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Power geometry in nonlinear partial

differential equations

Alexander D. Bruno

(Presented by A. M. Samoilenko)

Abstract. Power Geometry (PG) is a new calculus developing the
differential calculus and aimed at nonlinear problems. The main concept
of PG is the study of nonlinear problems in logarithms of original co-
ordinates. Then many relations nonlinear in the original coordinates
become linear. The algorithms of PG are based on these linear relations.
They allow to simplify equations, to resolve their singularities (including
singular perturbations), to isolate their first approximations, and to find
asymptotic forms and asymptotic expansions of their solutions. In par-
ticular, they give simple methods to identify the equations and systems
as quasihomogeneous, and then to introduce for them self-similar coor-
dinates. As an application, we consider the stationary spatial axially
symmetric flow of the viscous compressible heat conducting gas around
a semi-infinite needle. Other application: finding blow-up solutions.
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Introduction

Traditional differential calculus is effective for linear and quasilinear
problems. It is less effective for essentially nonlinear problems. A linear
problem is the first approximation to a quasilinear problem. The linear
problem is usually solved by methods of functional analysis, then the so-
lution to the quasilinear problem is found as a perturbation of the solution
to the linear problem. For an essentially nonlinear problem, we need to
isolate its first approximations, to find their solutions, and to construct
perturbations of these solutions. This is what Power Geometry (PG) is
aimed at. For equations and systems of equations (algebraic, ordinary
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differential, and partial differential), PG allows to compute asymptotic
forms of solutions as well as asymptotic and local expansions of solutions
at infinity and at any singularity of the equation (including boundary
layers and singular perturbations) [1].

Elements of plane PG were proposed by Newton for an algebraic equa-
tion (1680); and by Briot and Bouquet for an ordinary differential equa-
tion (1856). Space PG for a nonlinear autonomous system of ODEs was
proposed by the author (1962), and for a linear PDE, by Mikhailov (1963).

In this talk we intend to give basic notions of PG, present some of its
algorithms, results, and applications. It is clear that this calculus cannot
be mastered during this presentation. This talk consists of three parts:
space PG (Section 1), self-similar solutions (Section 2) and boundary
layer on a needle (Section 3).

1. The space Power Geometry

Let X ∈ C
m be independent and Y ∈ C

n be dependent variables.
Suppose Z = (X,Y ) ∈ C

m+n. A differential monomial a(Z) is the
product of an ordinary monomial cZR = czr1

1 · · · z
rm+n

m+n , where c = const
∈ C, R = (r1, . . . , rm+n) ∈ R

m+n, and a finite number of derivatives of
the form

∂lyj

∂xl1
1 · · · ∂xlm

m

def
=

∂lyj

∂XL
, lj ≥ 0,

m
∑

j=1

lj = l, L = (l1, . . . , lm).

A differential monomial a(Z) corresponds to its vector power exponent

Q(a) ∈ R
m+n formed by the following rules

Q(cZR) = R, Q(∂lyj/∂X
L) = (−L,Ej),

where Ej is unit vector. A product of monomials a · b corresponds to the
sum of their vector power exponents:

Q(ab) = Q(a) +Q(b).

A differential sum is a sum of differential monomials

f(Z) =
∑

ak(Z).

A set S(f) of vector power exponents Q(ak) is called the support of the
sum f(Z). The closure of the convex hull Γ(f) of the support S(f) is
called the polyhedron of the sum f(Z). The boundary ∂Γ(f) of the poly-

hedron Γ(f) consists of faces Γ
(d)
j , where d = dim Γ

(d)
j and j is its num-

ber. Let R
m+n
∗ be the space dual to the space R

m+n such that the scalar
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product 〈P, Q〉
def
= p1q1 + · · ·+pm+nqm+n exists for P = (p1, . . . , pm+n) ∈

R
m+n
∗ and Q = (q1, . . . , qm+n) ∈ R

m+n. Each face Γ
(d)
j has its normal

cone U
(d)
j ⊂ R

m+n
∗ . It consists of all vectors P such that the hyperplane

supporting Γ and normal to the vector P , intersects the polyhedron Γ

exactly along the face Γ
(d)
j . Each face Γ

(d)
j corresponds to the truncated

sum

f̂
(d)
j (Z) =

∑

ak(Z) over k : Qk ∈ S ∩ Γ
(d)
j .

