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Abstract

We consider a boundary initial problem for heat conductivity with nonlinear
boundary condition, which contains time derivative and tangential part of Laplace
operator. Existence and uniqueness theorems for positive solutions of mentioned
problems are proved.

The determining of temperature field u(P, t) > 0 of a heat radiating body Ω, partially
or fully covered by thin layer ω, reduced to solution of next initial boundary problem for
conjugation:

div(λgradu)− cρut = −w, P ∈ Ω ∪ ω, t > 0,

u(P, 0) = u0(P ), P ∈ Ω ∪ ω,

λ
∂u

∂n
+ α(u− uc) = 0, P ∈ S1, t > 0, (1)

λ
∂u

∂n
+ σε(u4 − u4

c) = 0, P ∈ ∂ω+, t > 0,

[u]Φ = 0,

[
λ

∂u

∂n

]

Φ

= 0.

Here λ, c ρ are coefficients of heat conductivity, thermal heat capacity and density, that
are piecewise constant functions for domains Ω and ω; w is heat source; u0 is initial
temperature distribution; α is coefficient of heat transfer, uc is temperature of environ-
ment, σ Stefan-Boltsman constant, ε is the degree of blackness for covering surface ∂ω+;
S = S1 ∪ S2 is a surface that bounded body Ω; the mark [·] means a saltus of value in
brackets for transition through surface S2, which can be described by equation Φ(P ) = 0.
In particular, the surface S2 can coincide with a whole surface S, and coefficient of heat
transfer α = ∞.

Analyzing for domain ω differential equation (1) of the problem in normal-tangential
form with respect to initial point P ∈ Φ, we obtain

∂

∂n

(
λ

∂u

∂n

)
+ divτ (λgradτu)− cρut = −w,

ξ, η, n ∈ ω, t > 0,

(2)

where

div ~A = divτ
~Aτ +

∂An

∂n
, gradϕ = gradτϕ + ~n

∂ϕ

∂n
,

divτ
~Aτ =

∂Aξ

∂ξ
+

∂Aη

∂η
, gradτϕ =~i

∂ϕ

∂ξ
+~j

∂ϕ

∂η
,

(3)



Aξ, Aη, An are vector ~A components.
If we average equation (2) with respect to covering thickness, with accounting bound-

ary condition on ∂ω, second conjugate condition on S2 and identifying average value of
temperature ū with its magnitude on S2, we obtain impedance boundary condition

λ− ∂u
∂n

∣∣∣
Φ−0

− ddivτ (λ+gradτu) + c+ρ+dut + σε(u4 − u4
c) = dw̄,

ξ, η, n ∈ Φ, t > 0,
(4)

where d = d(ξ, η) is the thickness of cover; indexes + and - corresponds to body Ω and
its covering ω; the dash means averaging across thickness d.

After transition to a new time variable and parameters τ = λ−t/c−ρ− and h =
α/λ+, β = λ−d/λ+, κ = σε/λ−, γ = c+ρ+d/c−ρ−,
f = w̄/λ−, q = κu4

c + dw̄/λ−, the problem reduced to canonical form

∆u− ut = −f, P ∈ Ω, t > 0,

u(P, 0) = u0(P ), P ∈ Ω̄,

∂u

∂n
+ h(u− uc) = 0, P ∈ S1, t > 0,

∂u

∂n
− β∆τu + γut + κu4 = q, P ∈ S2, t > 0,

(5)

where previous notation t is conserved for new variable τ .
Theorem 1.If for any initial data and parameters there is a positive solution of the

problem (5) then this solution is unique.
Proof. Let’s u1(P, t) and u2(P, t) two different positive solutions of the problem (5).

Then we shall obtain next initial boundary problem for difference u(P, t) = u2(P, t) −
u1(P, t):

∆u− ut = 0, P ∈ Ω, t > 0,

u(P, 0) = 0, P ∈ Ω̄,

∂u

∂n
+ hu = 0, P ∈ S1, t > 0,

∂u

∂n
− β∆τu + γut + κ(u4

2 − u4
1) = 0, P ∈ S2, t > 0.

