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TWO-PHASE STEFAN PROBLEM FOR ELLIPTIC
AND PARABOLIC EQUATIONS

The Stefan problem in its classical statement is a mathematical model of the process of propagation of
heat in a medium with different phase states, e.g., in a medium with liquid and solid phases. The process
of propagation of heat in each phase is described by usually parabolic equation. In the presented work we
assume, that a process in the solid phase is described by the parabolic equation and in the liquid phase is
described by the elliptic equation. In this article we proved the existence of the global classical solution in
many-dimensional space.
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1. The statement of the problem.

The Stefan problem in its classical statement is a mathematical model of the process of
propagation of heat in medium with different phase states, e.g., in medium with liquid and in
solid phase. As a result of melting or crystallization, the domains occupied by the liquid and
solid phases undergo certain changes. This unknown interface is called a free boundary. The
process of propagation of heat in each phase is described by the heat equation. If the process
of propagation of heat in the liquid and solid phases is described by an elliptic equation,
then the corresponding mathematical model is called the Hele-Show model. In the present
work we assume that the process in the solid phase described by a parabolic equation and
in the liquid phase described by an elliptic equation.In this work we prove the existence of
the global classical solution.

Let D:{ZITGR3§ 0<R1<|LE|<R2}, DT:DX(O,T), Bl‘:{LEGRBI
|z| < R;}, i=1,2, T > 0is a fixed number. The problem is to find a function u(z,t) and
domains 27, G, which satisfy

ou

AU_E:O in Qp, Au=0 in Gp, (1.1)

Qr ={(z,t) € Dy : 0 <u(z,t) <1}, Gp={(z,t) € Dy :u(z,t) > 1}.
On the known boundary
u(z,t)=0 on 0By x (0,T), u(xz,t)=p(x,t)>1 on 0By x (0,T), (1.2)
On the unknown (free) boundary vy = 0Q¢ N Dy = OG- N Dy
3
ou~  Out
Ty =1 —

k=1

) cos(n, z;) + Acos(n,t) =0, (1.3)

where \ is a positive constant, n is the normal to the surface v directed to the side of
increase of the function u(z,t); u™(x,t),u"(x,t) are the boundary values on the surface vz
taken from the domains G, {2 respectively.

The initial conditions are

u(z,0) =(x) in Qy, ¥(x)=0 on 9By, ¥(xr)=¢(x,0)>1 on 9By, (1.4)
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Q={reD:0<y() <1}, Go={reD:y()>1}, =02 ND=0G,ND,
() =1 on 7, Ay =0 in G,.

The function u(z,t) is interpreted as the temperature of the medium, 77 is the interface
between the liquid and solid phases, u(z,t) = 1 is the temperature of melting.

The paper is organized as follows. In section 2 we construct a difference-differential
approximation for our problem. The properties of the fundamental solutions are considered
in section 3. In section 4 we prove uniform estimates and pass to the limit. Note that similar
methods have been used in | 1], | 2|.

In more simple statement the similar problem was studied in work [3].

2. Construction of the approximating problem.

Assume that problem has a classical solution. Multiply the equation (1.1) by a smooth
function n(z,t) which vanishes on 0Dy and integrate by parts:

/ [VuVn + ax(u)umn + Ax(u)n] dedt = 0.
Dy

Let smooth out the function x(u). For Ve > 0 we introduce a function x.(7) € C*(R'):
Xe(T) =1VT <1—¢, x.(7)=0Vr > 1, x.(1) <0.
Define the function {u®(z,t)} as solutions of the following problem:

ou(z,t) Aaxg(uf(x,t))
o o
u®(z,t) =0 on 9By x [0,T), u(x,t) = ¢(x,t) on 0By x [0,T), (2.1)
u(x,0) =¢(x), in D.

Auf(z,t) — [ax.(u®) + €]

The obtained equation (2.1) has got smooth coefficients and is parabolic everywhere in the
domain D.
Let the following conditions be satisfied:

(@) € C** (D), (x,t) € H***'**2(Dy)

and assume that corresponding compatibility conditions at ¢ = 0,2 € dD hold. The solvabili-
ty of this problem is evident [4]. The estimation takes place

c

< (2.2)

Hug(l‘7 t)HHZ«l»a,l«I»a/Q(DiT) €V7
the positive constant v and ¢ do not €. Let us construct a system of approximating problems.
We divide the cylinder Dy by the planes t = kh,k = 1,2,..N, Nh = T integrate equation
(2.1) with respect to the variable ¢, from (k — 1)h to kh and multiply by 1/h. After simple
transformations we obtain

up(®) — w1 (@) X(uR () — Xe(uj (2)
h h

Aug(x) — [ax:(u®) + €] — Ji> (2.3)
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where uj(x) = u®(z, kh), |fi(z)| < Cha 2 Everywhere in the further we shall assume, that