Consider a system of equations

fi(X,Y ) = 0, i = 1, . . . , n, (1.1)

where fi are differential sums. Each equation fi = 0 corresponds to: its

support S(fi), its polyhedron Γ(fi) with the set of faces Γ
(di)
ij in the main

space R
m+n, the set of their normal cones U

(di)
ij in the dual space R

m+n
∗ ,

and the set of truncated equations f̂
(di)
ij (X,Y ) = 0. The set of truncated

equations

f̂
(di)
iji

(X,Y ) = 0, i = 1, . . . , n (1.2)

is the truncated system if the intersection

U
(d1)
1j1

∩ · · · ∩ U
(dn)
njn

(1.3)

is not empty. A solution

yi = ϕi(X), i = 1, . . . , n (1.4)

to the system (1.1) is associated to its normal cone u ⊂ R
m+n
∗ .

Theorem 1.1 ([1]). If the normal cone u intersects with the cone (1.3),
then the asymptotic form yi = ϕ̂i(X), i = 1, . . . , n of the solution (1.4)
satisfies the truncated system (1.2), which is quasihomogeneous.

2. Self-similar solutions [2]

Let S(f) be the support of a differential sum f(Z) and Q ∈ S(f).
The set

S̃(f)
def
= S(f) −Q

is called shifted support of the sum f(Z). Each equation of system (1.1)
has its own shifted support S̃ (fi). Let Γ̃ be the convex hull of their union

S̃ (f1) ∪ · · · ∪ S̃ (fn)
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and d be the dimension of Γ̃. If d < m+ n, system (1.1) is quasihomoge-

neous.
Let A be a square real nonsingular (m + n)-matrix with the block

structure

A =

(

B11 0
B21 B22

)

(2.1)

where B11 and B22 are square matrices of dimensions m and n respec-
tively. We denote logZ = (log z1, . . . , log zm+n), and asterisk ∗ means
transposition.

The change of variables

(logZ)∗ = A(log Z̃)∗ (2.2)

is called power transformation.

Theorem 2.1 ([2]). If system (1.1) is quasihomogeneous and d = dim Γ̃,

then there exists a power transformation (2.2), which reduces system

(1.1) to a system containing m+n−d variables z̃j in the form ∂(log z̃j).

Example 2.1. In [3] the system

kt =
(k2

ε
kx

)

x
− ε,

εt =
(k2

ε
εx

)

x
− γ

ε2

k

(2.3)

was considered. Here t and x are independent variables, k and ε are
dependent variables, and γ is a real parameter. Here m = n = 2,
m+ n = 4, and x1 = t, x2 = x, y1 = k, y2 = ε. Support S1 of the
first equation consists of three points

Q1 = (−1, 0, 1, 0),

Q2 = (0, −2, 3, −1),

Q3 = (0, 0, 0, 1).

Support S2 of the second equation consists of three points

Q4 = (−1, 0, 0, 1),

Q5 = (0, −2, 2, 0),

Q6 = (0, 0, −1, 2).

Shifted supports S̃1 = S1 −Q3 and S̃2 = S2 −Q6 consist of three points

P1
def
= Q1 −Q3 = Q4 −Q6 = (−1, 0, 1, −1),
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P2
def
= Q2 −Q3 = Q5 −Q6 = (0, −2, 3, −2),

0 = Q3 −Q3 = Q6 −Q6.

Hence d = 2. Let us find basic vectors

Ri = αiP1 + βiP2 (i = 1, 2)

of the form

R1 = (r11, r12, 1, 0), R2 = (r21, r22, 0, 1).

After evident computation, we obtain

R1 = (2, −2, 1, 0), R2 = (3, −2, 0, 1).

Now we introduce new dependent variables

u = ZR1 = t2x−2k, v = ZR2 = t3x−2ε.