(6)

After multiplying differential equation of the problem (6) by u(P, t) and integration
for domain Ω with accounting first Green formula

∫

Ω

u∆udv =
∫

S1

u
∂u

∂n
ds +

∫

S2

u
∂u

∂n
ds−

∫

Ω

(gradu)2dv,

we obtain ∫

Ω

uutdv =
∫

S1

u
∂u

∂n
ds +

∫

S2

u
∂u

∂n
ds−

∫

Ω

(gradu)2dv. (7)

With accounting boundary conditions integrals on S1 and S2 can be transform to

∫

S1

u
∂u

∂n
ds = −h

∫

S1

u2ds, (8)



∫

S2

u
∂u

∂n
ds =

∫

S2

βu∆τuds−
∫

S2

γuuτds− κ
∫

S2

u(u4
2 − u4

1)ds. (9)

Let’s consider the first integral from right side of formula (9). According to a formula
of vector analysis

βu∆τu = divτ (βugradτu)− (gradτβu, gradτu)

and Gausse - Ostrogradsky formula it can be transform to next form

∫

S2

βu∆τuds =
∮

L

βu
∂u

∂n⊥
dl −

∫

S2

β(gradu)2ds,

where ~n⊥ is unit vector directed towards normal of curve L.
The integral for contour L is equal zero if

S2 = S, mesS1 = 0

and if d, and so β, is equal zero on L, i.e. the cover vanished on contour L, as well as for
first boundary condition, whenh = ∞.

For these cases ∫

S2

βu∆τuds = −
∫

S2

β(gradu)2ds,

we can rewrite equation (7) in the form

dI

dt
= −

∫

Ω

(gradu)2dv − h
∫

S1

u2ds−
∫

S2

β(gradτu)2ds− κ
∫

S2

u(u4
2 − u4

1)ds,
(10)

where

I =
1

2

∫

Ω

(u2)tdv +
1

2

∫

S2

γ(u2)tds. (11)

Since
u(u4

2 − u4
1) = (u2 − u1)

2(u3
2 + u2

2u1 + u2u
2
1 + u3

1) ≥ 0,

it is evident that
dI

dt
≤ 0. But since by virtue of initial condition I = 0 for t = 0, so I ≤ 0

for all t ≥ 0. From the other side according (11) I ≥ 0. The solution of such contradiction
can be find only for I = 0 ⇒ u2 − u1 = 0, P ∈ Ω ∪ S2, That is the proof of the theorem.

For heat conductivity equation operator the second Green formula takes place

τ+0∫

0

∫

Ω

[v(∆u− ut)− u(∆v + vt) ]dvP dt =

=

τ+0∫

0

∮

S

(
v
∂u

∂n
− u

∂v

∂n

)
dsP dt−

∫

Ω

vu|τ+0
0 dvP .

(12)



Let’s transform the first integral of right side of this equality to the form that contain
linear operators of boundary conditions of the problem (5). It is simple to detect that

τ+0∫

0

∮

S

(
v
∂u

∂n
− u

∂v

∂n

)
dsP dt =

τ+0∫

0

∫

S1

[
v

(
∂u

∂n
+ hu

)
− u

(
∂v

∂n
+ hv

)]
dsP dt+

+

τ+0∫

0

∫

S2

[
v

(
∂u

∂n
− β∆τu + γut

)
−

−u

(
∂v

∂n
− β∆τv − γvt

)]
dsP dt−

−
∫

S2

γvu|τ+0
0 dsP +

τ+0∫

0

∮

L

β

(
v

∂u

∂n⊥
− u

∂v

∂n⊥

)
dlP dt.