%,/2 < h?, f-some positive constant. Therefore last term in the equation (2.3) can be thrown.
The equation (2.3) can be transformed to the form

Aug(z) — aj, (x)ui(z) _hui1($) =0, (2.4)

where

i) =< [ {oxelui s+ (05 = 0 1)) = Al (0 — v )]

and let’s add the transformed conditions (2.1)
ug(x) =0 on 9By, up(z) = ¢(z,kh) on 0By, ug(x) = 1(x)in D. (2.5)

If h > 0, e > 0 are fixed, the solvability of problem (2.4) - (2.5) and smoothness of the
solution are known [5]. In what follows we shall show that the linear interpolations of the
functions {ux(z, h, )} with respect to ¢t converge to a solution of the Stefan problem (1.1) -
(1.4) ase — 0, h — 0.

3. The fundamental solutions and its properties.

For studying of the problem (2.4), (2.5) we need in the integral representation of the
solution. Let Kr(xo) be ball with center at the point zy and the radius R and

ih sinh /zR)™'sinh \/2(R — |z — x¢|)dz
ool = aof) == 5o f SULVER _SOVER e g
2ra, | 4Awlr — zol(1 — 22)(1 — 2 (1 — 22)
oL an an—1 ap
where
. 2
L:{z:§+m:Rez>—ﬁ,|z| < o},
<ﬁ 0) (C;f 0) (%"0) €L, a>0,i=12 .n
PROPERTY 1. Let |z — z¢| # 0, then
g — T
Al j1 — ag ’““h P =0, Vk=1...(n—1),
ry, sinh /(R — |z — x
AT — a,— =0, Ty(|jz — 20|) = ~ o= aof), (3.2)
h 4|z — x0] sinh | /G
PROPERTY 2. There is the estimation
Iy(jx — | —
[ Tty [ ey, o
Kr(zo) Kr(zo)
Ti(|z — 1 \/“"R
< Dlle z @)y, < Ly - V)<, (3.3)
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PROPERTY 3. Let Ks(x¢) denote the ball with its center at the point xy and radius 4. Then

arm_k+1 ds — ]_, lf k=m
0, if £ £ m,

lim
6—0 on
0Ks(xo

where n is the inner normal. All reduced above property can be received by immediate
calculations.

PROPERTY 4. Let {vx(z) € C*(D)} and they satisfy the following equations:

gV — Q- 1Vk—-1 _fk — [k

Av, — _
Uk h h

then there is an integral representation

Vm(T0) = / (GO’UO—fO)h |I—$0| Z / armnk-i-ld 4
k=

Kr(20) Kr(20)

_'_zm: / fk mk+1 mkd (34)

=1
Kr(z0)

This integral representation follows from the previous properties of the fundamental solutions
and Green’s for elliptic equations.

PROPERTY 5. The functions {T';, si1(|x — zo|) — Tk (Jz — 20])} change the sign on the
interval 0 < |z — z¢| < R no more than once and

‘BFk_l(r) < aFk(r)

or |,_p ‘ or (3:5)

r=R
This property follows from propertyl and from principle of the maximum.

PROPERTY 6. We will denote by 74 4—1 the points, where the functions I'y(r) — I'y_1(r),
k =1,2...n, are equal to zero. Then we have the inequality 75 ;1 < ri414, and

Ina,_; —Ina, .
e h h h f n— n> .
raq = Vh S = Jan +o(Vh) h—0, if ay_i #a (3.6)

2
T21 = \/E—, if Ap—1 = Qp.

an

Proof. The functions T'y(r) — T'y_1(r) satisfy the equation

ATgy1(|lz — zo]) = Tr(Jz — x0])) — am_krk+1(|x — 20]) — Ti(|z — 20]) _

h
r — — Iy —
-y Bl Tl ) .
We construct an integral representation at the center of the sphere K, (2)
Ir(lz —20|) —Thea(lz —2
R B e I

KTk,k+1($0)
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- ar,
—— [ el mb - Tl - ) G s,

9Ky j41(20)

sinh | /22=£(ry 1 — |2 — 20)
Ti(|Jz — zo|) = :

dm|x — xo| sinh | /#m=Ery

Taking into account that the function T'yyq(r) — T'x(r) is equal to zero at the points r =
0, 7k+1,, = 0, we obtain

Tille —zol) = T 1 (lx — x
0— / PP ) h’“(| D (1 = o|)da.