Hence
k = t−2x2u, ε = t−3x2v. (2.4)

It is the power transformation (2.2) with the matrix (2.1) where matrices
B11 and B22 are identical and

B21 =

(

−2 2
−3 2

)

.

Change of variables (2.4) reduces system (2.3) to the form

utt− 2u = 3
u2

v
(2u+ uxx) + x

[u2

v
(2u+ uxx)

]

x
− v,

vtt− 3v = 3
u2

v
(2v + vxx) + x

[u2

v
(2v + vxx)

]

x
− γ

v2

u
.

(2.5)

Let us consider two cases.
Case 1: u, v are constants and system (2.5) is

−2u = 6
u3

v
− v,

−3v = 6u2 − γ
v2

u
.

(2.6)

Its nonzero solution is

u =
3 − 2γ

6(γ − 1)2
, v =

3 − 2γ

6(γ − 1)3
(2.7)
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with two critical values γ = 1 and γ = 3/2.

Case 2: Let ζ = tσx, where σ ∈ R. Now u and v are functions of ζ.
In this case, in (2.1) the matrix

B11 =

(

1 0
−σ 1

)

,

but matrices B21 and B22 are as before. For u(ζ) and v(ζ), system (2.5)
gives a one-parameter (σ) family of systems of two ordinary differential
equations.

If u and v are functions of t only, we obtain the system

utt− 2u = 6
u3

v
− v,

vtt− 3v = 6u2 − γ
v2

u
.

(2.8)

For γ 6= 1 and γ 6= 3/2, its solutions are

u =
(3 − 2γ)t2

6w2 + c2w1/(γ−1)
, v = tu/w, (2.9)

where w = (γ − 1)t+ c1 and c1, c2 are arbitrary constants.

For γ = 1,

u =
t2

6c21 + c2 exp(t/c1)
, v = tu/c1. (2.10)

For γ = 3/2,

u = −
t2

w2(12 logw + c2)
, v = tu/w, (2.11)

here w = t/2 + c1.

If in (2.5) u and v are functions of x only, then they satisfy the ODE
system

−2u =
3u2

v
(2u+ uxx) + x

[u2

v
(2u+ uxx)

]

x
− v,

−3v =
3u2

v
(2v + vxx) + x

[u2

v
(2v + vxx)

]

x
− γ

v2

u
.

(2.12)

After the logarithmic transformation

τ = log t, ξ = log x (2.13)
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system (2.5) is

uτ − 2u = 3
u2

v
(2u+ uξ) +

[u2

v
(2u+ uξ)

]

ξ
− v,

vτ − 3v = 3
u2

v
(2v + vξ) +

[u2

v
(2v + vξ)

]

ξ
− γ

v2

u
.

(2.14)

Support S′
1 of the first equation consists of six points

Q′
1 = (−1, 0, 1, 0),

Q′
2 = (0, 0, 1, 0),

Q′
3 = (0, 0, 3, −1),

Q′
4 = (0, −1, 3, −1),

Q′
5 = (0, −2, 3, −1),

Q′
6 = (0, 0, 0, 1).

Its projection to the plane q′1, q
′
2 consists of four points

(−1, 0), (0, 0), (0, −1), (0, −2). (2.15)

Support S′
2 of the second equation consists of six points

Q′
7 = (−1, 0, 0, 1),

Q′
8 = (0, 0, 0, 1),

Q′
9 = (0, 0, 2, 0),

Q′
10 = (0, −1, 2, 0),

Q′
11 = (0, −2, 2, 0),

Q′
12 = (0, 0, −1, 2).

Its projection to the plane q′1, q
′
2 consists of four points (2.15). Their

convex hull is the triangle Γ′ (see Fig. 1) with three vertices

Γ
(0)
1 = (0, 0), Γ

(0)
2 = (−1, 0), Γ

(0)
3 = (0, −2),

and three edges

Γ
(1)
1 =

[

Γ
(0)
1 , Γ

(0)
2

]

, Γ
(1)
2 =

[

Γ
(0)
1 , Γ

(0)
3

]

, Γ
(1)
3 =

[

Γ
(0)
2 , Γ

(0)
3

]

.

