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THE STEFAN PROBLEM

The Stefan problem in its classical statement is a mathematical model of
the process of propagation of heat in a medium with different phase states, e.g.,
in a medium with liquid and solid phases.The process of propagation of heat in
each phase is described by the parabolic equations. In this work we prove the
existence of the global classical solution in a two-phase multidimensional Stefan
problem. We apply a method which consists of the following. First, we construct
approximating problems, then we prove some uniform estimates and pass to the
limit.
Keywords and phrases: free boundary problem, global classical solution,
the Stefan problem
MSC (2000): 35R35

1. Statement of the problem.

The Stefan problem in its classical statement is a mathematical
model of the process of propagation of heat in a medium with different
phase states, e.g., in a medium with liquid and solid phases. As
a result of melting or crystallization, the domains occupied by the
liquid and solid phases undergo certain changes. This unknown interface
is called a free boundary. The process of propagation of heat in each
phase is described by the heat equation.

Let D € R? - the bounded domain , which boundary consists
of two C?* surfaces OD; and 0D, such, that 9D, contains inside
0Dy and limits domain D, Dy = D x (0,7). The problem is to
find a function wu(z,t) and domains Qr, Gr, satisfying to following
conditions:

Au—a(u)g—? =0 in Qp UGy, (1.1)

Qp ={(z,t) € Dy : 0 <u(z,t) <1}, Gr ={(z,t) € Dy : u(z,t) > 1},

where a(u) - step function a; > 0 B8 Qp and ay > 0 in G7 ; on the
known boundary 0Dy

u(z,t) =0 on 0Dy x (0,7), u(x,t)=p(x,t)>1 ondDy x (0,7T);
(1.2)
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on the unknown (free) boundary vy = Dy N 0Qr = Dy N OGr

3 - +
u (z,t) =ut(z,t) =1, ; (%;Z — ?;;Z ) cos(n, z;)+Acos(n,t) = 0;
(1.3)
where A is a positive constant, n is the normal to the surface ~yr
directed to the side of increase of the function u(z, t); ut(z,t), u™ (x,t)
are the boundary values on the surface vy taken from the domains
G, Qr respectively. The function u(z, t) is interpreted as the tempe-
rature of the medium, v, is the interface between the liquid and solid
phases, and wu(z,t) = 1 is the temperature of melting. The initial
conditions are

u(z,0) =¢(x) > 0in D, (z) I 0,

1

¥(x) . = p(x,0) > 1, (1.4)
Qo={reD:0<y(x) <1},

G0:{$6D1¢($)>1}, 70:Dﬂ8§20

2.Construction of the approximating problem.

Assume that problem has a classical solution. Multiply the
equation (1.1) by a smooth function n(x,¢) which vanishes on 0Dy
and integrate by parts:

J (Vu(x, HVn(z,t) + a(u)$in(z, t) + Ax(u)%>dxdt+ ,
Dr A
#X x(n(e.0)ds = 0. 2y

where

() = 1, if wu(z,t) <1,
=00, 0wz, t) >1°

For Ve > 0 we introduce a function x.(7) € C*(R!):
X(r) = LW S 1—c xe(r) =097 2 1, Xi(7) < 0. x() < =
6”
Let
ac(x) = a1 + x=(x)(a2 — a1).

Define the function {u®(z,t)} as solutions of the following problem:
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(1) | O, 1)

Auf(z,t) — ac(u(z, t))T’ = 5t in Dr (2.2)
u®(z,t) =0 on 0Dy x [0,T), u(x,t) = @(x,t) on 0Dy x [0,T);

(2.3)

u*(x,0) =¢(x) in D, ¥(x) =0on 0D, ¥(x) = ¢(z,0) > 1 on dDs.

(2.4)

Then, as is well known [1], takes place the statement
Theorem 2.1. Let

U(x) € O (D), p(x,t) € HF*%(Dy),0 < a < 1,

and assume that the corresponding consistency conditions hold at
t = 0,2 € 0D. Then this problem is solvable and

where positive constant ¢ do not depend on e, M () — 0, ife — 0.
The equation (2.2) we shall transform to a form

Cc

u(z,t) ‘

(2.5)

<
a5 (D) T M(e)

uf(x,t)

3}
Au®(x,t) — 5 / [as(T) — AxL(T)]dT = 0.
0
We divide the cylinder Dt by the planes t = k7, k =1,2,...N, N7 =
T, integrate equation (2.2) with respect to the variable ¢, from (k—1)7
to kT.

kT ui(x)
/ At (2, 7)dr — / la(7) — M(P)]dr =0,
(k=1)7 uf,_,(x)

where uf(z) = u®(x, k7). After simple transformations we obtain

£ ) — 55 (0) 25 — ), (26)

up(0) =0, ui(l) = p(k7) = @r, up(x) = P(x). (2.7)

e
dui(a) _ uie) — vy (o)
ot T ’
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1

z@w:/%$¢4+m@—u;m—Anw;rmvi—@Anwﬂ

0

N

fi(x) = [Au(z, k1) — Au®(z, t]dt.

