algebras A. The related matrices (9.5) and (9.7)
are

g =




0 0 0
µ1 µ2 µ3

µ4 −µ3 µ5


 , U =




1 0 0
b1 k1 k2

b2 −k2 k3


 . (A.2.1)

Up to equivalence transformations (9.6), (A.2.1) there exist three ma-
trices g, namely

g′1 =




0 0 0
0 1 0
0 0 1


 , g5 =




0 0 0
1 0 0
0 0 0


 , g6 =




0 0 0
0 µ −1
0 1 µ


 (A.2.2)

and three two-dimension algebras of matrices g (A.2.1):

A2,7 = {g′1, g6}, A2,8 = {g5, g̃3}, (A.2.3)

A2,9 = {g′1, g5} (A.2.4)

where g̃3 is matrix (A.1.3) with λ = 0.
Algebras (A.2.3) are Abelian while the basis elements of A2,9 satisfy

commutation relations (A.1.9).
Like in previous subsection we easily find the related basis elements

of one-dimension algebras A in the form (A.1.4) and (A.1.5) for µ = 0.
The two-dimension algebras A generated by (A.2.3) and (A.2.4) again

are given by relations (A.1.10) and (A.1.11) respectively, where e1 and e2
are the first and second elements of algebras A2,7 −A2.9.

In addition, we have two three-dimension algebras

A3,3 : e1 = g′1, e2 = g5, e3 = g̃3;

A3,4 : e1 = g5, e2 = g6, e3 = g̃3
(A.2.5)

and the only four-dimension algebra:

A4,2 : e1 = g′1, e2 = g6, e3 = g̃3, e4 = g5. (A.2.6)

Algebra A3,4 generates algebras (A.1.16) while A3,5 corresponds to
(A.1.15) with ν = 0. Finally, A4,2 generates the following algebras A

〈µD − 2ê1, νD − 2ê2, ê3, ê4〉,
〈ê1, ê2, eµt+ν·xê3, eµt+ν·xê4〉.

(A.2.7)
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A.3. Algebras A for Equations (1.3) with
Triangular Matrix A

If matrix A belongs to type III given in (2.3) the related matrices
(9.5) and (9.7) take the form

g =




0 0 0
µ1 µ2 0
µ3 µ4 µ5


 , U =




1 0 0
b1 k1 0
b2 k2 k3


 . (A.3.1)

There exist six non-equivalent matrices g, i.e., matrices g′1, g3, g5
(A.1.3), (A.2.2), and the following ones

g7 =




0 0 0
0 1 0
0 1 1


 , g8 =




0 0 0
0 0 0
0 1 0


 , g9 =




0 0 0
1 0 0
0 1 0


 . (A.3.2)

In addition, we have six two-dimension algebras,

A2,3 = {g5, g̃3}, A2,10 = {g′1, g8},
A2,11 = {g8, g̃3}, A2,12 = {g9, g̃3},

(A.3.3)

A2,5 = {g′1, g3}, A2,13 = {g′1, g5}, (A.3.4)

four three-dimension algebras:

A3,3 : e1 = g′1, e2 = g5, e3 = g̃3,
A3,5 : e1 = g8, e2 = g′1, e3 = g̃3,
A3,6 : e1 = g̃3, e2 = g8, e3 = g9,
A3,7 : e1 = g̃3, e2 = g5, e3 = g7

(A.3.5)

and the only four-dimension algebra:

A4,3 : e1 = g̃3, e2 = g5, e3 = g′1, e4 = g8. (A.3.6)

Algebras (A.3.3) are Abelian while (A.3.4) are characterized by com-
mutation relations (A.1.9). The related two-dimension algebras A are
given by formulae (A.1.10) and (A.1.11) respectively.

Algebra A3,3 generates three-dimension algebras A enumerated in
(A.1.16). Algebra A3,5 is isomorphic to A3,1 and so we come to the related
algebras A given in (A.1.15). Algebras A3,6 and A3,7 are characterized
by the following non-zero commutators

[e2, e3] = e1 (A.3.7)

and
[e1, e2] = e2, [e1, e3] = e2 + e3 (A.3.8)
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respectively.
Using (A.3.7) and (A.3.8) we come to the following related three-

dimension algebras A :

〈µD − 2ê2, νD − 2ê3, ê1〉, 〈ê1, D + 2eα + 2νtê1, êα′〉,
〈eνt+ω·xê1, eνt+ω·xêα, êα′〉

(A.3.9)

where α, α′ = 2, 3, α′ 6= α, and

〈µD − 2ê1, ê2, ê3〉, 〈ê1, eνt+ω·xê2, eνt+ω·xê3〉. (A.3.10)

Finally, four-dimension algebras A corresponding to A4,3 have the
following general form

〈µD − 2ê1, νD − 2ê2, ê3, ê4〉, 〈eνt+ω·xê1, eνt+ω·xê2, ê3, ê4〉 (A.3.11)

A.4. Algebras A for Equations (1.3) with the Unit Matrix A

Group classification of these equations appears to be the most com-
plicated. The related matrices g are of the most general form (9.5) and
defined up to the general equivalence transformation (9.6), (9.7). In
other words there are seven non-equivalent matrices (9.5), namely, g1, g2
(A.1.3), g5 , g6 (A.2.2) and g7 − g9 (A.3.2). In addition, we have fifteen
two-dimension algebras of matrices (9.5),

A2,1 = {g̃1, g4}, A2,2 = {g̃1, g̃3}, A2,3 = {g̃3, g5},
A2,10 = {g7, g8}, A2,11 = {g̃3, g8},
A2,12 = {g̃3, g9}, A2,13 = {g′1, g6},

(A.4.1)

A2,4 = {g1, g5}, A2,5 = {g′1, g3}, A2,6 = {g2, g̃3},
A2,14 = {g1|λ6=1, g8}, A2,15 = {g11,−g8}, A2,16 = {g9, g′′1},

A2,17 = {g4, g8}, A2,18 = {g7, g̃3}
(A.4.2)

where

g10 =




0 0 0
0 1 0
1 0 0


, g′′1 = g1|λ=2 =




0 0 0
0 1 0
0 0 2


 .

Algebras (A.4.1) are Abelian while algebras (A.4.2) are characterized
by relations (A.1.9).

Three-dimension algebras are A3,1 −A3,7 given by relations (A.1.13),
(A.2.5) and (A.3.3) (where tildes should be omitted) and also A3,8−A3,11

given below:
A3,8 : e1 = g1, e2 = g8, e3 = g̃3,
A3,9 : e1 = g4, e2 = g8, e3 = g̃3,
A3,10 : e1 = g2, e2 = g8, e3 = −g̃3,
A3,11 : e1 = g̃1, e2 = −g8, e3 = g̃4.
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Algebras (A3,8, A3,11) and A3,9 and A3,10 are isomorphic to A3,1 and
A3,3 and A3,6 respectively. The related algebras A are given by relations
(A.1.15), (A.1.16) and (A.3.9) correspondingly.

Finally, four-dimension algebras of matrices (9.6) are A4,1 , A4,2 and
A4,3 given by equations (A.1.17), (A.2.6) and (A.3.6), and also A4,4, A4,5

given below:

A4,4 : e1 = g1, e2 = g4, e3 = g8, e4 = g3;
A4,5 : e1 = g4, e2 = g8, e3 = g5, e4 = g3.

Using found algebras and solving the related equations (4.6) we easily
make the group classification of equations (1.3).
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