Exterior normal vectors Nj to edges Γ
(1)
j are

N1 = (0, 1), N2 = (1, 0), N3 = −(2, 1).



A. D. Bruno 39

'3
(1)

'1

(1)

'2

(1)

!1

!2

0!1

q'2

1q' 0

2p'

1p'

Fig. 1.

So normal cones to edges Γ
(1)
1 and Γ

(1)
2 are rays (p′1, p

′
2) ∈ λN1 and

(p′1, p
′
2) ∈ λN2, λ > 0, respectively. And the normal cone to the vertex

Γ
(0)
1 is (p′1, p

′
2) ∈ λN1 + µN2, 0 < λ, µ; i.e. it is the first quadrant (see

Fig. 1).

According to (2.13), if t → 0 or ∞, then τ → ∞ and the truncated
system of system (2.14) contains only terms with q′1 = 0. It is exactly
system (2.12) after the logarithmic transformation (2.13). According
to Theorem 1.1 (see also [4, Ch. I]), asymptotic forms of solutions to
system (2.14) are solutions to the truncated system, i. e. to system (2.12).

If x→ 0 or ∞, then ξ → ∞ and the truncated system of system (2.14)
contains only terms with q′2 = 0. It is exactly the system (2.8) after the
logarithmic transformation (2.13). According to Theorem 1.1 (see also [4,
Ch. I]), asymptotic forms of solutions to system (2.14) are solutions to
the truncated system, i.e. to system (2.8). Hence, these asymptotic
forms are (2.9)–(2.11).

If both t and x tend to zero or infinity, then τ and ξ tend to infinity. If
the ratio τ/ξ does not tend to zero or infinity, then the truncated system
of system (2.14) contains only terms with q′1 = q′2 = 0. It is exactly
system (2.6). According to Theorem 1.1 (see also [4, Ch. I]), asymptotic
forms of solutions to system (2.14) are solutions to system (2.6). Hence
these asymptotic forms are (2.7).

Using the power transformation (2.4), we can obtain asymptotic
forms of solutions to initial system (2.3).
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3. Boundary layer on a needle [4]

The theory of the boundary layer on the plate for a stream of viscous
incompressible fluid was developed by Prandtl (1904) and Blasius (1908).
However a similar theory for the boundary layer on the needle was not
known untill recently, since no-slip conditions on the needle correspond
to a more strong singularity as for the plate. This theory was developed
with the help of Power Geometry (2004).

Let x be an axis in three-dimensional space, r be the distance from the
axis, and semi-infinite needle be placed on the half-axis x ≥ 0, r = 0. We
studied stationary axisymmetric flows of viscous fluid which had constant
velocity at x = −∞ parallel to the axis x, and which satisfied no-slip
conditions on the needle (Fig. 2). We considered two cases.

0 x

r

u4

Fig. 2.

First case: incompressible fluid. For it, the Navier–Stokes equations
in independent variables x, r are equivalent to the system of two equations
for the stream function ψ and the pressure p

g1
def
= −

1

r

∂ψ

∂x

∂

∂r

(1

r

∂ψ

∂r

)

+
1

r

∂ψ

∂r

∂

∂x

(1

r

∂ψ

∂r

)

+
1

ρ

∂p

∂x

−ν
(1

r

∂

∂r

(

r
∂

∂r

(1

r

∂ψ

∂r

))

+
∂2

∂x2

(1

r

∂ψ

∂r

))

= 0,

g2
def
=

1

r

∂ψ

∂x

∂

∂r

(1

r

∂ψ

∂x

)

−
1

r

∂ψ

∂r

∂

∂x

(1

r

∂ψ

∂x

)

+
1

ρ

∂p

∂r

+ ν
( ∂

∂r

(1

r

∂2ψ

∂x∂r

)

+
∂2

∂x2

(1

r

∂ψ

∂x

))

= 0,

(3.1)

where ρ, ν = const, with the boundary conditions

ψ = ψ0r
2 for x = −∞, ψ0 = const; (3.2)
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∂ψ/∂x = ∂ψ/∂r = ∂2ψ/∂x∂r = ∂2ψ/∂r2 = 0

for x ≥ 0, r = 0.
(3.3)