(k—=1)T
3. The fundamental solutions and its properties.
For studying of the problem (2.4), (2.5) we need in the integral

representation of the solution. Let Kg(z() be ball with center at the
point xy and the radius R and

iT j{ (sinh /2R) ' sinh \/z(R — |z — x¢|)dz

Lokr1(Jz — o)) =

2ray ) Amle —xo[(1 - Z2)(1— Z5)(1—=2) 7
oL
(3.1)
where
. m?
L={z=¢&+1in: Rez > —ﬁ,|z| < o},
(ﬂ,o) , <%0> (ﬁ,o) €L, a;>0,i=12 .n
T T T
Property 1.
Let |z — x¢| # 0, then

Fn—k—l—l -r
T

AT, _js1 — ax k0, Vk=1..(n— 1),

r smh\/“” rT—x
AT — ap— =0, Ty(|z — zo|) = ~| 0‘ (3.2)

4 |x — 20| sinh /%=

Property 2. There is the estimation

[ Dl [ Taleomb,
T

-
Kr(zo) Kg(zo)

< / de<i(1— \/WR) . (33)

T ~anp sinh , /a” R
KR(zo0)

Property 3. Let Ks(xg) denote the ball with its center at the point
2o and radius 6. Then

lim
5—0 on
0K 5(zo

arm—k-ﬁ-l ds — 17 lf k= m,
0, if £ # m,
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where n is the inner normal. All reduced above property can be
received by immediate calculations.
Property 4. Let {vi(z) € C*(D)} and they satisfy the following
equations:

AV — Qp—1Vk—1 _fk_fk—l

Avy, — e

T T

then there is an integral representation

v (0) = / (aovo —fo) |~’E—9€0|d Z / armnk-l-ld n

KR(Z‘()) 8KR(1'O)

+ Z / fk Fm—k—i—l - Fm—k dr. (34)

This integral representation follows from the previous properties of
the fundamental solutions and Green’s for elliptic equations.

Property 5. The functions {I';,_xy1(|7 — 20|) — Dpr(|lz — 20|)}
change the sign on the interval 0 < |z — zy| < R no more than once

and
8Fk_1(r) < 8Fk(T)
or or

This property follows from propertyl and from principle of the
maximum.
Property 6. We will denote by 7y ;_; the points, where the functions
Le(r) — Tx_1(r), k = 1,2..n, are equal to zero. Then we have the
inequality
Thk—1 < Th1k, and

(3.5)

r=R ‘ r=R

Ina,—; —Ina, .
a1 =T e _ 1 \/— +o(v7) 7= 0, if any # ay, (3.6)

2
To1 = \/?a—, if a,,—1 = ay,.

n

Proof. The functions I'y(r) — I'y_;(r) satisfy the equation

Lpa (|2 — zo]) = Ti(lz —zo]) _
T
Ly (e — 2of) — Tp—1 (|2 — 20])

= —Qm—k+1 - : (37)

ATk (Jz=o]) =T (lz=20])) = @m 1
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We construct an integral representation at the center of the sphere
K.

Tk k+1 (ZL’Q)

[11(0) = T (0) =

_ f am_k+1Fk(\w—ro|)—£k71(|r—wo\)F1(|x _ x0|)dx _

Kry g1 (0)

or
—— [ @enllo = wol) ~ Tulle - o) G s,

Ky gy (z0)

sinh /2=~ (rp 10 — |2 — 20))
[y (Jz —xo|) = :

A —k

47r|x — x| sinh kL k

Taking into account that the function 'y (r) — 'k (r) is equal to zero
at the points r = 0, 74414 = 0, we obtain

r — — Iy —
0- s 2D = bl = 20l) gy

Ky, g (20)

If rig—1 > Tkt1k, then this equality is impossible.
Formula (3.1) implies

dmle — ol (2 — o) = BT 40 (VT

47T|$‘—$0|P2(|1‘—1*0|) f— & (e—\w—ro‘\/ aTm — 6_|1’_9€0‘\/ am%l) ‘l‘

Amp—1 — Am

+0 (e‘R a”:m> ;i 1 #

47T|aj — xO‘FQ(‘x — g;o‘) = %e—x—xoly/ﬁ” +0 (e—R %ﬂ)

if a,,—1 = a,,. From here we obtain

Ina,,_; —Ina,,
N +o0
Vam—1 — /Am

In particular, if a,,_1 = a,,, then

To1 = (r) 7 —0.

