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Abstract. The completed group classification of systems of two cou-
pled nonlinear reaction-diffusion equation with general diffusion matrix
is carried out. The simple and convenient method for deduction and
solution of classifying equations is presented.
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1. Introduction

Group classification of differential equations is one of corner stones of
group analysis. Such classification specifies the origin of possible appli-
cations of powerful group-theoretical tools such as constructing of exact
solutions, group generation of solution families starting with known ones,
etc. A very important result of group classification consists in a pri-
ori description of mathematical models with a desired symmetry (e.g.,
relativistic invariance).

One of the most impressive results in group classification belongs to
S. Lie who had completely classified second order ordinary differential
equations [17|. It was Lie also who first presented the group classification
of partial differential equations (PDE), namely, he had classified linear
equations including two independent variables [18].

Using the classical Lie approach whose excellent presentation was
given in [25] it is not difficult to derive determining equations for possible
symmetries admitted by equations of interest. Moreover, to describe Lie
symmetries for a fixed (even if very complicated) equation is a purely
technical problem which is easily solved using special software packages.
However, the situation is changing dramatically whenever we try to search
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for Lie symmetries for an equation including an arbitrary element which
is not a priory specified, i.e., when we are interested in group classification
of an entire class of differential equations.

The main problem of group classification of a substantially extended
class of partial differential equations (PDEs) consists in effective solv-
ing of determining equations for coefficients of generators of symmetry
group. In general the determining equations are rather complicated sys-
tems whose variables are not necessarily separable.

A nice result in group classification of PDEs belongs to Dorodnitsyn
[26] who had classified nonlinear (but quasi linear) heat equations

Up — Ugy = f(u) (1.1)

where f is an arbitrary function of the dependent variable u, the sub-
scripts denote derivations w.r.t. the corresponding variables, i.e., u; =
Ou/ot and ug, = 0%*u/dz% Moreover, in paper [26] more general equa-
tions uy — (Kug), = f(u) were classified. The related determining equa-
tions appears to be easily integrable, which made it possible to specify
all non-equivalent non-linearities f (which are power, logarithmic and
exponential ones) which correspond to different symmetries of equation
(1.1). The non-classical (conditional) symmetries of (1.1) were described
by Fushchych and Serov [10] and Clarkson and Mansfield [6].

The results of group classification of equations (1.1) play an important
role in constructing of their exact solutions and qualitative analysis of the
nonlinear heat equation, refer, e.g. to [28|.

In the present paper we perform the group classification of systems
of the nonlinear reaction-diffusion equations

0 _
% — Alayug + ajpug) = fH(ug, ug),
(1.2)

Ous
2
5t A(agruy + agouz) = f*(u1, u2)
ul .
where u = < ) are function of ¢, x1, xs, ..., Ty, symbols a1, ai2, as1,
U2

ags denote real constants and A is the Laplace operator in R™. We shall
write (1.2) also in the matrix form:

ou
— — AAu= 1.3
L AAu=f (13)
fl
where A is a matrix whose elements are aiq,...a2 and f = 12 )

Mathematical models based on equations (1.2) are widely used in
mathematical physics and mathematical biology. Some of these models
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are discussed in [23] and in Section 12 of the present paper, the entire
collection of such models is presented in [20]. Thus the symmetry analysis
of equations (1.2) has a large application value and can be used, e.g.,
to construct exact solutions for a very extended class of physical and
biological systems. The comprehensive group analysis of systems (1.2)
is also a nice “internal” problem of the Lie theory which admits exact
general solution for the case of arbitrary number of independent variables
T1,X2y...,Tm-

Symmetries of equation (1.3) for the case of a diagonal (and invert-
ible) matrix A were investigated by Yu. A. Danilov |7]. Unfortunately,
the results presented in [7] and cited in the handbook [14] are neither
complete nor correct. We discuss these results in detail in Section 12.

Symmetry classification of equations (1.3) with a diagonal diffusion
matrix was presented in paper [3], then some results missing in [3| were
added in Addendum [4] and paper [5]. However, we shall demonstrate
that the results given in [3]-[5] are still incomplete, and add the list of
non-equivalent equations given in these papers.

We notice that symmetries of equations (1.3) with a diagonal diffusion
matrix was partly described in paper [15] were symmetries of more general
class of diffusion equations where studied.

Equations (1.3) with arbitrary invertible matrix A were investigated
in paper [23], the related results were announced in [24]. Unfortunately,
mainly due to typographical errors made during publishing procedure,
presentation of classification results in [23] was not satisfactory !.

In the present paper we give the completed group classification of
coupled reaction-diffusion equations (1.3) with an arbitrary diffusion ma-
trixes A. Moreover, we present a straightforward and easily verified pro-
cedure of solution of the determining equations which guarantees the
completeness of the obtained results. We also indicate clearly the equiva-
lence relations used in the classification procedure. In addition, we extend
the results obtained in [23| to the case of non-invertible matrix A.

The additional aim of this paper is to present a rather straightforward
and conventional algorithm for investigation of symmetries of a class of
partial differential equations which includes (1.3) as a particular case.
We will show that the classical Lie approach (refer, for example, [11],[25])
when applied to systems (1.3) admits a rather simple formulation which
can be used even by such investigators which are not experts in group
analysis of differential equations. Furthermore the algorithm may be

IThe tables presenting the results of group classification have been deformed and
cut off. It is necessary to stress that it was the authors fault, one of whom signed the
paper proofs without careful reading.
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used to search for conditional symmetries of (1.3) [23] (for definition of
conditional symmetries see [12]).

There exist two non-equivalent 2 x 2 matrices with zero determinant,
namely, the diagonal matrix with the only non-zero element and the
Jordan cell. We will consider the following generalized versions of the
related equation (1.2)

a - A = ! ) )
iup — Auy = f (U21 u3) (1.4)
Orua _pua,uul =f (Uh u2)

and )
Oup — p,uaMU’? =f (u17u2)7

Oyuz — Auy = f2(u1,uz).

Here p,, are arbitrary constants and summation is imposed over repeating
w=1,2--- ,m . Moreover, without loss of generality we set

(1.5)

PL=p2=""=DPm-1=0, pp =p. (1.6)

In the case p = 0 equations (1.4) and (1.5) are nothing but particular
cases of (1.2), which include such popular models of mathematical biology
as the FitzHung-Naguno [9] and Rinzel-Keller [27]| ones. In addition, (1.5)
can serve as a potential equation for the nonlinear D’alembert equation.

The determining equations for symmetries of equations (1.2) are rath-
er complicated systems of PDE including two arbitrary elements, i.e.,
unknown functions f! and f2. To handle them we use the approach
developed in paper [29] , whose main idea is to make a priori classification
of realizations of the related Lie algebras. In fact this method has roots
in works of S. Lie who used his knowledge of vector field representations
of Lie algebras in space of two variables to classify second order ordinary
equations [17]. In the case of partial differential equations we have no
hope to classify all related realizations of vector fields . However, for some
fixed classes of PDEs it appears to be possible to make this classification
restricting ourselves to realizations which are compatible with equations
of interest [29].

We notice that analogous technique was used earlier [13| to classify
the nonlinear Schrédinger equations with cubic nonlinearity and variable
coefficients.

In Section 2 we present the general equivalence transformations for
equations (1.3) which are valid for arbitrary nonlinearities f! and f2, and
give the list of additional equivalence transformations which are valid for
some fixed nonlinearities.

In Section 3 the simplified algorithm for investigation of symmetries
of systems of reaction-diffusion equation is presented.
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In Section 4 we deduce determining equations for symmetries admit-
ted by equations (1.3) and specify the general form of the related group
generators.

In Section 5 we present the kernel of symmetry group for equations
(1.3) and give definitions of main and extended symmetries.

In Sections 6-8 the results of group classification of equations (1.4)
and (1.5) are presented. Equations (1.3) with invertible diffusion matrix
are classified in Sections 9 and 10, the case of nilpotent diffusion matrix
is studied in Section 11.

In Section 12 we discuss the results of group classification and present
some important model equations which appear to be particular subjects of
our analysis. The Appendix includes a priori classification of realizations
of low dimension Lie algebras which are used in the main text to solve
the determining equations.

2. Equivalence Transformations

The problem of group classification of equations (1.2)—(1.5) will be
solved up to equivalence transformations.
We say the equation

iy — AAG = f(@) (2.1)

be equivalent to (1.3) if there exist an invertible transformation v —
o = Gu,t,x), t -t =T(tz,u), r — 2= X(tx,u) and f — f=
F(u,t,z, f) which connects (1.3) with (2.1). In other words the equiva-
lence transformations should keep the general form of equation (1.3) but
can change concrete realizations of matrix A and non-linear terms f! and
2.

Let us note that there are six ad hoc non-equivalent classes of equa-
tions (1.3) corresponding to the following forms of matrices A

10 . . (10 (a -1
s (10) ras (20 mas(n ).

10 1 0 0 0
- (D) s (10, van (00)

where a is an arbitrary parameter. Indeed any 2 x 2 matrix A can be
reduced to one of the forms (2.2) using linear transformations of depen-
dent variables and scaling independent variables in (1.3). For matrices [
and I11 it is possible to restrict ourselves to the cases a # 0,1 and a # 0

(2.2)
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respectively, but we prefer to reserve the possibility to treat version I* as
a particular case of versions I and I11.

The group of equivalence transformations for equation (1.3) can be
found using the classical Lie approach and treating f! and f? as addi-
tional dependent variables. In addition to the obvious symmetry trans-
formations

t—t'=t+a, z,— ), =Rz, +b (2.3)

where a, b, and R, are arbitrary parameters satisfying R, R\ = 0,2,
this group includes the following transformations

g = K%y +ba,  f*— MK,

2.4
t— )\_Qt, Ty — A_lxa (24)
where K are elements of an invertible constant matrix X commuting
with A, A # 0 and b, are arbitrary constants.
Let us specify the form of matrices K. By definition, K commutes
with A, so for the versions I-V present in (2.2) we have

I': K= < gﬁ g;z ) , K11Ko — Koy Kyz # 0; (2.5)
IIV: K= < [31 ng > K1 Ky # 0; (2.6)

IT - K:(ﬁ }?), K2+ K2 #0; (2.7)
I11,V : K:<I]§; [gl>, K #0. (2.8)

In addition, for the Case I there is one more transformation (2.4) with

K:(? é) 2\ =a. (2.9)

Such transformations reduce to the change a — % in the related matrix
A, i.e., to scaling the parameter a.

Equivalence transformations (2.4) are valid also for equations (1.4)
and (1.5) . The related matrices K are given in (2.6) and (2.8).

It is possible to show that there is no more extended equivalence re-
lations valid for arbitrary nonlinearities f' and f2. However, if functions
f1, f2 are fixed, the class of equivalence transformations is more extended.
In addition to transformations (2.4) it includes symmetry transformations
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which does not change the form of equation (1.3). Moreover, for some
classes of functions f!, 2 equation (1.3) admits additional equivalence
transformations (AET). The corresponding set of equivalence transfor-
mations for equation (1.3) can be found using the classical Lie approach
and treating f' and f? as additional dependent variables constrained by
the relations specifying the dependence of f!, f2 on u; and us.

In spite of the fact that we search for AET after description of sym-
metries of equations (1.3) and specification of functions f!, f2, for conve-
nience we present the list of the additional equivalence transformations
in the following formulae:

1
2
3.
4.
5
6
7.

10.

11.
12.
13.
14.

