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SCATTERING OF ELECTROMAGNETIC WAVES
IN AN ACCELERATING SECTION OF A SUPERCOLLIDER

A problem of synthetizing of an optimal accelerating section for electron-positron colliders is considered. A
boundary surface shape for such an electrodynamical system, which provides a stable structure of electromag-
netic fields required, is suggested. Wave scattering in the system synthesized is investigated on the basis of
the method of discrete sources. Some recommendations concerning optimization of boundary shapes are
proposed.

Keywords and phrases: accelerating section of a supercollider, scattering problem, method of discrete
sources.
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Introduction.

Designing of linear accelerators for novel electron-positron colliders is based on using of
a high-frequency pumping [1]. Such an approach is based on the fact that the accelerating
gradient (the value of the particle-synchronous harmonic of an electric field) may be increased
only proportionally to a drive frequency [2]. Therefore, it is inevitable to use quasioptical
components. The basic motivations and restrictions when synthesizing quasioptical structures
for electron-positron colliders are formulated in [3]. A proper structure presented ibidem is
a periodic set of coaxial radial-corrugated metal discs (two neighbor discs compose a Bragg
reflection cavity) which is fed with a wave flow converging onto the structure axis (Fig.1). An
optimization problem is considered as follows. For fixed the accelerating gradient, the drive
frequency and the accelerating channel inner diameter it is required to synthesize a structure,
where minimum RF energy would be accumulated within the channel and minimization of
electric field maximum on metal discs would be realized at the same time.

This optimization problem generates some model ones [4]-{7]. One of them is an external
scattering problem for an infinite domain in the azimuth-symmetrical case. The previous
results [4]-]6] concerning shapes of boundary surfaces for both a paraxial volume and Bragg
cavities are exploited. Besides, a shape of a boundary surface for an outside volume, which
can suppress spurious modes [8], is discussed here. A mathematical model is presented in
Section 1.

Numerical algorithms are described in Section 2. They are based on the method of
discrete sources (MDS) [9]. The knot of this method is the way of source placement. Much
attention is paid to this question. Another algorithmic basis is the singular value decomposition
(SVD) technique [10]. SVD gives a clear diagnosis how close to resonance the situation is.
Moreover, the eigenvector corresponding to zero eigenvalue (resonance case) is produced
immediately by SVD.

The primary results of numerical experiments for various combinations of boundary
surfaces are presented in Section 3.

1. Mathematical model.

For 3D azimuth-symmetrical case the scattering problem is described by a scalar equation
of Helmholtz type for the azimuth component of a magnetic field H, (wave number & is
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normalized to unity):

1
AH, + (1 - 72) H, =0, (1)

where A = <§—;2 + 88—:2 + }%) is Laplacian in the azimuth-symmetrical case, r and z are the

radial and the axial (longitudinal) coordinates correspondingly.
The problem is considered in the infinite strip

0<r<oo, 0<z<m (2)
less the internal domain restricted by the curve
S(r,z) =0, (3)

which is the equation of a longitudinal cross-section of an elementary disc (Fig. 2).
The boundary conditions reflect:
1) equality to zero of the tangential component of an electric field on a metal surface (3)

= —\ _ 0SS ( 0H, oS [1o(rHy)|
—“”—@W%XZ‘5<“aﬁ+5;b—af‘—Q (4)

2) symmetry and periodicity of the structure in the z coordinate

0H,
P at 2 ,TT; (5)

3) equality to zero of the azimuth component of a magnetic field on the structure axis
H,=0 at r=0. (6)

In the case of azimuth symmetry both the axial component of an electric field F, and

the radial one E, are expressed explicitly in terms of the azimuth component of a magnetic
field H,:

. O0H 1
—iFE, = ar” + ;Hw, (7)
) OH,
—1 ET' = —a—; (8)

An incident wave H;, is assumed to be the convergent cylindrical wave

Hyn(r) = SHP (). (9

The boundary condition (6) generates a regular part of the scattering solution, which is the
divergent cylindrical wave:

ZHf”(r). (10)

Here, in Eqs.(9)—(10), Hl(l) and H{Q) are the Hankel functions.

Hzp reg(r) =
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The boundary curve (3) generates an additional scattering wave H,,q4(r, 2), finding of
which is the essence of the scattering problem. So, an unknown solution H, is sought as a
sum of the incident wave and the scattering one:

H@ :Htpin+stcat; (11)
in its turn, H, s represents a sum of two components
Hcpscat = Hapreg"’Hapadd- (12)

For the sake of uniqueness, H,s, must to be divergent in infinity, i.e., it satisfies the
radiation condition

aH pscat
or

T

1
— 1Hpgcat = O (—) at 7 — oo. (13)

Eqgs.(1)—(13) represent the mathematical model for the accelerating section of a collider,
which is fed with the cylindrical wave flow converging onto the structure axis.