2
Vam

o1 =T
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The function I'y(r)—T"1 () changes the sign once. Therefore, as follows
from the equations (3.7), the functions I'y(r) — I'y_1(r) change the
sign once too. It means that the inequalities (3.6) hold.

Property 7. We have following estimate

_M{ 1Rexp{ Mg\/_}+exp{—%}}, (3.8)

where ¢ > 2, and positive constants My, My do not depend on N, 7, R.
Proof. Let us estimate integral

T % NE dz
orn(en) 2may ) 2rRsinh(y/2R) (1-2)(1-2)..(1 - Z)
(3.9)

oy
on

ory
on

where JL is the boundary of the domain

(14+q) max_ay
L={z:0=|z2| < —==—

T

max ap
1<k<N }

Rez =by > —%5,by < 0,0 >

R27

Let us represent the integral (3.9) as a sum of two terms: I; and Iy,
where I; denotes the integral along the part of the curve 0L which is
an arch of a circle, and I denotes the integral along the part of the
contour which lies inside the straight line Rez = by. Let us estimate
the integral ;. The estimates

N

2l > ",

T T

(1-)0-)..0-2)| >

ax as an’|

-1

amax

|sinh(v/zR)| > sinh[y/]z| R cos(argz/2)] = sinh[\/]z| R cos ¢],

where ¢ — 7, if 7 — 0, imply

1 R
|| < VR eXP{—C2F}=

where the constants ¢; and ¢y do not depend on 7. Let us now esti-
mate the integral I5. As Rez = by, we obtain

b r
a'max

T

(1-a-Da-2

a1 a2 an
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Assume by = —%. Then Sin”h|f/|§R < ¢4. Thus we obtain
L] < Tr?
CsexXp q — )
2| = G5 €XP R,

The constants cs, ¢4, c5 do not depend on 7.
4. Uniform estimates. Passage to the limit.

Theorem 4.1. Let
¥(x) € C*(D), p(x,t) € HH*5(Dr),0 <a <1, 1 >3,

and assume that the corresponding consistency conditions hold att =
0,z € 0D. Then exists the constant c, which not depend ¢, that the
following estimate holds:

 max
Dr\{w® (z,t)Nw® (2,0)}

+ \

< 4.1
8(1: ' —_ C, ( )
where wé(x,t) = {(x,t) € Dy : 1 <u®(x,t) <14¢€}.

Let xy be an arbitrary point in D. Denote by Kg(xq) the sphere
with the center at the point zg of radius R = 77, Kg(z9) C D. Let’s
transform the equation (2.6) to the following form

Out () B¢ (zo) Ous (x) B5,_1 (w0) Ouj,_, (@) _
A<§z>_kf A

_ Ol (@)= f7_ (2)] By (x) =B (w0) Qug(x)  Br_1(®)—B_; (o) dug_, (2)
k 8Zk 1 ++ k k k _ FE-1 k—1 k—1

T ot T ot

ouf (x)

In order to obtain the estimate for the functions we will use

ot
the integral representation (Property 4). It will give
8u€n(a:0) e Fn(|$—$o|)

Kr(wo)
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n

> ui Oln—ret1 g

ot on
k=10Kp(xo)

n

/ WPH_HNI% — wo|)da—

- it
k=1KRg(zo)
RS i {BZ(x)—BZ(xo) Quiw) _ Pia(@)=Ff_,(x0) 8uzf}<w>} y
T ot T ot

an_k+1(|x — SL’ODdSL’ = Il + [2 + 13 + [4.

Let’s estimate every term. From (3.4) follows

1 1
|| < / —|Aug(x)|T (| — x0|)dr < max |Aug(z)|—.
T x€D (7%
KR(zo)

Let assume 0 < o < 1. Then from (3.8) follows

|]|< TCl 1 o { c R}—|—ex T7T2 <
it S N sl _
2l = TM(e) | ¢"R P 2\/? P R2a,,.x -

< Ty 1 exp{—c i}—i—e B Tr? < c(o)
= TM(e) Ve SRV A TP T e S M)

where ¢(o) do not depend e.
From (2.5), (3.4) follows

LSS [ |filw) |Cemlemred-Tolomro | g, <
k=1K (0) T
< [ max |fi(e)REldat
Kry , (z0) z€D,1<k<N
T T20’
+ max | fi(@)] ptede < o (57 + g ) -