15.
16.
17.

up — exp(wt)uy, ug — exp(pt)us,

up — U1 + wt + A\gg + ,U$2, Uy — U2,
uyp — w1, Uz — Uy + pt + Ne +
up — uj + pt, ug — ug exp(pt),

u; — exp(wt)uy, ug — ug + wt,

up — u1, Uz — uz + ptug,

2
up — exp(wt)uy, ug — ug + W
2

uyp — exp(wt)uy, ug — ug + Ktug + Py

2
up — Uy, up — Uz — ptug + P/\§7 (2.10)
up — exp(pt)uy, ug — ug — Kpt,

2

uy — exp(pt)uy, ug — exp(pt) (Uz + 5,05101),

u1—>u1—|—pt—|—1/x2, uQ—>u2—pt—Vx2,

_P
up — up + pt, upg — e vlug,
2

up — uy + pt, uz — ug + ptug +P§7

U] — U1 coswt — ug sinwt, U — Uz cos wt + uq sin wt,
u; — exp(wt)uy, ug — exp(wt)(ug — wtuy)
Transformations (11.2) valid for equations with matrix A

of type V only.

Here the Greek letters denote parameters which are either arbitrary
or specified in the tables presented below. We stress once more that in
contrast with (2.4), equivalence transformations (2.10) are admitted by
some particular equations (1.3), which will be specified in the following.
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3. An Algorithm for Description of Symmetries for the
Systems (1.3)—(1.5)

Let us investigate Lie symmetries of systems (1.3)—(1.5), i.e., find all
continuous groups of transformations for w, ¢,z which keep these equa-
tions invariant. In contrast with the equivalence transformations, sym-
metry transformations do not change functions f! and f2.

In as much as any term in (1.3) does not depend on t and z explic-
itly, this equation with arbitrary functions f' and f?> admits obvious
symmetry w.r.t. translations of all independent variables and rotations
of spatial variables present in (2.3). For equations (1.4) and (1.5) such
symmetries also have the form (2.3) where the indices of R, runs over
the values 1,2,...,m — 1.

To find all Lie symmetries we require form-invariance of the systems
of reaction diffusion equations with respect to the one-parameter groups
of transformations:

t—t'(t,z,¢), r— 2 (t,x,¢e), u—u'(t', 2 e), (3.1)

where ¢ is a group parameter. In other words, we require that /(¢ 2/, ¢)
satisfies the same equation as u(t, z):

L' = f(u), (3.2)

where L are the linear differential expressions involved into equations

(1.3)-(L.5), i.e

0 02 B a

)

Here B is the zero matrix for equation (1.3), B = ( 2 8 ) for equations

0
0

Starting with the infinitesimal transformations:

(1.4) and B = < 107 > for equation (1.5).

t—t =t+ At=1t+en, Tog — Th =X+ Axq = x4 + €%, (3.3)

Ug — UL = Ug + Aug = ug + emg

we obtain the following representation for the operator L':

L = [1+£< gtJrg“aaa)]L[l—s( gt+§“aaa>] +0(£?). (3.4)
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Using the Lie algorithm one can find find the determining equations
for the functions 7, &, and m, which specify the generator X of the
symmetry group:

0 0 p O
= —_— —|— a_— m —

ot ¢ Oz, Ouy,
where a summation from 1 to m and from 1 to n is assumed over repeated
indices a and b respectively. We will obtain these determining equations
directly.

First we notice that without loss of generality it is possible to restrict

ourselves to such functions n, €%, 7® which satisfy the conditions

X (3.5)

dug  Ouy  Oudup

a 2.
o _o 9 _, 27 (3.6)

This is nothing but a consequence of results of paper [2] were PDE are
classified whose symmetries satisfy (3.6). These results admit a straight-
forward generalization to the case of systems (2.2) with invertible matrix
A.

Substituting (3.3), (3.4) into (3.2), using (1.3)—(1.5) and neglecting
the terms of order €2 we find that:

0
Q,L|u— Lw=m7f+ qu (—W“bub — wa> , (3.7)
where 5 9
Q= Urn +¢& oz, +m

[Q,L] = QL — LQ is a commutator of operators ) and L and 7 is a
matrix whose elements are 7%, so that [23] 7@ = 7%y + w?, with 7
and w® being functions of independent variables t, x.

Equation (3.7) is compatible with (1.3)—(1.5) and does not impose
new nontrivial conditions for w if the commutator [@, L] admits the rep-
resentation:

[Q.L] = AL+ (3.8)

where A and ¢ are 2 x 2 matrices dependent on ¢, x.
Substituting (3.8) into (3.7) the following classifying equations for f
are obtained:

o k
(Akb +7ka) 24 b (Lw)F = (w° +7Tab“b)3—fa' (3.9)

u
Thus, to find all non-linearities f* generating Lie symmetries for equa-
tions (1.3)—(1.5) it is necessary to solve operator equations (3.8) and find
the general form of matrices A, 7, ¢ and functions 7, £&. In the second
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step we find the non-linearities f* solving the system (3.9) with its known
coefficients.

We stress that the described procedure of group classification of equa-
tions (1.3)—(1.5) is equivalent to the standard Lie algorithm but is more
straightforward. In addition, it is rather convenient, and till an appro-
priate moment all equations (1.3) with non-singular matrices A can be
analyzed in a parallel way.

4. Determining Equations

Evaluating the commutator in (3.8) and equating the coefficients
for linearly independent differential operators we obtain the determin-
ing equations:

agr o 0% n
A=— AA+TA = — =A 4.1
<8.%'b + 81_(1) 5ab( + [ 771-})7 ItOT, 0, ot ) ( )
Bfa 8 “ _Or
5 axa Am — AAE* =0, p= AAm (4.2)

where d,p is the Kronecker symbol.

The general expressions for coefficient functions 7,£% and 7 of sym-
metry X (3.5) can be obtained evaluating determining equations (4.1)
and (4.2). We shall not reproduce this procedure here but present the
general form of the related generator (3.5) found in [23]:

0
Oug
+ U 2,0, +v0 + 0y (4.3)

X =)\K +0,G, + wa@a + uD — 2(C“bub + BY)

where the Greek letters denote arbitrary constants moreover WH” =
— ¥k B® are functions of ¢, z, and C® are functions of t satisfying

CUAM — APCPR = (4.4)
and
K =21t gt ”“aa ) - %Q(A_l)ab“baia - tm(ulai + “28i2>
Go = 10 + %xa(z‘l 1)ab bf)ia’
= (0 i)
D = 21t(,;9 +x, 68

(4.5)
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If a = 0 then the related generator X again has the form (4.3) where

however A = 0, = w, = C? =0 and B? is a function of ¢,z and u.
Formula (4.3) presents a symmetry operator for equation (1.2) iff the

related classifying equations (3.9) for f! and f? are satisfied, i.e.,

1
(At(m +4) 4+ p) f* + (5)‘9”2 +Oouly + 767%#:17”) (A=)t
+CfP + CfPuy + BYf — AA®B

1
= (BS + C*Puy + Atmus + (5)\3;2 + oy

9 .,
Gu I (46)

+ vewtwum’u) (A_I)Skuk>

Thus the group classification of equations (1.3) with a non-singular
matrix A reduces to solving equation (4.6) where A, u, 0y, w,, 7y are arbi-
trary parameters, B* and C% are functions of (t,x) and t respectively.
Moreover, matrix C' with elements C® should commute with A.

We notice that relations (4.3)—(4.6) are valid for group classification of
systems (1.3) of coupled reaction-diffusion equations including arbitrary
number n of dependent variables v = (u1, ug, . .. u,) provided the related
n X n matrix A be invertible [23|. In this case indices a,b, s,k in (4.3)—
(4.6) run over the values 1,2...n.

Consider now equation (1.4) and the related symmetry operator (3.5).
The determining equations for n, & and 7% are easily obtained using
(3.8), (3.9) and have the following form

_ _On _ u_ 08"
Nt = Nz, = e =0, ‘ft = g =0,
a2ﬂ.a 0 87Tg# - 8_7'('178—71'27 .
oupdu.  Owy, | Oupg  Ouy (4.7)
ort  om? 1
or.o_9r _ 2 if .

gu + gzu = _5uynt7 nF#Em

where subscripts denote derivatives w.r.t. the corresponding independent
: : _On ep _ OEF
variable, i.e., ny = 5, &, = 7o, ete.

Integrating system (4.7) we obtain the general form of operator X:
0 0

0
X =vo 0, +UH 9, D-2B* —2Fu; — —2Guo—; (4.8
v t+pl/ v+ Vx,LL_‘_/"L 8ua u1 aul u2 auz ( )

u=2(F-G) if p#0 (4.9)
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where B® are functions of (¢,z), F and G are functions of ¢ and summa-
tion over the indices pu, v is assumed with py,v =1,2,--- ,n — 1.
The classifying equations (3.9) reduce to the following ones

(n+ F)f' + Fup + (8, — A)B?
0 0 0 0
1 2 0 1
(B Ouy +B Ous +FU18 +Gu23uz>f

4.10
(M+G)f +Gt'LL2 +Bt —p32 ( )

(Blaal + BZ% + Fulai1 + Gy — >f2
Relations (4.8)-(4.10) are valid for p # 0 and p = 0 as well (in the
last case condition (4.9) should be omitted). Solving (4.10) we specify
both the coefficients of infinitesimal operator (4.8) and the related non-
linearities f! and f2.
For equations (1.5) we obtain in analogous way that generator (3.5)
reduces to

X:#<3t3t+2$u3 —U28(Z )—F<u1i+u2 0 >—B“ 9
2

0 U1 8U2 8ua
(4.11)
while the classifying equations are
(Bu+ F)f' + Fyuy + B} — pB2
0 0 0 0
(31 +B*— + Fuy— + (F + u)uz—)fl,
6u1 8’&2 3 Ul OUQ (4.12)

(4p+ F)f? + Foug + B — AB!

0 0 0
B' — + B> — + Fui— + (F + p)u )2
( 8 Uy 8 o 1 a ( /’L) 2 f

where F and B!, B? are unknown functions of ¢ and ¢,z respectively.
The determining equations for symmetries of equation (1.5) with p =
0 are qualitatively different for the cases, when the number m of spatial

variables x1, To,... Ty, ism =1, m = 2 and m > 2. The related generator
(3.5) has the form

X:aD+</(N—M)dt)g+2mHa 0

ot 024
0H, 0 0H, 0
— (N —2 — (M 2 —
< +(m=2) O0xg ) “ Ouy < +m+2) Ox,, > 2 Oua
gl g d B%li (4.13)
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where summation from 1 to m is imposed over repeating indices, the
Greek letters denote arbitrary parameters, M, N are functions of t, B!, B2
are functions of ¢, z, B? is a function of t, z,u; and H, = 2\yxp2a — 2 \g
for m > 2. For m = 2 H, are arbitrary functions satisfying the Caushy-
Rieman conditions %51 = 88—522, %—521 = —%—ff; for m =1 H;y is a function
of z and the sums with respect to a in (4.13) are degenerated to one
terms.

The corresponding classifying equations have the form

(%+2N—M+( 2)?9H)f1+NtU1+Bt
(Bla(z1 BQ%+B3U1%+(N+( ) ) aiul
<M+(m+2)g ) )fl
(4.14)

oH,
(2 + N+ (m+2) 5= )f2+B3f1+Mtu2+B uy + B}
a

—ABl—F(?—m)(AaHCL) (Bl 0 + B2 — 0

Oz Ouy Oug
0 OH 0
B3uj— + (N —2)— % uy—
+ u18u2 + ( +(m )&ca)ul@ul
0H, 0 9
+ (M 2 G g) £

We notice that in this case symmetry classification appears to be
rather complicated and cumbersome. Nevertheless, the classifying equa-
tions can be effectively solved using the approach outlined in the following
sections.

Thus the group classification of equations (1.3), (1.4) and (1.5) re-
duces to searching for general solutions of equations (4.6), (4.10), (4.12)
and (4.14). To solve these equation it is necessary to make an effective
separation of independent variables. To do this we will use an approach
which includes a priori specification and simplification of possible forms
of generators X (4.3), (4.8), (4.11) and (4.13) using the condition that X
belong to n-dimensional Lie algebra with n = 1,2,.... This specification
will be based on classification of algebras of 3 x 3 matrices of special form.