Let us pay brief attention to elements of the boundary profile (3).

The axial component of an electric field E, in the paraxial domain is required to be the

cosine standing wave
E,=2Ccos z, (14)

where C' is the constant. The boundary condition (4) (perpendicularity of an electric field
to a highly conductive metal surface) may be written in the form

E.dr+ E,dz =0, (15)

where dr and dz are the components of a vector tangent to the metal surface. With use of
Eqs.(7)-(8) the equation (15) yields

rdr=—2ctgzdz, (16)

the solution of which is the surface preserving an electric field in the form of the standing
wave (14)
r? = 7] — 4lnsin 2, (17)

where 7 is the width of the accelerating channel (Fig.2). Note, that in this case the azimuth
component of a magnetic field H, and the radial component of an electric field E, are (see

(7), (8), (14)):
H,=—iCrcosz, (18)

E,=Crsinz. (19)
In a similar way it is shown, that the boundary surface

r = const (20)

ensures correctness of the boundary condition (4) for the solution

C
H, = —cosz. (21)
r
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It means the appearance of a spurious mode in the outside part of the system considered.
This spurious mode takes away the energy of the incident wave from the paraxial domain.
Therefore, the boundary surface of the outside volume should not be chosen in the form
(20). To suppress the spurious mode, it is recommended to use a profile (17) shifted by 7
along the 2z coordinate. This profile must form in the outside volume the mode

H,=Crcos(z—7/2)=Crsinz, (22)

which is impossible at 7 > 1 according to energy reasons.

The complete profile of the elementary disk recommended for the accelerating structure
is shown in Fig. 2. It is obtained by connection of the contours of paraxial and outside volumes
by narrow channels with asymmetric grooves (for amplification of the standing wave on the
structure axis). The optimal parameters for two neighboring channels in the case of plane
geometry are obtained in [5]. For the case of cylindrical geometry these parameters are defined
more exactly using the numerical procedure. Note, that, despite of a priori considerations
and numerous numerical experiments, the question on synthesis of optimal paraxial (17) and
outside (22) volumes is still open.

2. Numerical algorithms.

To find an approximate solution of the problem (1)-(13) the method of discrete sources
(MDS) is used [9]. An unknown function H,qq is sought in the form

H,a4(r, 2) Zd G(r, z, pi, Gi), (23)

where G(r, z, p;, (;) is the Green function of the operator considered (1), (5), (6), (13) in the
envelope domain (2), d; are the amplitudes of sources, p;, (; are the source coordinates, N
is the number of sources used.

The Green function G(r, z, p, () may be presented as an expansion into one-dimensional
eigenfunctions either in the radial coordinate r (cylindrical functions) or in the longitudinal
coordinate z (trigonometric functions). Both representations yield one and the same result,
however, the trigonometric representation demonstrates faster convergence, that is why
preference is given to it:

G(r,z,p, Q) = —%Gg(r, p) — %Gl(r, p) cos z cos ( — %ZGn(r, p) cos (nz) cos (n¢).  (24)

Here, for r < p

Go(r.p) = H{" (p) [Hf”(r) +HP )], Gilr.p)=1/p.

Gn(r,p) = an [ HY (iAar) +H (z)\ )|,

where Hfl), Hf2) are the Hankel functions, A\, = v/n? — 1. For r > p the variables r and p

change places in the right hand side of (24) (symmetry property of the Green function).
Taking into account the properties of the Green function (24) and functions (9)—(10), the

unknown function H, (11) satisfies the equation (1) together with the boundary conditions
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(5)-(6) as well as its scattering component H,s, satisfies the scattering condition (13).
Substituting (11) into Eq. (4) (with use of (9), (10) and (23)) for all collocation points (points,
where the validity of the boundary condition (4) is verified) on the boundary surface (3) we
arrive at a set of linear algebraic equations (SLAE) for unknown values of source amplitudes
dii

N
Zldl{[%_f(TjazjapHCz) + %G(Tjazjapwg) COSﬁj—
. (25)

_%(r]azﬁpzacz) Slnﬁ]} = _%JO(T) COS/Bj ] = ]-aNa

where tg 3 = 1'(s)/2'(s), (r(s), z(s)) is the parametric representation of the boundary surface
(3), Jo(r) is the Bessel function. The values d; obtained from (25) determine the approximate
solution of the scattering problem.