The system (3.1) has the form (1.1) with m = n = 2 and m + n = 4.
Hence the supports of the equations (3.1) must be considered in R

4. It
turned out that polyhedrons Γ(g1) and Γ(g2) of the equations (3.1) are
three-dimensional tetrahedrons, which can be moved by translation in
one linear three-dimensional subspace, that simplified the isolation of the
truncated systems. An analysis of truncated systems and of the results of
their matching revealed [4, Ch. II] that the system (3.1) had no solution
with p ≥ 0 satisfying both boundary conditions (3.2), (3.3).

Second case: compressible heat-conducting gas. For this case, the
Navier–Stokes equations in independent variables x, r are equivalent to
the system of three equations for the stream function ψ, the density ρ,
and the enthalpy h (an analog of the temperature)

f1
def
= −

1

r

∂ψ

∂x

∂

∂r

( 1

ρr

∂ψ

∂x

)

+
1

r

∂ψ

∂r

∂

∂x

( 1

ρr

∂ψ

∂x

)

−A
∂

∂r
(ρh)

+
2

3
Cn ∂

∂r

(hn

r

∂

∂r

(1

ρ

∂ψ

∂x

))

−
2

3
Cn ∂

∂r

(hn

r

∂

∂x

(1

ρ

∂ψ

∂r

))

−
2Cn

r

∂

∂r

(

hnr
∂

∂r

( 1

ρr

∂ψ

∂x

))

+ Cn ∂

∂x

(

hn ∂

∂r

( 1

ρr

∂ψ

∂r

))

− Cn ∂

∂x

(

hn ∂

∂x

( 1

ρr

∂ψ

∂x

))

+
2Cnhn

ρr3
∂ψ

∂x
= 0,

f2
def
=

1

r

∂ψ

∂x

∂

∂r

( 1

ρr

∂ψ

∂r

)

−
1

r

∂ψ

∂r

∂

∂x

( 1

ρr

∂ψ

∂r

)

−A
∂

∂x
(ρh)

+
2

3
Cn ∂

∂x

(hn

r

∂

∂r

(1

ρ

∂ψ

∂x

))

−
2

3
Cn ∂

∂x

(hn

r

∂

∂x

(1

ρ

∂ψ

∂r

))

+
Cn

r

∂

∂r

(

hnr
∂

∂r

( 1

ρr

∂ψ

∂r

))

−
Cn

r

∂

∂r

(

hnr
∂

∂x

( 1

ρr

∂ψ

∂x

))

+ 2Cn ∂

∂x

(

hn ∂

∂x

( 1

ρr

∂ψ

∂r

))

= 0, (3.4)

f3
def
=

1

r

∂ψ

∂x

∂h

∂r
−

1

r

∂ψ

∂r

∂h

∂x
−
A

ρr

∂ψ

∂x

∂(ρh)

∂r
+
A

ρr

∂ψ

∂r

∂(ρh)

∂x

+ 2Cnhn
( ∂

∂r

( 1

ρr

∂ψ

∂x

))2
+ 2Cnhn

( 1

r2ρ

∂ψ

∂x

)2
+ 2Cnhn

( ∂

∂x

( 1

ρr

∂ψ

∂r

))2

+ Cnhn
( ∂

∂x

( 1

ρr

∂ψ

∂x

))2
− Cnhn ∂

∂x

( 1

ρr

∂ψ

∂x

) ∂

∂r

( 1

ρr

∂ψ

∂r

)

+ Cnhn
( ∂

∂r

( 1

ρr

∂ψ

∂r

))2
−

2

3
Cnhn

(1

r

∂

∂r

(1

ρ

∂ψ

∂x

))2
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+
4Cnhn

3r

∂

∂r

(1

ρ

∂ψ

∂x

) ∂

∂x

( 1

ρr

∂ψ

∂r

)

−
2

3
Cnhn

( ∂

∂x

( 1

ρr

∂ψ

∂r

))2

+
Cn

σr

∂

∂r

(

rhn∂h

∂r

)