Ko, gy (20)

If rjg—1 > Th41,k, then this equality is impossible.
Formula (3.1) implies

Art|z — xo|Dy (|2 — zo|) = e * =WV + 0O (eiRV aTm) :

47T|.ZE — 5170|F2(|517 — .ZU(]D — & (ef‘mfmoh/aTm . e—‘x—mo‘ /amh—1> .

-1 — Ay

+0 (e_R anflzm) , if A1 F ap,

Ant|z — zo|Ta(|z — xo]) = %6_”_“\/ 40 (e_RV aTm) if am_1 = .

From here we obtain

Ina,,_1 —Ina,,
=vVh h) h— 0.
ra1 = Vh e +o(h) h—

In particular, if a,,_1 = a,,, then
2
=Vh——.
2.1 \/@
The function T's(r) — T'y(r) changes the sign once. Therefore, as follows from the equations

(3.7), the functions I'y(r) — I'y—1(r) change the sign once too. It means that the inequalities
(3.6) hold.

PROPERTY 7. We have following estimate

1 R Tr?
< My —— —My— - 3.8

where ¢ > 2, and positive constants M;, My do not depend on N, h, R.

BINN:
on

Proof. Let us estimate integral

oy
on

_ —ih 7{ vz dz
~ 2may J 27Rsinh(y/ZR) (1 — %)(1 — %)(1 — &

OKR(zo) L
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where JL is the boundary of the domain

(14 ¢q) max ay 2 max a
1<k<N T 1<k<N
L={z:0=|2|< A ,Rez:bg>—ﬁ,bg<0,g>7}.

Let us represent the integral (3.9) as a sum of two terms: I; and I, where I; denotes the
integral along the part of the curve L which is an arch of a circle, and I, denotes the integral
along the part of the contour which lies inside the straight line Rez = by. Let us estimate
the integral ;. The estimates

zh zh zh N

(1- a—l)(l — a—2)...(1 — a)

Bl

amax

|sinh(\/2R)| > sinh[\/|z| R cos(argz/2)] = sinh[\/]z|R cos ¢],

where ¢ — 7, if h — 0, imply

>

-1 qua

1 R
|| < Cqu—R eXp{—Czﬁ},

where the constants ¢; and ¢y do not depend on h. Let us now estimate the integral I,. As
Rez = by, we obtain

T
zh zh zh lbo| \
1—-—)(1——)...(1——) | >[1+Ah .
‘( al)( (12) ( GN) N ( " amaX>
Assume by = —%. Then Siﬂ}z < ¢4. Thus we obtain
T 2

The constants c3, ¢4, c5 do not depend on h.

4. Uniform estimates. Passage to the limit.

THEOREM 4.1.Let the following conditions hold:

W(z) € C(D) N (c2+a(sz_0) x CZ*a(D\ QO)) Lo(x,1) € HE o e/2(Dy),

) _ _
92 <0 ondDr, A <0in Sy, Ay =0in D\ Oy, 7 € CZF,

ot
AN AN
— ] — (=] <0, on 7,
<8n> <8n> - o
where (g—ﬁ)i are the boundary values on the surface vy taken from the domains Gy, <€),
respectively, and we will assume that corresponding consistency conditions hold att = 0,x €

0D. Then VYh > 0,Ye > 0, such that

w42 h(2+a)071

1
€ <0<, (4.1)

24+« 2

b
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there exists a constant ¢, which does not depend on h,e, k, such that the following estimate

holds:

€ € ui(az) B ui—l(x) €
o) =i (o) <0, e | BI04
where Gy ={zx € D:1+¢ <(x)}.
Proof. Let zy € 7p. From equation (2.4) follows
15 15 € € arl
ui(ro) — up(xo) = AYTy(|x = wo|)dw — [ui (@) = ug ()] ~ds+
KRr(zo) Kr(zo)
. o wui(e) —ug(e AN oY\
+ / (al(iE(]) - al(m))wrlﬂl‘ — 1E0|)d£E + f [(a_n> - (a—n> ] FldS.
KR(:L‘()) ’YOﬂKR@:O)

From here follows, that function u§(z) — uf(z) cannot have a positive maximum on surface
7. Lack of a positive maxima in remaining points of domain D is obvious.