5. Basic, Main and Extended Symmetries

Let us start with equation (1.3). The general form for the related
symmetries and the classifying equation for nonlinearities f!, f? are given
by relation (4.3) and (4.6) respectively.
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Equation (4.6) does not include parameters U#¥ v and p, present in
(4.3) thus for any f! and f? equation (1.3) admits symmetries generated
by the following operators

P() = at, P)\ = 8)\, JIW = .CCM&, - l‘l,au. (51)

For some classes of nonlinearities f' and f? the invariance algebra of
equation (1.3) is more extended but includes (5.1) as a subalgebra. We
will refer to (5.1) as to basic symmetries.

Operators (5.1) generate the maximal local Lie group which is admit-
ted by equations (1.3) for any functions f! and f2. In other words the
basic symmetries generate the kernel of the invariance group of equation
(1.3).

Let us specify main symmetries for equation (1.3), whose generator
X has the form (4.3) with U* = v = p, = 0, = w, =0, i.e.,

X:uD+cabub£ +B“ai .

(5.2)

The classifying equation for symmetries (5.2) can be obtained from (4.6)
by setting u = 0% = w® = 0. As a result we get

afe
ouy,

(16 + C®) ¥ + C%uy + B — AABY = (C"wy, + B") (5.3)

Operator (5.2) is a particular case of (4.3). Moreover, it is easily veri-
fied that operators (5.2) and (5.1) form a Lie algebra which is a subalgebra
of symmetries for equation (1.3). On the other hand, if equation (1.3) ad-
mits a more general symmetry (4.3) with o, # 0 or (and) A # 0, w* # 0
then it has to admit symmetry (5.2) also. To prove this we will calculate
multiple commutators of (4.3) with the basic symmetries (5.1) and use
the fact that such commutators have to belong to symmetries of equation
(1.3).

Let equation (1.3) admits extended symmetry (4.3) with o, # 0, ¥*
:pﬂzuz)\:wk:(), ie.,

0

X = 0,Go + pD + (C%uy + BY)5—. (5.4)
b

Commuting Y with P, we obtain one more symmetry

0
Ba
b@ua + P Ou,

Yo=—2(A")"

+ Py, (5.5)

The latest term belongs to the basic symmetry algebra (5.1) and so
can be omitted. The remaining terms are of the type (5.2).
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Thus supposing the extended symmetry (5.4) is admissible we con-
clude that equation (1.3) has to admit the main symmetry also.

Commuting (5.5) with Py and P, we come to the following symme-
tries:

0 0
— a _ a
Y#V - Bxuazl,a—uaa Y#t - xMt(r?—%' (56)
Any symmetry (5.4)—(5.6) generates this own system (4.6) of classify-
ing equations. After straightforward but rather cumbersome calculations
we conclude that all these systems are compatible provided the following

condition is satisfied

af®

up .
Ouy,

(A—l)zzbfb — (A—l)nb (57)

If (5.7) is satisfied equation (1.3) admits symmetry (5.4) with p =
C%® = B® = 0, i.e., Galilei generators G, of (4.5).

In analogous way, supposing that equation (1.3) admits extended sym-
metry (4.3) with A # 0 and w® = 0 we prove that it has to admit also
symmetry (5.4) with g # 0 and o, # 0. The related functions f! and f?
should satisfy relations (5.7) and (5.3). Moreover, analyzing possible de-
pendence of C® and B® in the corresponding relations (4.6) on t we con-
clude that they should be ether scalars or linear in ¢, i.e., C% = p®t4+1%.
Moreover, up to equivalence transformations (2.4) we can choose B* = 0,
and reduce (5.3) to the following system:

ofe
8uk’

(m +4) f* 4+ uPfo = (u*uy + muy)
afe
ouy,

(5.8)
szbfb + Nabub — kaub

where the parameters v% and p® are distinct from zero in the case of
the diagonal matrix A only.

Finally for general symmetry (4.3) it is not difficult to show that the
condition w, # 0 leads to the following equation for f¢

ofk

(Afl)kb(fb + ,yub) — (Afl)abub aua'

(5.9)

We notice that relations (5.7) and (5.9) are particular cases of (5.3)
for p = 0, C® = (A71)%® and u = 0, C® = (A1) respectively.
Thus if relation (5.7) is valid then, in addition to G, (4.5) equation (1.3)
admits the symmetry

0

up )
Oug

X =(A"hH (5.10)
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Alternatively, if (5.9) is satisfied, equation (1.2) admits symmetry Ga
(2.6) and also the following one

X = ewt(A—l)abubai . v #0. (5.11)

Thus it is reasonable first to classify equations (1.3) which admit main
symmetries (5.2) and then specify all cases when these symmetries can
be extended.

The conditions when system (1.3) admits extended symmetries are
given by relations (5.7)-(5.9).

Concerning equations (1.4) and (1.5) we notice that in accordance
with (4.8) and (4.11) they admit basic symmetries only.

Now we are ready to search for solutions to classifying equations
(4.10), (4.12) and (5.3). To present clearly main details of our approach
we start with group classification of systems (1.4), because this problem
appears to be essentially more simple than other ones considered here.

6. Symmetry Algebras of Equations (1.4)

Consider equations (1.4) and suppose that parameter p is nonzero.
Then scaling dependent and independent variables we can reduce its value
top=1.

To solve rather complicated classifying equations (4.10), (4.12) and
(5.3) we use the main algebraic property of the related symmetries, i.e.,
the fact that they should form a Lie algebra. In other words, instead
of going throw all non-equivalent possibilities arising via separation of
variables in the classifying equations we first specify all non-equivalent
realizations of the invariance algebra for our equations whose elements are
defined by relations (5.2), (4.8) and (4.11) up to arbitrary constants and
arbitrary functions. Then using the one-to-one correspondence between
these algebras and classifying equations (4.10), (4.12), (5.3) we easily
solve the group classification problems for equations (1.3)—(1.5).

Let us start with classifying equations (4.10) and the related symme-
tries (4.8). For any functions f! and f? equations (1.4) admit symmetries
(5.1) where the indices p, v and A run over the values 1,2,...m — 1 and
1,2,...m respectively.

In accordance with (4.8) any symmetry generator extending algebra
(5.1) has the following form

) P P
X—,U,_D—QB aua _2FU18—1“+(M_2F)U28—2,52 (61)
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Let X; and X5 be operators of the form (6.1) then the commutator
[X1, Xo] is also a symmetry whose general form is given by (6.1). Thus
operators (6.1) form a Lie algebra which we denote as A.

Let us specify algebras A which can appear in our classification pro-
cedure. First consider one-dimensional A | i.e., suppose that equation
(1.4) admits the only symmetry of the form (6.1). Then any commutator
of operator (5.1) with (6.1) should be reducible to a linear combination
of operators (5.1) and (6.1). This condition presents us the following
possibilities only:

X=Xy =uD— 204ai — Qﬁulai — (26— u)ugi,
Ui

8ua 8u2
0 0 0
X =X,=¢e"(a, — — 2
2=¢ (Oz B, —i—ﬁmaul +ﬂu28u2)7 (6.2)
R
Oug

where the Greek letters again denote arbitrary parameters and p - x =
Puy-

All the other choices of arbitrary functions F' and B* in (6.1) corre-
spond to algebras A whose dimension is larger than one.

The next step is to specify all non-equivalent sets of arbitrary con-
stants in (6.2) using the equivalence transformations (2.4).

If the coefficient for uaa%a (a is fixed) is non-zero then translating u,
we reduce to zero the related coefficient «, in X1 and Xs; then scaling
ug we can reduce to £1 all non-zero o, in (6.2). In addition, all op-
erators (6.2) are defined up to constant multipliers. Using these simple
arguments we come to the following non-equivalent versions of operators
(6.2) belonging to one-dimensional algebras A:

) B
xW =D - g (o= Duag

8uQ’
0 0

X§2) = D+U28—UQ +Va—u17
x®_p_ 0 9

1 16U1 8UQ

. ) 5 (6.3)
X v) _ vitpax _ _

e (u1 Buy + 28uQ>’

1) _ oit+prx 9 9
X3 = e At

3 ¢ (8U1 * au2)’
X3()2) — 6‘72t+P2'xaiu17 X:,()g) = 603t+p3'maiu2.
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To describe two-dimensional algebras A we represent one of the re-
lated basis element X in the general form (6.1) and calculate the com-
mutators

Y = [P07X] _2/1’P07 Z = [P()aY]a W= [X7Y]

where Py is operator given in (5.1), Y, Z and W are symbols denoting the
terms in the r.h.s.. After simple calculations we obtain

y :Ft(uli +u2i) el

ouq Oug Ou,

0 0 0
Z =F, —_— —_— B, — 6.4
tt (Ul 8’1,&1 + ug aUQ) + tt aua, ( )

0
W =2utZ + pbebeW.
a

By definition, Y, Z and W belong to A. Let F; # 0 than it follows
from (6.4) that

,LL#OZB%:F“:B%:O, (65)
p=0: Fy=aF,+~+B* B =~"F+ (%BY, (6.6)

otherwise the dimension of A is larger than 2. The Greece letters in (6.5)
and (6.6) denote arbitrary parameters.

Starting with (6.5) we conclude that up to translations of ¢ the coef-
ficients F' and B, have the following form

F=octor F=p; B*=vit+a®if un#0.
If F = ot then the change

Ug — Uge 7 — %t (6.7)

reduces the related operator (4.8) to the following form:

0 0
X = 1% <D + Uga—u2> - 20éaa—ua, (68)

i.e., X coincides with X; of (6.2) for § = 0. Moreover it is possible
to show that (6.7) gives the equivalence transformation for the related
equations (1.4) (i.e., for equations (1.4) which admit symmetry (6.8)).
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The choice F' = 3 corresponds to the following operator (6.1)

0
oug

X = X4 = X1 - 2t04a (69)
where X is given in (6.2).

Thus if one of basis elements of two dimension algebra A is of general
form (6.1) with u # 0 then it can be reduced to (6.8) or (6.9). We denote
such basis element as e;. Without loss of generality the second basis
element ey of A is a linear combination of operators Xéy) and X:.Ea) (6.3).
Going over possible pairs (e1, e2) and requiring [e1, e2] = aje; + ages we
come to the following two dimensional algebras

0
Al = <D +UQ6—W,X§O)>, AQ = <X§2),X§3)>a

Ay =(xP xP), A=V xP), A= (xM xP),

0 0 0 ) (6.10)
Ag = (D + 2up—2 +uj—— + vt X
6 < + u28uQ +u18u1 +yt8u2’ 3 >

0 0 0 (1)
A:<D 21— + Bugy—— + St X>.
7 + UIaul + U28’U,2 oV 8u1 3
The form of basis elements in (6.10) is defined up to transformations (6.7)
(2.4).
If A does not include operators (6.1) with non-trivial parameters p
then in accordance with (6.7) its elements are of the following form

0 0 py O
w=Fp (u1— tup— )+ Bt~ a=1,2 11
e (a) <u1 o + uo 8u2) + By D, a (6.11)

where F{,) and Bz’a) are solutions of (6.6).

Formulae (6.10), (6.11) define all non-equivalent two-dimensional al-
gebras A which have to be considered as possible symmetries of equations
(1.4). We will see that asking for invariance of (1.4) w.r.t. these algebras
the related arbitrary functions f* are defined up to arbitrary constants,
and it is impossible to make further specification of these functions by
extending algebra A.

7.  Group Classification of Equations (1.4)

To classify equations (1.4) which admit one- and two- dimension ex-
tensions of the basis invariance algebra (5.1) it is sufficient to solve clas-
sifying equations (4.10) for f® with known coefficient functions B® and
F of symmetries (6.1). These functions are easily found comparing (4.8)
with (6.3), (6.10) and (6.11).