+
Cn

σ

∂

∂x

(

hn∂h

∂x

)

= 0,

where parameters A,C, σ > 0 and n ∈ [0, 1], with the boundary conditi-
ons

ψ = ψ0r
2, ρ = ρ0, h = h0 for x = −∞,

ψ0, ρ0, h0 = const
(3.5)

and (3.3). Here m = 2, n = 3, and m+ n = 5. In the space R
5, all poly-

hedrons Γ(f1), Γ(f2), Γ(f3) of the equations (3.4) are three-dimensional,
and they can be moved into one linear subspace. In coordinates (q̃′1, q̃

′
2, q̃

′
3)

of this three-dimensional space, they are shown in Figs. 3, 4, 5 respec-
tively. This simplified the isolation of the truncated system corresponding
to the boundary layer on the needle

f̂
(0)
12

def
= −A∂(ρh)/∂r = 0 (or ∂(ρh)/∂r = 0),

f̂
(2)
22

def
=

1

r

∂ψ

∂x

∂

∂r

( 1

ρr

∂ψ

∂r

)

−
1

r

∂ψ

∂r

∂

∂x

( 1

ρr

∂ψ

∂r

)

−A
∂

∂x
(ρh) +

Cn

r

∂

∂r

(

hnr
∂

∂r

( 1

ρr

∂ψ

∂r

))

= 0, (3.6)

f̂
(2)
32

def
=

1

r

∂ψ

∂x

∂h

∂r
−

1

r

∂ψ

∂r

∂h

∂x
−
A

ρr

∂ψ

∂x

∂(ρh)

∂r
+
A

ρr

∂ψ

∂r

∂(ρh)

∂x

+ Cnhn
( ∂

∂r

( 1

ρr

∂ψ

∂r

))2
+
Cn

σr

∂

∂r

(

rhn∂h

∂r

)

= 0,

with self-similar variables

ψ = xG(ξ), ρ = P(ξ), h = H(ξ), ξ = r2/x, (3.7)

and with the boundary conditions

ψ = ψ0r
2, ρ = ρ0, h = h0; ψ0, ρ0, h0 = const, r → ∞ (3.8)

and (3.3). In Figs. 3–5, the faces corresponding to the truncated system
(3.6) are shown in bold. According to the first equation (3.6) and the

equalities (3.7), (3.8), the product P (ξ)H(ξ) = const = C0
def
= ρ0h0.

Hence P (ξ) = C0/H(ξ), and the system (3.6), for the variables (3.7), is
equivalent to the system of two ordinary differential equations
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F2
def
= G

(

G′H
)′

+ 2Cn
[

ξHn(G′H)′
]′

= 0,

F3
def
= 2GH ′ + 16CnC−2

0 ξHn((G′H)′)2 + 4Cnσ−1(ξHnH ′)′ = 0,
(3.9)

where ′ def
= d/dξ, with the boundary conditions

G = ψ0ξ, H = h0 as ξ → +∞, (3.10)
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G = dG/dξ = 0 as ξ = 0. (3.11)

The problem (3.9)–(3.11) has an invariant manifold (G′H)′ = 0 on which
it is reduced to one equation

∆
def
= 2(ξHnH ′) − 2ξHnH ′2 + (ξ + c2)H

′ = 0,

where c2 is an arbitrary constant, with the boundary conditions

H → 1 as ξ → +∞,

H → +∞ as ξ → +0.

An analysis of solutions to the latter problem by methods of PG
revealed that for n ∈ (0, 1) it has solutions of the form

H ∼ c3| ln ξ|
1/n, ξ → 0,

where c3 is an arbitrary constant.

Thus, for n ∈ (0, 1), in the boundary layer r2/x < const, as x→ +∞
and ξ = r2/x→ 0, we obtained the asymptotic form of the flow

ψ ∼ c1r
2| ln ξ|−1/n, ρ ∼ c2| ln ξ|

−1/n, h ∼ c3| ln ξ|
1/n,
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i.e. near the needle, the density tends to zero, and the temperature in-
creases to infinity as the distance to the point of the needle tends to
+∞.
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