Let xo be an arbitrary point in U G§. Let us rewrite the equation (2.4) if £ = 1 in
the following form

Afvj(a) — i 4] - o) L) e,

)“;fl(m) ;U;Q(a") _

£

~(ahtan) — ajo)) I () g (o ) el

In order to obtain the estimate for the functions {uj — u$ ;} we will use the integral
representation (Property 4). Let’s notice, that ak(x) > &. Denote by Kp(xg) the sphere
with the center at the point z( of radius R = f It will give

m

Ol -
u;, (zo) — / AV ()T (|2 — o] )dx — Z / uifl]aink“ds—iL

Kr(zo) k=15 K r(x0)

- up(z) —ug_(

+Z / (ag(z0) — ag(z)) o) A 1 )(mekJrl —Dpp)de =5+ 1L+ 15
lKR( 0)

Let us estimate every term. The relations (2.2) and (3.3) imply

max(| Ay (2)| < 5 max | Av (2)]

| <
| 1| o afn(x(]) z€D a zeQq

From (2.2), (3.7) and (3.9) it follows that

T 1 T7T2
|12|§E _max |ui—uk1|M1{ ReXp{ MQ\/—}+eXp{ RTW}}S

2€D,1<k<N

Co C3& Co C3
< o {_W} = farn P {_h%—aﬂ} = olh),
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where the constants cg, c3 do not depend on h, ¢.
From (2.3) and from properties (3), (6) of the fundamental solutions we obtain

— a .- —I,.-
|m<23/ PR e Juga) g ) P g

€D, 1<k<N h
k=17 SRS
R 5170

o
_ T (e —
gv 2€D,1<k<N h
K'rr_)’l (ZL‘())

cle — xo|® . . 1
+ —————  max ui(x) —ui (x)|——m—dz <
[ R e i) - i@l e
Kr\Kry , (20)

he h(2—|—a)a—1
< ch (521/ + c20+2 ) '
We differentiate the equation (2.4) with respect to one of the variables z; and transform
it to the following form:

Au — bi(ouk’ — by (wo)uiy __ (bi(wo) = Bi(@))ui’ — (B (wo) — By (@))uicy

h h
Uj, — U4

h Y
where b (x) = a + x.(u},). We use the property 4. It gives

| e |
usl (o) = / byug () k+1(| Z / 78 ank+1d5+
F=1oK p(wo)

+ai (z)

+§:!/ (i) — ) ) motta 2 = 00 = Donelfe = o)y,

—EZ!/tﬁmﬂﬂﬂ‘“ﬁ*”nwﬂxu—amw. (13)

From this integral representation, applying the same reasoning as above, we obtain the
second part of the estimate (4.2).

THEOREM 4.2. Let conditions of the theorem (4.1) are satisfied and

P _
_t/)260>0 in D,
dp

where p is spherical radius, there exists a constant ¢y, which does not depend on h, e, k, such
that the following estimate holds:

Buc -
a“k > >0VreUuas, k=1,2,..N. (4.4)
D
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Proof. We differentiate the equation on a variable p. IT will give

c ous, c ouy,
o @) (055) = b (@) (075
A ,08 — .
0

1

) :% / e+ ax.(r) — M. (rldr.

€
Up_1

After that it is necessary to take advantage of integral representation (4.3). Notice, that the
principal term in the received integral representation can be estimated as follows

€ aug Fm—k+1(|m - :EUD . ad} /2
> — .
/ bq <p89> - dx| > cmin ,0(9 + o(h%'#)

zeD 1Y

r(zo)

Similarly to the previous theorem it is possible to prove that all other terms in the received
integral representation have limits equal to zero when h — 0.

Let the function n(x,t) € C*'(D) be equal to zero on (9D x (0,T))U (D x (t =T)),
nk(x) = n(x, kh). We multiply (2.3) by hny(x), integrate it over D, and take the sum over k
from 1 to N. After simple transformations we obtain

N
ax.(ug) +¢), . . . — Mp—
P [ PRI g e e B2 = o,

k=1 D

Let us denote by u(x,t, h,e) the piecewise linear interpolations of the functions {uf(x)}
with respect to the variable t,

u(z,t) = lim u(x,t, h,e),

£,h—0

where h, e satisfy the conditions (4.1). The possibility of passage to the limit follows from
the statements proved above. As a result we obtain

THEOREM 4.3.Let the following conditions be satisfied:

W(z) € C(D)N (02+a(9_0) x CZa(D\ QO)) Lo(x,1) € H2o /(D).

a—@go, Ay =0in D\ Qq, 7 € C**®, min pa—d) >c¢>0,
ot z€D aQ
- +
R e
on on

and we will assume that corresponding consistency conditions hold at t = 0,x € 0D. Then
VT > 0 there exists a solution of the problem (1.1)-(1.4) and

U(:E,t) c C(D—T) N (H2+a,1+a/2(Q_T\,yU) X H2+a’1+a/2(G—T\’YU)) 7
the free boundary is given by the graph p = w(0y,0,1) of a function from H?t®'*e/2 class,

where (p, 01, 0>) are spherical coordinates.
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