168 GROUP CLASSIFICATION OF SYSTEMS...

Let us present an example of such calculation which corresponds to
algebra A; whose basis elements are X1 = 2t0; + 2,0, + UQ% and
Xé = ula%l + uza%, refer to (6.10). Operator Xéo) generates the
following form of equation (4.10):

0 0
f <U1 8u1 + ug 8'&2) f , @ )

whose general solution is

fl = U1F1 <%> y f2 = ulFQ <%> . (71)

Here Fy and Fy are arbitrary functions of Z—i

Equations (1.4) with non-linearities (7.1) admit symmetry Xéo). In

order this equation be invariant w.r.t. X also, functions f!, f2 have to
satisfy equation (4.10) with F' =0, i.e.,

oft 1 0f?
1 2
_ . _ 1 _ 7.2
f “ 811,1 ’ f 2u1 8u1 ( )
It follows from (7.1), (7.2) that

! =auduy?, 2= duy . (7.3)

Thus equation (1.4) admits symmetries X(SZ) and X; which form al-
gebra A (6.10) provided f! and f? are functions given in (7.3). These
symmetries are defined up to arbitrary constants o and A. If one of them
is nonzero, than it can be reduced to +1 or —1 by scaling independent
variables.

In analogous way we solve equations (4.10) corresponding to other
symmetries indicated in (6.3) and (6.10). For one-dimension algebras
(6.3) the related non-linearities f! and f? are defined up to arbitrary
functions F; and F5 while for two dimension algebras (6.10) functions
f! and f? are defined up to two integration constants. We shall not
reproduce the related rather routine calculations but present their results
in Table 1.
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Table 1. Non-linearities and symmetries for equation (1.4)

with p=1
No | Non-linearities Arguments | Symmetries
of F1 FQ
1. = u?":lF uguh " uD — u1a% + (g — Dug =2 Bus
P=ut e
2. f1:F1u52, w1 — vinus
7= Fouy! D+u28 +V8“1
3. | fl=w(F+Anw), | 2 e (w152 + w255 )
f2 = ’LL2(F2 + )\lnul)
4. ;;:uzil, —Inwuy Dfula%glf%
=uil2
5. f'=F, Us e"t\ll(ac)(,ﬁ—‘z2
f2 = Fb 4+ vug
>\t+uzm\i/ a
6. IZOZU1+F1, (I A ( )8u1
P=Xu+F p=A-v-a
1 At ®77§+t\I] ~ ¢ o
7. [ =ou+ Fi, U—v e e w(Z, zm + 1) Buy
2 _
=X+ B +52) n=A-o+}
8. ;;:guzugf, D+u2%, u1%+uzﬁ
= PUiUqy
o | Lo Dt + o, Vs
= de
D_uy 2 — 2
10. 1 _ A 3uz Bul Odug?
0 fz ezu ’ Do (t, x)
fF=ae
11 F = qu2ett puD — 7;13;21 + (= Duz 22 Bz’
: - 1 )
7= )\u;lurl \IJ(CC)%
12 fl_)\u?)u 2 (N_l)D_Nulﬁ_u2%7
. z ;)
2= aug‘“l Po(t, &) 5,7
13. flzuil, f Inuy D+2u20u +u18u1 +tau2,
1
14. | f Inuz, f*=oau; D+ 2u; 2~ Bur +3U26u +3t8u1,

<I)0 (t :L‘) Duy
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Here D is the dilatation operator given in (4.5), &= (21,2, ..., Tm-1),
U(x) is an arbitrary function of spatial variables; ¥, (), V,(Z, zy + t)
and ®,(t,Z) are solutions of the Laplace and linear heat equations

Ry = ply, DUy =l (5~ R)g =0,
~ 52 52 52 B 92 (74)
A= 9 44 % A=A+ L.

o2 "o T T A T o2,

We notice that equations (1.4) with non-linearities 5, 6, 9-14 of Table
1 admit infinite-dimension algebras A because the related symmetries are
defined up to arbitrary functions W(z) or arbitrary solutions of equations
(7.4). Nevertheless, the form of these non-linearities was fixed requiring
invariance w.r.t. one- and two-dimension algebras enumerated in (6.3),
(6.10).

The second note is that equations (1.4) with non-linearities given in
Item 8 of Table 1 admit additional equivalence transformations u, —
e“tu, while for Items 9, 11, 13 and 10, 12, 14 we have in our disposal
transformations 3 and 2 respectively from the list (2.10).

8. Group Classification of Equations (1.5)

Like (1.4), equations (1.5) with arbitrary functions f' and f? ad-
mit the basic symmetries (5.1) were u,v = 1,2,...,m — 1. To classify
equations admitting other symmetries it is sufficient to find the general
solution for equations (4.12).

We will solve (4.12) using the technique applied in Sections 5 and
6. Comparing (4.11) and (6.1) we conclude that generators of extended
symmetry for equations (1.4) and (1.5) are rather similar and so we can
essentially exploit the algebra classification scheme used in Section 5. As
a result we easily come to the following list of one-dimension algebras A
(compare with (6.3))

= (1) - 0 0

XW =D~ g

1 1% ul@ul U28u2,

@ _n_ 0 cwy_ o, O O

X, =D V@ul’ Xy ' =e <U18ul+uzau2>7

- - 0 0 0

ng) =D+uig—tupz—+v— (8.1)

Ouq Ous Ouy’

~ 0 0
X(3) _ gost+pzz [ Y Y
3 € <8'LL1 + 81@) ’

(5 bt O
X:)(,J) = €U’t+p1w%7 j=12
J
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where D = 3t0; + 22,0, — ug s a . The two-dimension algebras are given
by the following relations (Compare with (6.10)):

Al = < aXé()))) AZ = < ~1(2)7X?(,3)>7

A3 = < ~£3)7X§1)>7 A4 = < ~§1)7 ~§2)>7 A5 - <X§1)7X?E1)>a

P /F 9 9 (2) (8.2)
As = (Dot 4w+ g+ t5 ). X,

< /= 0 0 0 (1)

A7 = <D+3(U18—u1 +U26— —l—ta—m),X?) >

Using (8.1), (8.2) and solving the related classifying equations (4.12)
we find non-linearities f!, f? which are given in Table 2. In six cases
enumerated in the table the corresponding equations (1.5) admit infinite
dimension symmetry algebras whose generators are defined up to arbi-
trary functions, see Items 5-7, 9-14 here.

Table 2. Non-linearities and symmetries for equation (1.5)

with p=1
No | Non-linearities Arguments | Symmetries
Of F1 FQ
143 - =
1. f; :u%i:Fl’ uguy P! prula%zl qu%
ff=u )
2. ft —u2F1, u1 — vinug D_Va_il
f2 = u2
3. f;:ul(Fl—H/lnul), 2 eVt <u16iu1 + u2%>
ff=w(Fo+vinuy)
4. ;;:ui?’ us — vinug D+u1a +uQau +v 8‘22
=u P
5. fl = Au1 + Fi, U2 e)‘t\Il#(a:)%
fP=—pu + B
6. ' =vus + Fu, U1 e“f”ﬂ”’”\ll(gfz)a%2
P=dus+ Py
7. f;:ozul—&—Fl, Ul — U2 M oe” 2_tlllu(i,m7n+t)(a;f”+8iw)’
ff=ou+ F
p=X—o+1:
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o
dug

1_ -2 3 - )
8. fH = oauy“us, D, U1 5 + U2
2 =vui3uj

9. = ae3, D_aiul’ U (%) 2=

Jug
f2 — U64u1

D+ ui 5% +us 5% + 52,
Wo(z) 72

Ouq

10. ! = ae 22,
f2 — V€73u2

M le] ls]
‘U'Diulﬁulirll'z@ug’
V() 5o

Ous

11. = ou*
Ap+1
f2 — IJullH—

S o) )
vD — uq ur U235

12. ! = au2vt,
f2 _ Vu32u+1 ‘IJO(:C)%
> o o o
13. flzau% DTSI;QE—FZLUIS_M—FZLWE’
f2 = l/lri’t,lll \I/(J?)a—uz
14 £ = vlnus D+3u1%—|—2maiu2+2ut%,
e Yo(@) 5ar
Ug

Here ¥, (x) and V,(Z, xy, + t) are arbitrary solutions of the Laplace
equation AV, = uV,, p, v and A are arbitrary parameters satisfying

vA #0.

Equations (1.5) with the non-linearities given in Item 8 of Table 2
admit additional equivalence transformation u, — e’‘u,. Besides, for
Items 9,11,13 and 10,12, 14 we have transformations 3 and 2 from the

list (2.10) respectively.

9. Group Classification of Equations (1.3) with Invertible
Diffusion Matrices

In this Section we present the group classification of systems of cou-
pled reaction-diffusion equations (1.3) with invertible matrix A. In ac-
cordance with the plane outlined in Section 4 we first describe the main
symmetries generated by operators (5.2) and then indicate extensions of
these symmetries.

Like in Sections 5, 7 the first step of our analysis consists in description
of realizations of Lie algebras A generating basic symmetries of equation
(1.3). However, the basis elements of A are now of the general form (5.2)
while in Sections 5 and 7 we were restricted to the representations (6.1)
and (4.11) respectively which are particular cases of (5.1).
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Thus the first step of our analysis is to describe non-equivalent re-
alizations of finite dimension algebras .4 whose basis elements have the
form (5.2).

Let us specify all non-equivalent “tails” of operators (5.2), i.e., the
terms

0 0
_ vab, Y a
T=CC “baua+B o

(9.1)

These terms can either be a constituent part of a more general sym-
metry (5.2) or represent a particular case of (5.2) corresponding to pu = 0.

If equation (1.3) admits a one-dimensional invariance algebra A then
commutators of m with the basic symmetries Py and P, should be equal
to a linear combination of 7 and operators (5.1). In other words, there
are three possibilities:

1. 0% = %, o= e (9.2)
9. Cab _ e)\t'uab’ B — e)‘t,ua,

3. Cab _ 07 B® — eAt+w-zua

where %, A\, and w are constants.

In any case the problem of classification of one-dimension algebras
A includes the subproblem of classification of non-equivalent linear com-
binations (9.1) with constant coefficients u® and u®. To describe such
linear combinations we will use the isomorphism of (9.1) with 3 x 3 ma-
trices of the following form

0 0 0 0O 0 0
g=| B* o o2 |~ ut ot ou2 . (9.5)
B2 (2 (12 p? 2t

Equations (1.3) admit equivalence transformations (2.4) which change
the term 7 (9.1) and can be used to simplify it. The corresponding
transformation for matrix (9.5) can be represented as

g—g =UgU™! (9.6)
where U is a 3 x 3 matrix of the following special form
1 0 0

U= o KUY K2 |. (9.7)
b2 K21 K22
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We will use relations (9.2)—(9.4) and equivalence transformations (9.6)
to construct basis elements of basic symmetry algebras. For different
forms of matrix A specified in (2.2) the transformation matrix (9.7) needs
further specification in accordance with (2.5)-(2.8).

The obtained non-equivalent realizations of low dimension algebras
A are present in Appendix. Starting with these realizations one easily
solves the related determining equations (4.6) for non-linearities f! and
f? and specify all cases when the main symmetries can be extended (i.e.,
when relations (5.7)—(5.9) are satisfied). In addition we have to control
all cases when basis elements of A depend on arbitrary solutions ¥ of
the linear heat equation. Such algebras (whose basis elements can be
obtained from (A.1.10), (A.1.11), (A.1.15)—(A.1.18) changing g5 and g3
by Wgs and Wg3) are infinite dimensional but generate the same number
of determining equations as the low-dimension algebras.