Allocation of sources and collocation points is the problem of great importance. The
practical experience gives the basic recipes, which are as follows (Fig.3). The collocation
points may be allocated uniformly along the boundary. On the smooth pieces of the boundary
the rarefaction of them (pieces 2, 5, 8 in Fig.3) and even their complete absence (piece 1
in Fig.3 — one more remarkable property of the curve (17)) is allowed. At the same time,
in neighborhoods of the exterior angular points (A, B, C in Fig.3) their accumulation is
required. Moreover, the double verification of the boundary condition (4) at the angular
points (A, B, C, D, E in Fig.3) seems to be natural because of two tangent directions at
these points.

In the neighborhood of any exterior angular point (A, B or C in Fig.3) there is a pole
point. A source being allocated at this point, SLAE (25) becomes degenerate [11]. The sources
here should be disposed on a curve (e.g., uniformly on a circle) bordering the singular point.
In that case a fractional singularity is simulated correctly [11], [12]|. Basically, it is enough to
use four source points. To make accuracy higher, the number of sources should be increased
in the neighborhoods of singular points.

For the sake of better convergence of series in Eq. (24) coordinates of sources and
collocation points should differ from each other in both the radial » and the longitudinal 2
variables. One possible variant is the placement of sources at the tops of isosceles triangles,
other tops of which are neighboring collocation points on the boundary (Fig. 3). The height
of triangles is a free parameter h.

The above-stated recipes allows to use ~ 10 points for simple boundaries (Fig.4) and
~ 100 points for boundaries of complicated shapes (Fig. 5, 6).

To obtain a resonance solution, it is necessary to fit a boundary surface of the system
synthesized to the shape ensuring zero eigenvalue. A numerical procedure is needed, which,
firstly, diagnoses presence of zero eigenvalue, and, secondly, selects the eigenfunction corres-
ponding to it from a solution. For these purposes there exists a powerful technique known
as singular value decomposition (SVD) [10].

First of all, SVD gives a clear diagnosis of the situation: how close to singular the matrix
is. Moreover, SVD solves effectively a set of homogeneous linear algebraic equations (SHLAE)
Ax = 0 in the case that the matrix A is singular. The solution is obtained immediately by
means of SVD:

A=uwv"t ~UTU=V'V =1, (26)

where U and V' are the orthogonal matrices, W is the diagonal matrix with nonnegative
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elements (the singular values), I is the identity matrix. Any column of V', whose corres-
ponding element of W is zero yields a solution of SHLAE. At last, application of SVD to
SLAE with a nonzero right hand side is useful too. In fact, SVD obtains explicitly both the
resonance component and the "range” (nonresonance) one. That is especially useful in the
situation, where several eigenvalues are nearly zero.

The constructive algorithm for finding of resonance domains for the operator (1) together
with the boundary conditions (4)—(6) and an artificial metal at some value in the radial
coordinate 7 = ry is presented in [4]. In particular, a remarkable property of the curve
(17) (one more additional argument in its favour) had been verified numerically: it forms
an "infinite” resonator with the mode (18), if » — oo [4]. Indeed, since the function (18) is
quadratic summable inside a complete volume of the "infinite” resonator, it is the eigenfunction
of the discrete spectrum of the operator (1), (4)—(6) corresponding to zero eigenvalue.

Analytical considerations, numerical algorithms and results obtained earlier (see [4]-[7],
[11]) are exploited for the complete external scattering problem (1)—(13).

3. Numerical results.

The prime test for the numerical algorithm (23)-(26) is as follows. A closed boundary
surface (3) in the scattering problem (1)-(13) being an arbitrary combination of straight
lines (here rg; is the i-th zero of the Bessel function Jy(r), z; is the arbitrary number from
the interval (0,7/2)),

= Tro; and 2z = zj, (27)

the scattering is absent at all, i.e., a free propagation of the cylindrical wave is realized
(Fig.4)
H,=Ji(r),E, = Jy(r), E, = 0. (28)

A qualitative coincidence of a numerical solution with the exact one (28) in the radial
coordinate is obtained. At the same time the numerical solution is homogeneous in the axial
coordinate. As for a quantitative comparison, the relative mean square error is approximately
equal to 0.1 % even for a small number (~ 20) of sources used. The similar results for other
domains are obtained.

The main results of other numerical experiments are as follows.

To obtain the homogeneous (in the radial direction) axial component of an electric
field E, with a large projection onto the harmonic synchronous to relativistic particles, it is
enough to use asymmetric shapes for the paraxial volume (Fig.5). However, without grooves
(symmetric or asymmetric) in channels connecting the paraxial profile with the outside one
it is impossible to obtain a considerable magnitude of the accelerating gradient. As well as
it is impossible to suppress the spurious mode (21) in the outside volume. It is well seen
(Fig.5), that a magnetic field in the outside volume (contrary to the incident wave (9)) is
inhomogeneous in the longitudinal coordinate z.