KR\K'r2 L (z0) z€D,1<k<N

where constant ¢ do not depend ¢, 7.
From (3.5), (3.6) follows

1] < z [ 1) — B ()| x

=1KRr(zo)

Pacir(fe=ro)=Toos(o=ao]) | 4o

ot

x|
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L 18) — Bilao)x

kleR\KTQ,l(ro)

@) | | aciea(o=a0)-Torla=zo) | 7. <
ot -

T

< ] b,
K'r2y1 (:BO)

+ J 622‘9;4_(?))‘ T < = (T2 + 7571,
Kpr\Kry | (20)
In result we shall receive
Ous (o) r3o-t
ot VB
where constants ¢q, co do not depend from 7, e. Let us assume that
7301 < e2M(e),1/3 < o < 1/2. Then

<c max |Aug(x)
€D

kT
u’ (.CL’(], ) S 8?112(.]}0) 1 / 8u€(x,t) . 8UE($,7]) dT/ S
ot ot ot

30—1

i
< ¢y max |Aug(z)| +
< comas B e g

where the constant ¢, do not depend from e.

Near of boundary of domain D the equation (2.6) become the
linear equation with the constant coefficients. Therefore the appro-
priate estimate can be easily received.

We differentiate the equation (2.6) with respect to one of the
variables x;.

o2 (3Ui($)) _ be(ui())ui () — be(upy (@))uily (2) _ Ofi(x)

+c3 < ¢y,

M(e)

Ox? Ox T Ox
We use the property 4. It gives

u!(z0) = f Beug! (x )Fn |lz=zol) 7,

Kr(zo)

—i{ [ o) FEtds - f f;i’(af)Fn_kHdas}— (4.3)

OKR(z0) Kr(zo)

_ Zn: f (ﬁi(afo) — ﬁli(f))ui’(l’) Fm7k+1(\x—xol})L—Fm,k(\x_xODdx

k=1Kg(xz0)
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From this integral representation, applying the same reasoning as
above, we obtain the second part of the estimate (4.1). The estimation
(4.2) can be proved similarly.

Let’s return to integral representation (4.3) and we will estimate

9Y(z)

from below the first term. We will assume, that == # 0 everywhere

in D. For definiteness we will assume 81?)_53:0) > 0. Then

5 (o)) P el >

Kr(wo) ’

> Qi ming (Y (z) [ In(lz=2o]) 7, —

T

Kr(zo)
n—1
. ol _k T—x
= Qmin mmD(@Z)/(I){ J 52(1960) : Hé)lr(z‘ Dr+
OKR(xo) k=1

From (3.8) follows

|| < Le ! exp{—c i}—i—ex _ I < C(U)T
=M@ Ve TP TP T e [ ) T M(e) "

where ¢, ¢(o) do not depend e. From (3.3) follows

5%(960) o
|[2‘ _ / Fl(‘l’—ﬂfo‘)dx: 1 (1_ — T
T Bs (370) sinh 1/ Pa@0) o
Kgr(zo) T

Similarly to the previous theorem it is possible to prove that all other
terms in the received integral representation (4.3) have limits equal
to zero when ¢ — 0. From here follows

Theorem 4.2. Let

() € C***(D), plx,t) € H**3* (Dr), min |Vib(x)| > 0,
D
(0 < a < 1) and assume that the corresponding consistency conditions

hold at t = 0,z € OD. Then exists the constant ¢, which not depend
g, that the following estimate holds:

|IVu(z,t)]| > c>0 Y(x,t) € Dr \ w-(z,t).
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Let the function n(z,t) € C*Y(Dr) be equal to zero on (9D x
(0, 7)U(Dx (t=T)). We multiply (2.2) by n(z,t), integrate it over
Dyp. After simple transformations we obtain

Df (Vue(a:, H)Vn(z,t) + a(u)Zen(z,t) + )\xa(ue)%>dxdt+

+)\gXE(¢)77($7 O)dZE =0,

The possibility of passage to the limit follows from the statements
proved above. As a result we obtain
Theorem 4.3. Let the following conditions be satisfied:

Y(z) € C**(D), p(x,t) € H****/2(Dr), min|Ve(z)| >0,
D

(0 < a < 1) and we will assume that corresponding consistency
conditions hold att = 0,x € OD. Then VT > 0 there exists a solution
of the problem (1.1)-(1.4) and

u(x,t) e C(D—T) N (H2+a,1+a/2(Q_T \ ’70) % H2+a,1+a/2(G—T \ ,}/0)) :

the free boundary is given by the graph of a function from H?*+e1+e/?
class.

In this work existence of classical solution is proved at more
natural limitations, than in work [2].
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