10. Classification Results

We will not reproduce the related exact calculations but present the
results of group classification in Tables 3-9. In addition to equations with
invertible diffusion matrix we present here the results of classification
which are related to the diffusion matrix of type IV while the type V
is will be considered separately (see (2.2) for classification of diffusion
matrices).

The Tables 3-9 present the classification results for different types of
equations (1.3) corresponding to non-equivalent diffusion matrices enu-
merated in (2.2). The type of diffusion matrix is indicated in the fourth
columns of Tables 3, 4 and third columns of Tables 5 and 6. In Tables 7-9
the results of symmetry classification of special equations are presented;
these equations are indicated in the table titles. In the last columns of
Tables 3, 5 and 6 the additional equivalence transformations (AET) are
specified, which are possible for the related class of non-linearities. Fi-
nally, the symbols D, G, @a denote generators (4.5), 1, denotes an
arbitrary solution of the linear heat equation %1/)“ — Ay, = papy,

5, = Uy for Class 111
Y| e’ (z) for Class IV

and ¥(x), ¥, (z) have the same meaning as in Tables 1,2.

The results of group classification are briefly discussed in Section 12.
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Table 3. Non-linearities with arbitrary functions and
extendible symmetries for equations (1.3), (2.2
y q ’
No | Nonlinear Argu- Type Main Addi- AET
terms ments of sym- tional (2.10)
of F1 F5 | matrix metries Ssym-
A metries
1, 1V, v For I : 1
] ) v P
L =R, u fp#El |2 e Ga, if = pw
O =uTMR uf o | I—1V, | 9wy ly =0, if
p=1 K250, ap =1 v=20
fl = ul(Fl I’ IK et N For I :
U2 1% 7é 1 € (’U1 9 ~ :
2. |4elnui), — T2 Lul) Ga, if
fzqu(FZ uy _ ; Hu2 5 ap =1
+eplnug) B=
1 _
f2 o uLFl + vz, et (uli For IIT :
3 |[[ =vidn I 1 S L P
. uy
Fuz) + ur By e ’ Hog - 11
+us b1, e 6“2) “=-
v#0
fl _ uu+1F1 % o For II] :
-1 ’ _u2 —u i
4. [ f2 = u (Fius we | 1% IIT 1By, G Olf
+F2u1) U duy v=_y
U2 Odug a=-1
For I* :
u v 9 i
5 |f'= &’ Fru, U1 I IIT |27 U2 5uy 6 if
9 Lu2 Ul g, if v =0, v=20
f — e U1 (F1U2 F2:0
+F3)
For I :
)
wo%r
D
+2u252-, | 3,6
if
F =0,
v=20
6. |f,=wF-wv) I IIT |e’tuy 52 ?ﬁy 3 it
C P = Fiue + B, “ ’ ' Buz ' F1=0
v#0 Fi=p
For I :
fl=wFi +usFs vt ~
e (,uRi Ga, if
7. | —vz(pur + us2), Re** I+ 11 _i) 9R ©
IP = wky — il " V20, 15 if
+vz(ur — pug); v#0
if
R=(uf £l (jaf’; pn=0
_ —1fug - % -
z = tan (u1) v =0
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Table 4. Non-linearities with arbitrary functions and
non-extendible symmetries for equations (1.3), (2.2)
Argu- Type Symmetries and
No | Nonlinear terms ments of mat- AET (2.10) [in square
of F, rix A brackets]
1_ v D — 2uo2- 4+ 9.9
~ e G IR TP
= u2 2 —
1_
9. f = F1 +¢eu, uze¥l I,IV et (U’Qai _%)7
f? = Fous + eujus ? !
1 _ _vujp
3. |/ =, 2uz, I |vD = 2u1 52 — 252
f2 — eVl (F2 + Flul) —uy 2 1
1
= F 2 . 7
O VAR M| (g 4 o)
fo=vul + Fiur + > Ui
For I1: =Mty 0
[t =vu + F, Fou
5. f2 = + B u2 117 II7 For I'I1 : e( +aa)t\I}U7
uw=oa
B B
6. f; :6Zi (Fruz+ Fauq), Re—h: o vD—2u (ma—ul—i—uz 3—u2)
fP=e" (Fpuz—Fiu) ) (ula% _uza;gl)
9 9
7. | fl=0, f2=F uz v |Yosu W
[2; 1,p=0]
9 7.0
8. | fl=0, fP=F wo | heFb D Bnegg, Yogn,
i [3, 6]
1 _ ~
9. ;2_?’ u1 LITLIV |4, 52
= F2 + vus
1_ —
10. Fo=ht v =pu, Uz — U1 fa#1 e’ Wy (x) (% + %)
f?=F+ (v —ap)us v ' ’
[t =aur +p, Gy
* v a ’
1L | f, = pus + F, u IS Gy o
ap=0 Ouz
vt 1o}
fr=ui, . € Ul puy,
N “ L et (ai + tuy ai)
ug ug
V(2 et (0 4 o)
13, |1 = (=), w I*, 111 Ouz — Ou2
fo= (u1 + V) uz + F elr=1) ulai _ Bi
U2 U2
fr=(ui+1), . e”t(costul%fsint%)7
14. o = (u1 + 1) us + F Ul 1" 111
2 ! 2 — e”t(sintula;zz—i—cost%)
fl=e"2F it 7 0; o , o
552 _ ey —u o |YP 2 (12 + %)
T #=0
f =e""F ) 9
16. P = Uz 117 1/D72ﬁ
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Table 5. Non-linearities with arbitrary parameters and
extendible symmetries for equations (1.3), (2.2)
Nonlinear Type Main Additional AET
No ¢ of mat- tri tri (2.10)
erms rix A symmertries symmetries .
Go ifav = —p 1, vw
L=t D-2 2 ,
[T ey "D 2“23u2’ 40 & K if Fup
fr=ouiu} vD—2uig,; v = ,a;él; -0
wg— if o=0, 2;1,
v=—1& Gq i‘”
if u=a#0 _‘Bp
&Kifa=1+12 B
o o 21
YoBur 2 3uy v
if o =0, +up
v=-1l,a=1; =0
Ga, K if 1, vw
o=1A#1 +pp
p=—-v=a=1, =0
urga if p =0, 1w
A= 0’ a=1 Fup
& 6u2 +tui g, 8u2 =0
ifv=1
1y, vtl D—2u; =2 _ 0
0. |, = Au s v |77 (w1 B M) g if 3
ouy ¥, —2puz 5o, —v=a= 1
~ Go if
9 a
)‘07&0 1/]081;2 v =0, LL/.LII; 3
—At 9 .
e U1T if
Ous 37
vr=0,a=1, & 1, p
et (0u18—2—|—)\6u1> = pw
if p=2
fH=Auy Yoz, et <u1i+)\i) 3
3. | v IIT P2 duz du1 6 if
[ =ouf e ulg,s if p=2 A=0
fl=Nev, vD —2us 52 |uaz> ifo =0 3: 1,
4. fQZO'e(V+1)u1 1,1V 5.0 Bug dug o0
) Ouy’ &uga ifa=1;
~ — At
A#£0 o 50 (1 ) 3z 3,4
ifr=0,a=1
1_ yput D-—22 3;
5. |4, Aeul’ r |5 om w5 ifA=0 6 if
fr=oe Yo5us "2 A=0
J J
£l=det, D - 252 g™ 2;5 if
6. |f2=oe", L1V PR P 2
A#£0 Yo gu; or I uzg,; 0=
ifa=1
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1,
w For I : G =w;
1y, v+l paZ * — 9 “ r ’
Tt e, I D = 2wt 6 if
p=0
1,
u : p y w
F2= ey (\uz vD — 2u13¥21 IZ(f)r Iila'y Ga if
+our)uf _2u23%2 & Ii’?f v=4 v=0
m 6 if
p=0
9 *
Q. fl _ eHZRV()\ul I*, II vD — 26’(141671“ For I : 17
—ous), —2u25,;, Ga ifv=0; rP=e
1,
fQZGHZRU()\UQ MD_2ulaiu2 }:?I‘;Jljiafa p=w
Y = .
+our) +2u2 5,7 & Kifv=2 yfo
e, DTS | 2
9. f2 = 5u‘f(u2 I 72%72’ ifu/i =1 " 6
—Ilnuq), p#0, Ul Hugy
x %D“‘aulaim Foral,a;«él,aﬂ/: 3, 7,9
10. o Einm I—1V  |fus 52 u1 g, +eta; (for IT :
etz if A= 0; 3,7)
o For I*, I11 3,9;
¢0Tw , & 6,7
(ur — At) Fug if
& (for I™) A=0
ulaimq-gtaiw (7 for I'*
ifA=0 only)
]
MUIB_M et 9
1. [f'=0 LIV | Sou ¢ Wy .
s ’ ifa=1 KR=¢
f“=cus+Inu )
Ve 5oz
. vty 2 1 g 0
2 |5 = e L | de ¢ (u1 o +tau2) Klg,y
f2=vus +Inu fv=2X% _
MO vzl | o,
+8%> if v # N K=V
uD — 2u; 57 3
fl _ )\uib+17 _2“2317 up =2 )
13, 11 u2 & f
3 f2 _ O_uilt+17 ~ fA=0 )\6:1 0
Ao =0 Y050y

Here and in the following e = +1, K is generator defined in (4.6), K =
K + % [t ()‘“18%1 +(2- A)uza%) + ula%z}. In the following table
Q=2 ((n— av)t — 5%a?) for version IT and Q = 2 ((u — v)t — 5%-a?),
a # 0 for version I11.
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Table 6. Non-linearities with arbitrary parameters and
non-extendible symmetries for equations (1.3), (2.2)
Type
No | Nonlinear terms of mat- Symmetries AET
. (2.10)
rix A
vD — 2uy 22
fl = l/+1’ el 1 -
1. f27,uug+l .II,II.I —QUQ% 2
\IIO( )Bul
fl )\( )l/+1 I 75 1 VD*QulTUl
= A(u1r + u2 s , 3
. —Qug -2,
2 = e  u) v 429y, 12
(@) (52 - 55
U=yt vD — 2u1 55~
3. | f% =¥ Oz + puf), I fzama%, 6
v+o#0,L,p#0 15
Ly uz D—2-2_,
4. j; B Aeu; I1, 111 ou 2
= oe \I/O(m)a_ul
5 = /\e(“1+“2) Ia#1, D — 2822 19
’ — gelurtuz)
12 = geluituz v Wo(e) (52— 5%)
6 1= Aube™ v P 252, 13 if
TP =ouytlert, ’ us 2 — 2 oc=0
2 2 2 9us Odus Ouq
v +(a—1)*#0
D —252 —2uy ;2
1 _ uq Ousg ? . ;
7. ;Z, B 22 o I (g2 ?’A 6 gf
- 1 u =
(& u2 %= au for I*)
g |f,zee o=l Loy | P2~ 26 3
2= —2M\ 52, oz
1_ A(Quz—uf) AD — _9
9. f2 ve lomnu? o |7 e 14
ff=@wu+pe (2u2—ui) Bur T U150y
o) o)
fr=AIn(2uz — u?), D+ 2ur gy + duz g,
10. | % = o (2ua — u?) I +4At( Fug 2 ) 7 14
+Aur In(2ue — u%) Jug 2 5 ouz
6u1 dug
1 1 \IJO( )aulv
11, |, = #inue, ITITT | D+ 2ui 52 2
) duy
fF=rvinus u1
+2U2% + Q%
\IJO (:I:) <3;i1 - %)7
- FU=eln (ur + us), ?‘;17&1: (a—l)(D+2u1% 1
. 2 b
ff=vin(ui + u2) a=0 +2ug%>+(2(aa+u)t