The best results are obtained for the contour drawn in Fig. 6. This contour is as follows:
1) the paraxial part is chosen in the form (17);

2) the outside part is chosen in the same form shifted by 7 in the z coordinate;
3) asymmetric Bragg reflectors with parameters obtained in [5]| (they are defined more
accurately for the cylindrical case) connecting the paraxial part with the outside one.

This contour provides in the paraxial volume a stable (with respect to changes of
the contour parameters) homogeneous standing wave with essentially higher amplitude in
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comparison with the incident cylindrical wave. Besides, it essentially suppresses the spurious
mode of a magnetic field in the outside volume, where the homogeneous incident wave (9)
plays the basic part.

4. Summary.

This paper continues a series of works published earlier [4]-|7], [11]. To synthesize an
optimal accelerating section for electron-positron colliders, some model problems of a various
type (boundary, spectral, scattering) are solved. The numerical algorithms based on the
method of discrete sources and the singular value decomposition technique are developed.
The shapes of boundary surfaces of metal disks ensuring fields in electrodynamical systems
with properties required are obtained.
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Fig. 2. The external scattering problem (1)-(13) (A is the parazial volume, B are the channels
with different Bragg reflectors, C is the external volume; the incident wave

H,in(r) = %Hl(m (r); H1(2) (r) is the Hankel function; \ is the wave length).
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B 7 C

-0.2 —
Fig. 4. Test scattering problem (1)—(13) without scattering on a metal shape (3).

The exact solution is H, = Ji(r), E, = Jo(r) (E, = 0); here o1, o2, To3 are the zeroes
= $H (),

of the Bessel function Jo(r); the incident wave is the Hankel function H,in(r) =

Fig. 5. Asymmetric profile without Bragg reflectors. The curves 1, 2 correspond to
electric and magnetic fields at z = w; curves 3, 4 — at z = 0.
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Fig. 6. Profile of a metal disk providing the best properties of fields in the system. The curves 1, 2

correspond to electric and magnetic fields at z = 7; curves 8, 4 — at z = 0.
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TWO-PHASE STEFAN PROBLEM FOR ELLIPTIC
AND PARABOLIC EQUATIONS

The Stefan problem in its classical statement is a mathematical model of the process of propagation of
heat in a medium with different phase states, e.g., in a medium with liquid and solid phases. The process
of propagation of heat in each phase is described by usually parabolic equation. In the presented work we
assume, that a process in the solid phase is described by the parabolic equation and in the liquid phase is
described by the elliptic equation. In this article we proved the existence of the global classical solution in
many-dimensional space.

Keywords and phrases: free boundary problem, global classical solution, elliptic-parabolic Stefan
problem
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1. The statement of the problem.

The Stefan problem in its classical statement is a mathematical model of the process of
propagation of heat in medium with different phase states, e.g., in medium with liquid and in
solid phase. As a result of melting or crystallization, the domains occupied by the liquid and
solid phases undergo certain changes. This unknown interface is called a free boundary. The
process of propagation of heat in each phase is described by the heat equation. If the process
of propagation of heat in the liquid and solid phases is described by an elliptic equation,
then the corresponding mathematical model is called the Hele-Show model. In the present
work we assume that the process in the solid phase described by a parabolic equation and
in the liquid phase described by an elliptic equation.In this work we prove the existence of
the global classical solution.

Let D:{ZITGR3§ 0<R1<|LE|<R2}, DT:DX(O,T), Bl‘:{LEGRBI
|z| < R;}, i=1,2, T > 0is a fixed number. The problem is to find a function u(z,t) and
domains 27, G, which satisfy

ou

AU_E:O in Qp, Au=0 in Gp, (1.1)

Qr ={(z,t) € Dy : 0 <u(z,t) <1}, Gp={(z,t) € Dy :u(z,t) > 1}.
On the known boundary
u(z,t)=0 on 0By x (0,T), u(xz,t)=p(x,t)>1 on 0By x (0,T), (1.2)
On the unknown (free) boundary vy = 0Q¢ N Dy = OG- N Dy
3
ou~  Out
Ty =1 —

k=1

) cos(n, z;) + Acos(n,t) =0, (1.3)

where \ is a positive constant, n is the normal to the surface v directed to the side of
increase of the function u(z,t); u™(x,t),u"(x,t) are the boundary values on the surface vz
taken from the domains G, {2 respectively.

The initial conditions are

u(z,0) =(x) in Qy, ¥(x)=0 on 9By, ¥(xr)=¢(x,0)>1 on 9By, (1.4)
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