etv .2 o _ 0
+ m z ) (Bul 6u2>
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v 9
1=t v(D + 2 )
13. | f* =1Inwu, I,IV —2u1 5 2tai27 3
A 1 0
(v+1)# o5
E)
f _AUV+1 VD—Z(ula—m
b * a 6
14. e /\uyﬂlnul I |y 2 +u1%)7 3
Yo 52 ]
fl :Au?"—l’ VD-QUla—ul
15. f2 = Aufuz + u1 Inug, I* —2tu1% 6
Alv—1) #0 —2(1—V)u2%, ul%
’/D ma‘i _ZUQG%’ .
P e R
TR T oy e S IV [/ P B O
2ug — . =
+M( e ul) +8—22 if u=0, V:%) v=_0
10
_ +v 1) ?
=2y Inug + wiug, X =el )t<“1ﬂ K = U
17. | f2=—(v—p)hu 1,1V +(N—V)ai) if
ug ) ?
+2pu O ”_+0”
N XE it (2 10,
fF = 2vu1 Inur + uiue, =e€ Ul 50y K =2v
18. | f? = 2uus LIV 4 (g — 20) 52 ) , if
(2 ug
—|—(1 (v u))lnm M= ptvtl uw+v
==1
e(”+y)t[costu1%
—(sint + (v
fl = 2]/’(,L1 hl’l,Ll +’U,1U2, *,LL) COSt)%],
19. | f? = 2uus I,V ety [ .
—(1+ (v —p)?) Inu e’ [Smtula_ul
+(cost+(
—v)sint) 52 -
B
fl :€(2u2—u§), , X1 :€#t<2m
20. ;ﬂ: (n+eur) (2ue —uf) |I*, 11T +2u1 52 + eu%),
—Eeur, p#0 tX1+€€“ti
+ _ + ls]
f1 = e(2uz — u), X5 =e 1(28u1 14if
21. [f2 = (p+ew) (2uz —ui) |I*, 11T +2u1 52 2 !
2 =
—l—l UL +e(p il)i)
(25cost<a ™
+uy %) + (pcost
fl = E(QUQ — U%) _sin t) )
22. f2 = 1+“‘ eul I*,I.II ut “2
_,_(M_,_gul)(QuQ —u?) e <2esmt(m

+uy %) + (usint
+cost)%>
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Table 7. Symmetries of equations (1.3) with diagonal matrix A
and non-linearities
fl=wu (plnug + Alnug), f2=wus(vinus +olnuy)

No | Conditions Main symmetries Additional
for coefficients symmetries
and notations
B ~
L A =0, Mg 5o, Ga, ifa#0,
p=v e“t<ma%l+atuza%2) o=0, p#0
9 A=0, eutm% 7 Go if 1 # 0,
w#v 2 W—V=ao
et ((N_V)ulaiul Gq if aoc = —v,
+auQ%> p=0;
’L/)oa¥22 if
oc=v=0;
’L/)o 821 if
o=pu=0;
u1%7 Ga
ifa=1,v=0
u=0#0
5 = 1 — 2 _ _wot a ~
5 R 4(#0 v) Xo = %0 <2/\u1m Gao if v # —p,
' tAc =0, _ L) 22 =a(v —
A+ v =2wo = muzgg ) v -u)
)\0’ 7& O 6w0t2UQ% + tXQ Ga lf >\ =av
: p=-v#0
wyt el ~
A Ao #0, et <)‘U1TW Go if pv # Ao,
o=1, +(W+—H)Uza%2>y A=a(v—p+ao)
et ()\uli R
wt =wo 1 ow o ft:lf vp = Ao,
+ (w- — ) U2%> =—ap
wot 9
evo <2)\costula—u1
+ ((v — p) cost
—2sint) uz =2,
5 6=-1 Ouz none
ewot (2)\ sin tul%
2
+ ((v — p)sint
)
+2cost) U275,

Equations (1.3) with the nonlinearities present in Table 7 admit equiv-
alence transformation 1 from the list (2.10) provided pv = Ao. The re-
lated parameters p and w should satisfy puw + Ap = 0. In addition, the
equations corresponding to the last version enumerated in I[tem 2 admit
additional equivalence transformation 6 given by formula (2.10).



182 GROUP CLASSIFICATION OF SYSTEMS...

Table 8. Symmetries of equations (1.3) with matrix A of type
I*,1I and non-linearities f' = (pu; — ouz)In R + z(Au; — vus),

f? = (pug + oup) In R+ z(Aug + vuy)

No | Conditions Main symmetries Additional
for coefficients symmetries
L A=0, bt D For IT: G,
p=v o7 ifac =0, p#0
e“t(R%—l—Ut%) F‘or[]:Ga
ifa=v=0,0#0
For I*: @a
ifo=0, u#0
A= eyt%’ For IT: G, ifac=v—p
2 | agh | el o ’
’ +(u—v)RZ) nw#0ora=0, pu#0
For I1: G,
ifac=v, p=20
For I*: CAv’a
ifu#0, c=0
For I* : G.
ifu=0,0=0
5 | 6=0, &:w@m% ?ﬁ?ﬁa
A#0 +—pn)Z), alu - v) = 23
For I1: G,
ifav=—-X, wo =0
For I* : @a
ifu=v+#0
For I'* : G.
ifpu=v=20
4. g\jlo’ e+t (AR% éa if uv # Ao,
—|—(w+—p§&), A=a(v—pu+ao)
w_t
i(wE)\?Z_I;%) Go ifvu =Moo, A= —ap
For I* : G4
ifo=0, pu#0
For I* : G,
ifo=p=0
exp(wot) [2A cos tR-x
+ ((v — p) cost
5. | d=-1 ~2sint) 3], none
exp(wot) [ZASthR%
+ ((v — p)sint
+2cost) %]
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All equations enumerated in Table 8 admit additional equivalence
transformations 15 from the list (2.10).

Table 9. Symmetries of equations (1.3) with non-linearities

' = dug + puy Inwy, f2 = AZ—% + (ouy + pug) Inuy + vuy and

matrices A of type II1I (and I* if a = 0)

No | Conditions Main symmetries Additional
for coefficients symmetries
0 if =
A=0, vt 9 b Ouz ifp=0,
Lol 2w eui g & G if
av=0#0
. Ga if u#0,
et ((u —V)RZ + Uuli) ’
OR Oug cr—a( ) #0
ut, 0 woa—uz ifp=0,
2 A=0,u=v o o#0
) e#t (R8R+Utu1622) &D‘F’UQ%
ifa=0
Goifo =0, n#0
c=0 . Goifv=0
3. ’ " (ARORr + (p — v)udy ’
U £ 0, ( R (/L ) ) =)
n#v,a=1 e ROr Gaifv—p=2A\
Ga if wo = 0
d=0 X, = wot 9 ’
4 =€ QARf _
4. w+v = 2wo, ( 5 VE foakgc
/\;AO +(V_N)U1TW>7 D+2u16_u1
ifa=0
2690ty 2 o+ X, Ga, if wo #0,
2a A =p—v
A#£0 p 9 Gq, if p=aX
5. ) w+ (AR +( H)UlT), k] )
§=1, R Juy w = Ao
@a, if pv # Ao,
wi =wo =+ 1 (/\RBR+( u)m%) p—v=2A—o0,
a=1or
c=a=0, pu#0
e“O* [2X cos tR 2=
— —94j 9
6 5= 1, +((v—p) cost — 2sint)us 5], Hone
e“O' 2AsintR 5
+((v—p) sint—l—?cost)ul%]

If \=p =0o0r A =v =0 then the related equation (1.3) admits
additional equivalence transformations 16 or 6 from the list (2.10) corre-
spondingly.

Tables 3-9 present results of group classification of equations (1.3)



184 GROUP CLASSIFICATION OF SYSTEMS...

with invertible diffusion matrix A. The results present in Tables 3-7 are
valid for equations with the singular matrix A of type I'V also but do not
exhaust all non-equivalent non-linearities for such equations. Moreover,
the equations with singular diffusion matrix admit strong equivalence
transformations u; — w1, ug — £(ug) where £(ug) is an arbitrary function
of ug which reduce the number of non-equivalent symmetries in Tables
3-9 for a = 0.

The completed group classification of equations (1.3) with matrix A
of type IV is given in paper [21]

11. Classification of Reaction-Diffusion Equations
with Nilpotent Diffusion Matrix

To complete the classification of systems (1.3) we need to consider the
remaining class of these equations when matrix A belongs to type V, i.e.,
is nilpotent. The procedure of classification of such equations appears to
be more complicated then in the case of invertible or diagonalizable dif-
fusion matrix. The general form of symmetry admitted by this equation
is given by equation (4.13) while the classifying equations take the form
(4.14).

A specific feature of symmetries (4.13) is that the coefficient B3 can be
a function of u;. One more specific point in the classification of equations
with matrix A of type V is that they admit powerful equivalence relations

up — Uy, Uy — U2 + <I>(u1) (11.1)

and
up — uy, ug — ug + P(uq,t, ) (11.2)

which did not appear in our analysis presented in the previous sections.

Transformation (11.1) (where ®(u;) is an arbitrary function of u;) are
admitted by any equation (1.3) with matrix A of type V. Transformations
(11.2) are valid for the cases when f! does not depend on ug and at the
same time f2 is linear in up. Moreover, the related functions Ci)(ul,t,x)
should satisfy the following system of equations

fiﬁ% - i)tt - fl(i)tul =0,

. . . (11.3)
f’u2,2¢xu - étxu - f1¢ulxu = 0

Thus the group classification of equation (1.3) with the nilpotent diffu-
sion matrix is reduced to solving the classifying equations (4.14) with ap-
plying the equivalence transformations discussed in Section 2 and trans-
formations (11.1), (11.2) as well. To do this we again use the analysis
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of low dimension algebras A whose results are given in the Appendix.
We will not reproduce the related routine calculations but present the
classification results in Tables 8-10.

In Tables 8-10 we use without explanations all the notations applied
in Tables 1-9. In addition, a number of classified equations appear a
specific symmetry Wa,, where W is a function of ¢, x and u; which solve
the following equation:

_Wt_Wulflz

Table 10. Non-linearities with arbitrary functions for
equations (1.3) with nilpotent diffusion matrix

Argu-
No | Nonlinear terms ments Symmetries
of F,
le( —l)D—I/ti
1 fl = Flu‘f_”, uptt _“13% - (V )u2 622
72 = Fout uz & (m —2)2* —TaQ1
ifv(m—2) = 4
,u(mf2):m+2, m#£ 2
B
fl = Flulugil, pD — T U255
& W2 1f p=1
2. 2 — Lt Uup u2
;= P, & H 52 — HY, us 52
£ 75 0 Oz g 6u2
2 ifm=2
vt s} s
. U1
2 =F 4 vuy & e 8u2
if =0
fr=Fus! 8 o 5
B 2 F2ui 7 uze™ | pD =t — g + g,
= 2
1_ B
5. ?2 T oug +v, uze™! eVt (% + VuQ% — 1/%)
=+ vus
\Ifo(:r)i
6. fl = O, f2 = F2 U2 ur? 9
xaa +2ur g,y
W o
7. fl=F, f2=0 uy e )
Tagg U250,
1_ v 2—p
f - ,,Lflul + FlUl ’ . eVt <(1 o /’L)t% vy =
8 f? = 2us + Fous, U2thy o
41 1 ‘””“2672)
n#1
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0 fl=wF, m=1 o? QQZCOS(Q&’)(U@% — 3u2%>
. 2
2
=usFo +u .
[ =wbtu +sinEe)r2, Qs = (Qa)a
flmwb, m=1 Q= (& bl —3ursly )
10. £ = Py — U2UY
=u2l? — w1 Q5:e*2“(i—ui+3u i)
ox 1811.1 26u2
fl=F,
o) b 9 )
11. f2 = us I, uge™t Ham — sz (U2a—u2 — m)
m =2
uy
12. ft=vewr, u1 D*u16i
2= ez_fF e
1 _
13. fr=n, U1 ewa%
Fy =usFs + F3 2
1 __ _vus
14. fr=e"h, uy VD*OL
f2 — euu2F2 u2
1 — plul
15. f e, Uz vD — 8%
f2 — evu1F2 1
1 _
16. fr=vut B U ety ()2
K Ouy
fo = pur + F2
ft= ui (F1 + vinui),
u vt a d
17. fQZUQ(F2+V1nU1)7 i € (ula_m+“2%)
v#0
f'=uF = vu, t a a o
wy e (U5 — UL — U2 5
18. f2 — Z/M(UQ _ Ul) ure 1 A( Oug Ouq Bug)
uy & Gy ifa=1
Hur Fo — uaFy
19. fl=u"R, ulez_? vD +u13;zz - ulaiul - u2%
f2:u‘1'(F2u1—F1u2) & Goifr=0,a=1
1 utl
=u Fi, .
O 2| nD gl gl
:ul 2

For the non-linearities enumerated in Items 2 (when p = 1), 3 (when
F1 =0), 4 and 8 of Table 8 the related equation (1.3) admits additional
equivalence transformations (11.2). In addition, transformations (2.4)
and (11.1) and some equivalence transformations from the list (2.10) are
admissible, namely, transformations 9 for the non-linearities given in Item
1 (when v = —1, u = 0) and Item 6, Item 6,Item 18, Item 19 and Item 20
transformations 1 with p = w for the non-linearities from Item I (when
v =1,u = 0), Item 20 (when p = 0) and Items 18, 19. Finally for f!

and f? present in Item 7 transformation 3 of (2.10) is admissible.
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Table 11. Non-linearities with arbitrary parameters and
extendible symmetries for equations (1.3) with nilpotent
diffusion matrix

. . Main Additional AET
No | Non-linearities . .
symmetries symmetries (2.10)
P (n+ l/)t% Ta Qe — 2/@3@2% if
Lo = gyt — (4 Du1 2= K(m +2) =
9 — =
-‘r(V — 1)’[1/2% K’(2 m) 1%
Q6:2Mu1% (& TmlfA—O .
+(/L+V)xam /1’__1&233 32’
—21/u2@i —(m — Q)x“QG lf ’
“2 v = —$+§, m# 2
Uo(z )6“1 if
c=0vr=-1, & 17,
xaQG + 'm+2x2 Bga 9
if u= m+2 m # 2
Uo(x )au1 17,
ifA=v=0 9
ew% ifpu=0& 17 &
a OH® Is] if
R O]
ifm =2 =0
5 fl = Ayt e (5t +eus auz) zaQ's — rr; 52 Bia
f°=oui + eua, Q¢ = Qolu=—1 1f1/—m— m#2
) =2 if
A#£0 0(37) Jup ! 9
c=0,v=-1
B B
U235, +u1m 1
ifeo=0,v=1
(v+1)D —uz23
g | 1= oo v (ua5ls +15) 17,
[7=oeT, BN —52 ifo=0 3
e m
Ao =0 uz g+t 10,
if A=0 3,6
B
4. 2 us +t0, — 52, , T for
f*=oe Ouz +5.; ifA=0 any A
\IJO( )8u1 2
W .
1f =1&
U=k tem, | D— 2, = 17 if
5. 2 nou ! el Ha — oH UQL
f° = oubef t0:+uz ol L rves Oz,  Ozgq 20uy pw=1
if m=2
+1, 0
pD — =t s xaa + 2u1 52,
1 _ 1— 9
6. f = Alfﬁy —T'uula—ul Ul 5— au + 2uso 822 9
f2 = OUy 2 7U2% _ )\taiul’ +t8t + 2)\t
‘Ilo(x)aiul ifeo=0
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Table 12. Non-linearities with arbitrary parameters and non
extendible symmetries for equations (1.3) with a =0

. . Condi- . AET
No | Non-linearities tions Symmetries (2.10)
Q7 :4,U,t%
R u#0, 5
e i SN A TR
f —aul“ug — oul, a=—1 +(3N*1)U2Tuy
Q27Q3
p#0,
m=1, Q4,Qs5,Qr
a=1
_ st (o 5
2. |1 = g %ug i (8 +evasis). 17 if
Q27 Q3
_ st (o 0
2 =oul®+euz — aw ZL—_IL c (‘” +6u26“2> ’ A=0
B Q47 QS
_ kel
PR oD
P o nETL gl — et Duagl, |9
qlo( )Oul
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m = 17 Q Q
) 2, 3
a=1, 4t 9 0
777/:117 C?47 Q57
a=1, —4t el 0
e=-—1 c (UIE+U2m>
W _o
' = pur Inwuy, Jua’
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C e’ (Asint(ur 50 + u2 55-)
_~_(Vsint—|—cost)u1a%2)

12. Discussion

In this paper we present the completed group classification of systems
of two coupled reaction-diffusion equations with general diffusion matrix.
In other words we specify essentially different equations of this type de-
fined up to equivalence transformations and describe their symmetries.

We consider only nonlinear equations, i.e., exclude the cases when f!
and f? in the right hand side of (1.3) are linear in uj, up. Such cases are
presented in paper [23].

The analyzed class of equations includes six non-equivalent subclasses
corresponding to different canonical forms of diffusion matrix A enumer-
ated in (2.2). In the particular case when matrix A has the forms I and I'*
from (2.2) our results can be compared with those of [7] and also [3]-[5].

Paper |7| was apparently the first work were the problem of group
classification of equations (1.3) with a diagonal diffusion matrix was for-
mulated and partially solved. Unfortunately, the classification results
presented in [7] are incomplete and in many points incorrect. Thus, all
cases enumerated above in Table 7, Items 1,2 of Table 3, Items 1,2, 7-10,
15 of Table 4, Items 2, 12, 16 and 17 of Table 6, were overlooked, sym-
metries of equations with non-linearities given in Items 1 and 2 of Table
5 were presented incompletely, etc.

In papers [3]-[5] Lie symmetries of the same equations and also of sys-
tems of diffusion equations with the unit diffusion matrix were classified.
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The results obtained in [3]-[5] are much more advanced then the pioneer
Davidov ones, nevertheless they are still incomplete. In particular, the
cases indicated above in Items 5 and 6 of Table 3; Items 12-14 of Table
4; the last line of Item 1, Item 9 and Item 11 for a=1 of Table 5; Items
15 and 22 of Table 6 and Item I for ¢ = 0, © # 0 of Table 7 were not
indicated in [5], which is in conflict with the statement of Theorem 1
formulated here. Moreover, many of equations presented in [5] as non-
equivalent ones, in fact are equivalent one to another even in frames of
equivalence relations (7) of [3]. The related examples are not enumerated
here in as much as we believe that all non-equivalent equations (1.3) with
different symmetries are present in Tables 1-9.

Except the points mentioned in the previous paragraph our results
concerning equations with a diagonal diffusion matrix are in accordance
with ones obtained in [3|-[5].

Consider examples of well known reaction diffusion equations which
appear to be particular subjects of our analysis.

e The Jackiw-Teitelboim model of two-dimension gravity with the
non-relativistic gauge [19]

2

gul — % — 2kuy + 2u%u2 =0,

ot Ox? (121)

8 62u2 2

am + el + 2kug — 2uguy =0
admits the equivalence transformation 1 (2.10) for p = —w. Choos-
ing p = 2k we transform equation (12.1) to the form (1.2) where
a = —1, fl = —2uluy and f? = 2u3u;. The symmetries corre-

sponding to these non-linearities are given in the first line of Table
5. Symmetries of equations (12.1) were investigated in paper [16].
In accordance with our analysis, generalized equation (12.1) with
two spatial variables admits additional conformal symmetry gener-
ated by operator K (4.5).

e The primitive predator-prey system can be defined by [20]

82u1 . (92’&2
= —Ui1ug, us — AD ==
833‘2

and this is again a particular case of equation (1.2) with the non-
linearities given in the first line of Table 3 where however p=v=1,
Fy = —F, =71 . In addition to the basic symmetries (%, 8%> this
equation admits the (main) symmetry:

0 0

uy — D
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e The \ — w reaction-diffusion system

w1 = DAug + )\(R)ul — w(R)UQ, iy = DAug + w(R)u1 + )\(R)UQ,

(12.2)
where R? = u% + u%, has symmetries that were analyzed in paper
[1]. Again we recognize that this system is a particular case of (1.2)
with non-linearities given in Item 6 of Table 4 with 4 = v = 0.
Hence it admits the five dimensional Lie algebra generated by main
symmetries (2.2) with pu,v = 1,2 and:

0 0

which is in accordance with results of paper [1] for arbitrary func-
tions A and w. Moreover, using Table 5, Item 8 we find that for the
cases when

MR) = AR", w=oR" (12.4)

equation (12.2) admits additional symmetry with respect to scaling
transformations generated by the operator:

X = (uli - uzi> +vD. (12.5)
u

The other extensions of the basic symmetries correspond to the
case when A(R) = pIn(R),w(R) = oIn(R), the related additional
symmetries are given in Table 8 where v = A = 0.

e The nonlinear Schrédinger equation (NSE) in m-dimensional space:

(% - A) b = F(,4") (12.6)

also is a particular case of (1.2). If we denote ¢ = wuy + fug, F =
f1+if2 then (12.6) reduces to the form (1.3) with A = < (1) _3 >
In other words, any solution given in Tables 3-6, 8 with matrices
A belonging to Class I gives rise for the NSE (9.4) that admits a
main or extended symmetry. Thus our analysis makes it possible to
present the completed group classification of the NSE as a particular
case of general study of systems of reaction-diffusion equations with
arbitrary diffusion matrix. Our results are in complete accordance
with ones obtained in paper [22] where symmetries of the general
NSE were described.
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Among the solutions present in Tables 3-6, 8 we recognize ones
which correspond to the well-known non-linearities [11|

F=F@* ), F=@@ 9k, F=@)my, F=h@ )

One more interesting particular case of the NSE with extended
symmetry can be found using Table 6 Item 1 for v = 2,m = 1:

(15 -a)v=w-v)

which is a potential equation for the Boussinesq equation for func-
: 0
tion V = 5 (¢ —¥*).
e Generalized complex Ginzburg-Landau (CGL) equation

ow
-
is a particular case of system (1.3) with matrix A belonging to
Class I1 with a # 0, refer to (2.2). Indeed, representing W and
Fas W = (u1 + iug), F = B(f' +if?) and changing independent
variable 7 — ¢ = 7 we transform (12.7) to the form (1.3) with
-1
A= < f ﬂ—11 ) All non-equivalent non-linearities f!, f? and
the corresponding symmetries are given in Table 3, Items 1, 3,
Table 4, Items 5, 6, 15, Table 5, Items 8, 10, Table 6, [tems 1, 4, 11
and Table 8. The ordinary CGL equation corresponds to the case
F =W —(1+ia)W|W |} m = 2 and admits basic symmetries (5.1)
only.

e Non-autonomous dynamical systems in phase space [§]

5'71,1 82U1

—_—— — e — A =
ot 8$2 (u17u2) hl(t>$)7 (128)
8U2 8U1 82u2

— 4t a—— == —vu; = ha(t,x
o ot o v ke
also are equivalent to a system of type (1.3) at least in the case of
constant h; and hg. The related matrix A belongs to Type I11.
Using the results present in Tables 3-6 and 9 we can specify all cases
when the considered system admits main or extended symmetries.

We see that the class of equations which is classified in present paper
includes a number of important particular systems. Moreover, we present
a priori description of symmetries of all possible systems of two reaction-
diffusion equations with general diffusion matrix.
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Appendix

A.1. Algebras A for Equations (1.3) with Diagonal
Diffusion Matrix

Let us consider equation (1.3) with a diagonal matrix A (version I of
(2.2) where a # 0) and find the related low-dimension algebras A. In this
case matrix (9.5) and the equivalence transformation matrix (9.7) reduce
to the forms

0 0 0 0 0 0
g=| B Cc'' o0 ~ | optopttoo0 (A.1.1)
BZ O 022 :U’2 0 /1’22
and
1 0 0
U= K' 0 |. (A.1.2)
2 0 K,

Up to equivalence transformations (9.6), (A.1.2) there exist three non-
equivalent matrices (A.1.1), namely

0 0 O 0 00 0 00
gg=101 0], g=1001], g=1 A 00
0 0 A 0 0 1 100

(A.1.3)

In accordance with (9.1)-(9.4) the related symmetry operator can be
represented in one of the following forms

0 0
X1 = uD — 2(93)pctic—, X2 = e (ga)pelic— A14
1= M (9a)vett ouy 2= (9a)bcll 9 ( )
or a 8
X5 = eMtwa [ 2 — . Al
3 € <8UQ+MaU1> ( 5)

Here (gq)pe are elements of matrices (A.1.3), b,c = 0, 1, 2, & = column
(ug, u1,uz), up = 1.

Formulae (A.1.4) and (A.1.5) give the principal description of one-
dimension algebras A for equation (1.3), with matrix A of type L.

To describe two-dimension algebras A we classify matrices g (A.1.1)
forming two-dimension Lie algebras. Choosing one of the basis elements
in the forms given in (A.1.3) and the other element in the general form
(A.1.1) we find that up to equivalence transformations (9.6) there exist
six algebras (e, e2):

A1 =1{Gg1,94}, As2=1{71,93}, A23=1{95 03}, (A.1.6)
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Asa={91,95}, Azs={91,93}, Aze= {92,303} (A.1.7)

where g1 = g1|x=0, 91 = g1/x=1, §3 = g3]r=0, and

0 00 0 00
=000, gg=[100 (A.18)

0 01 0 00
Algebras (A.1.6) are Abelian while algebras (A.1.7) are characterized

by the following commutation relations:
[61, 62] = €2 (Alg)

where e is the first element given in the brackets (A.1.7), i.e., for Ag 4 €1 =
g1, ete.

Using (A.1.6), (A.1.7) and applying arguments analogous to those
which follow equations (6.2) we easily find pairs of operators (5.2) forming
Lie algebras. Denoting

. 0

€a = (ea)ab’abaT7 o = 172
a

we represent them as follows:

(uD + é1 + vtég, é2), (uD + é3 + vitéy,ér),

R . . R R R A.1.10
</LD — €1, vD — €2>, <F1€1 + Gleg, Fyer + G2€2> ( )
for e, ea belonging to algebras (A.1.6), and

<,UD —él,é2>, <MD—|—é1 +Vté2,é2> (A.l.ll)

for e1, ea belonging to algebras (A.1.7).

Here p and v are parameters which can take on any (including zero)
finite values, {F1,G1} and {Fs, G2} are fundamental solutions of the
following system

F,=AF+vG, Gy=0F+~G (A.1.12)

with arbitrary parameters A\, v, o, 7.

The list (A.1.10)—(A.1.11) does not includes algebras spanned on the
vectors (Fé, Gé) (with F,G satisfying (A.1.12)) and (uD + e’ %¢,
eVt %) which are either incompatible with classifying equations (4.6)
or reduce to one-dimension algebras. In the following we ignore algebras
A which include such subalgebras.

All the other two-dimension algebras A can be reduced to one of the

form given in (A.1.10), (A.1.11) using equivalence transformations (2.4),
(6.7).
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There exist one more type of (m-+2)-dimensional algebras A generated
by two-dimension algebras (A.1.6), namely:

(uD + é1 + (Oét + )\gpl‘g.l‘p)ég, wyéz, é2>

where v, o, p run from 1 to m. The related classifying equations generated
by all symmetries x1és, x2€2, - -+ , T.n€2 and éo coincides and we have the
same number of constrains for f!, f? as in the case of two-dimension
algebras A.

Up to equivalence there exist three realizations of three-dimension
algebras in terms of matrices (A.1.3), (A.1.8):

A3,1 L6 = gla €2 = g4, €3 = §37 (A 1 13)
Az e1 =gs, €2 = g4, €3 = G3,

A3’3 .oer = gi, €9 = g5, €3 = gg. (A.1.14)

Non-zero commutators for matrices (A.1.13) and (A.1.14) are [es, e3]
= ez and [e1,eq] = eq(a = 2,3). The algebras of operators (5.2) corre-
sponding to realizations (A.1.13) and (A.1.14) are of the following general
forms:

(;LD - Qél, vD — 2é2 — 2)\75@3, é3> (A.1.15)
and
D — 2é) — 2utéey — 20teés, ég, €3),
(WD — 28, — 2vit; — Doits, &, &) (A.1.16)
(é1, Fiéa+ Giés, Fhéa + Gaés)
respectively.
In addition, we have the only four-dimension algebra
Ag1: e1=01, e2=g5, €3 =03, €4 =ga (A.1.17)

which generates the following algebras of operators (5.2):

<HD - 2él - 2Vté2) é27é37 é4>)
(uD — 2é; — 2utes, éa, €3, €4), (A.1.18)
</LD — 2é1, vD — é4, ég, ég).

Thus we have specified all low dimension algebras A which can be
admitted by equations (1.3) with a diagonal (but not unit) matrix A.
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A.2. Algebras A for Equations (1.3) with A!2 £ 0

Consider equation (1.3) with matrix A of type II (refer to (2.3)) and
find the corresponding algebras A. The related matrices (9.5) and (9.7)
are

0 0 0 1 0 0
g=\| pw w2 2|, U= K K |. (A.2.1)
M4 _M3 NB b2 —k’Q kS

Up to equivalence transformations (9.6), (A.2.1) there exist three ma-
trices g, namely

0 00 0 0O 0 0 0
=10 10],95=1100|,96=1|0 pu —1 (A.2.2)
0 01 0 0O 01 pu
and three two-dimension algebras of matrices g (A.2.1):
Az = {91, 96}, Azs = {95, 33}, (A.2.3)
Azg = {91, 95} (A.2.4)

where g3 is matrix (A.1.3) with A = 0.

Algebras (A.2.3) are Abelian while the basis elements of As g satisfy
commutation relations (A.1.9).

Like in previous subsection we easily find the related basis elements
of one-dimension algebras A in the form (A.1.4) and (A.1.5) for = 0.

The two-dimension algebras A generated by (A.2.3) and (A.2.4) again
are given by relations (A.1.10) and (A.1.11) respectively, where e; and ey
are the first and second elements of algebras As7 — Aoyg.

In addition, we have two three-dimension algebras

!
A33: e1 =g}, e2 = g5, €3 = §3;

- (A.2.5)
Asza: e1=gs, e2=gs, €3 =03
and the only four-dimension algebra:
Agp: e1 =gy, e2=go, €3 =03, €4 = g5 (A.2.6)

Algebra As 4 generates algebras (A.1.16) while Az 5 corresponds to
(A.1.15) with v = 0. Finally, A4 generates the following algebras A

(uD — 261, vD — 2é5, €3, é4),

eut-{—u-xég’ eut-‘,—u-x

(A.2.7)

<é17 é2a é4>
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A.3. Algebras A for Equations (1.3) with
Triangular Matrix A

If matrix A belongs to type III given in (2.3) the related matrices
(9.5) and (9.7) take the form

0 0 O 1 0 0
g=| p 2 0 |, U= 0" K 0 |. (A.3.1)
,U3 N4 MS b2 k2 k3

There exist six non-equivalent matrices g, i.e., matrices ¢i, g3, gs
(A.1.3), (A.2.2), and the following ones

0 00 0 00 000
g=1 010 ],9s=]1000],g9=(100].(A32)
0 1 1 0 10 010
In addition, we have six two-dimension algebras,

As s ={95,33}, Az10 = 191,95},
A1 ={98,93}, A212 = {99,373},

A2,5 = {91793}5 A2,13 = {91795}’ (A34)

four three-dimension algebras:

(A.3.3)

Azz: el =g}, ea=gs, e3= s,

Azs: e1=gs, e2 =g}, €3 = §3, (A.3.5)
Aze: e1 =03, e2 = gg, €3 = g, o
Asz7: e1=gs3, e2=gs, €3 =gt

and the only four-dimension algebra:
Ayz: e1 =33, e2=gs, €3 =), €4 = gs. (A.3.6)

Algebras (A.3.3) are Abelian while (A.3.4) are characterized by com-
mutation relations (A.1.9). The related two-dimension algebras A are
given by formulae (A.1.10) and (A.1.11) respectively.

Algebra As 3 generates three-dimension algebras A enumerated in
(A.1.16). Algebra As 5 is isomorphic to A3 ;1 and so we come to the related
algebras A given in (A.1.15). Algebras A3 and Asz7 are characterized
by the following non-zero commutators

[62, 63} = €1 (A37)

and
le1,e2] = e2, [e1,e3] = e2+ e3 (A.3.8)
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respectively.
Using (A.3.7) and (A.3.8) we come to the following related three-
dimension algebras A :

(uD — 2é9, vD — 2¢3, €1), (€1, D+ 2eq + 2utéy, éy),

A.3.9
<e”t+w'$é17 eut-l—wzéa, éo/> ( )

where o, o/ =2,3,0' # «a, and
(D — 28y, é3, é3), (&1, VT ey e/ HWoes), (A.3.10)

Finally, four-dimension algebras A corresponding to A43 have the
following general form

(uD — 21, vD — 2y, é3, &4), ("' %¢y, "M%, e3, ¢4) (A.3.11)

A.4. Algebras A for Equations (1.3) with the Unit Matrix A

Group classification of these equations appears to be the most com-
plicated. The related matrices g are of the most general form (9.5) and
defined up to the general equivalence transformation (9.6), (9.7). In
other words there are seven non-equivalent matrices (9.5), namely, g1, g2
(A.1.3), g5 , g6 (A.2.2) and g7 — g9 (A.3.2). In addition, we have fifteen
two-dimension algebras of matrices (9.5),

Ag1 = {01,914}, A22=1{01,33}, A23=1{G3,95},
Az10 = {97,98}, A2,11 = {93, 98}, (A.4.1)
Az12 = {33,990}, A213 = {91, 96}
Az ={g1,95}, Az = {41,093}, Aze = {92,393},
Az 1a = {g1|a21, 98}, A215 = {911, —gs}, A216 = {90.9"1}, (A.4.2)
A7 = {94, 98}, A218 = {97,393}

where

o = O

0 0 O 0 0
go=[0 1 0|, ¢ =gih=2=1[ 0 0
1 0 0 0 2

\)

Algebras (A.4.1) are Abelian while algebras (A.4.2) are characterized
by relations (A.1.9).

Three-dimension algebras are Az — Az 7 given by relations (A.1.13),
(A.2.5) and (A.3.3) (where tildes should be omitted) and also Az g— A3 11
given below:

Asg: €1 =g1, e2 = gs, €3 = g3,
Aszg: e1 = g4, €2 = gg, €3 = §3,
As10: e1 = g2, €2 = gg, €3 = —03,
Az11: e1 = g1, e2 = —gg, €3 = ga.
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Algebras (Asg, A3 11) and Asg and As 1o are isomorphic to Az and
Az 3 and As g respectively. The related algebras A are given by relations
(A.1.15), (A.1.16) and (A.3.9) correspondingly.

Finally, four-dimension algebras of matrices (9.6) are A4 , A4 2 and
Ay 3 given by equations (A.1.17), (A.2.6) and (A.3.6), and also As4, Ay s
given below:

Agy: e1=g1, €2 =04, €3 =gg, €4 = g3;
Ayt e1 = g4, €2 = gg, €3 = g5, €4 = g3.

Using found algebras and solving the related equations (4.6) we easily
make the group classification of equations (1.3).
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