(13)

Further on we restrict in studying Dirichlet conditions onS1, for h = ∞. The second
Green formula can be transform to

τ+0∫

0

∫

Ω

[v(∆u− ut)− u(∆v + vt) ]dvP dt =

τ+0∫

0

∫

S1

(
v
∂u

∂n
− u

∂v

∂n

)
dsP dt+

+

τ+0∫

0

∫

S2

[
v

(
∂u

∂n
− β∆τu + γut

)
− u

(
∂v

∂n
− β∆τv − γvt

)]
dsP dt− (14)

−
∫

Ω

vu|τ+0
0 dvP −

∫

S2

γvu|τ+0
0 dsP +

τ+0∫

0

∮

L

β

(
v

∂u

∂n⊥
− u

∂v

∂n⊥

)
dlP dt.

Let’s introduce Green function G(P,Q; t − τ), as a solution of next initial boundary
problem:

∆P G + Gt = −δ(P −Q)δ(t− τ), P,Q ∈ Ω, t > 0,

G(P, Q; t− τ) = 0, t > τP, Q ∈ Ω ∪ S,

G(P,Q; t− τ) = 0, P ∈ S1, Q ∈ Ω,

∂G

∂nP

− β∆τP G− γGt = 0, P ∈ S2, Q ∈ Ω,

(15)

where δ(P −Q) δ(t− τ) is Dirack delta-function for points P = Q and moment t = τ.
By using Green formula (14) and introduced Green function the solution of initial

boundary problem (5) can be transform to solution of nonlinear integral equation of least
dimension.

u(Q, τ) = ul(Q, τ)− κ
τ∫
0

∫
S2

G(P,Q; t− τ)u4(P, t)dsP dt,

Q ∈ S2, τ > 0,

(16)

where

ul(Q, τ) = ((G(P, Q; 0− τ), u0(P ))) +

τ∫

0

∫

Ω

G(P,Q; t− τ)f(P, t)dvP dt+



+

τ∫

0

∫

S2

uc(P, t)
∂G

∂nP

dsP dt + κ

τ∫

0

∫

S2

G(P,Q; t− τ)q(P, t)dsP dt+ (17)

+

τ∫

0

∮

L

uc(P, t)
∂G

∂n⊥
dlP dt, Q ∈ Ω ∪ S, τ > 0,

and double brackets denote scalar product

((u, v)) =
∫

Ω

u(P )v(P )dvP +
∫

S2

γu(P )v(P )dsP , (18)

which generate norm

〈〈u〉〉2 =
∫

Ω

u2dvP +
∫

S2

γu2(P )dsP . (19)

The temperature field in body Ω is determined as quadrature (16) with using solution
of integral equation (16) when Q ∈ Ω ∪ S. Let’s note that equation (16) is the equation
of least dimension, because we should determine only temperature of the surface S2.
It presents a nonlinear integral equation of Hammershtain type with respect to spatial
variable and Volterra type for time [1,2]. The solution of such equation can be obtained
by successive approximation method. At that next theorem will take place.

Theorem 2. If Green function G(P,Q; t − τ) ≥ 0 and the solution of corresponding
linear problem ul(P, t) ≥ 0 is such, that

T∫

0

dτ

τ∫

0

dt
∫

S2

dsP

∫

S2

G2(P,Q; t− τ)dsQ < ∞,

T∫

0

dt
∫

S2

u8
l (P, t)dsP < ∞;

(20)

ul(Q, τ) ≥ κ

τ∫

0

dt
∫

S2

G(P, Q; t− τ)u4
l (P, t)dsP , (21)

for main domain 0 ≤ t ≤ τ ≤ T ; P, Q ∈ S2, then the positive solution of integral equation
(16) exists and is unique.

For proving this theorem let’s apply method of successive approximations

un(Q, τ) = ul(Q, τ)− κ

τ∫

0

∫

S2

G(P,Q; t− τ)u4
n−1(P, t)dsP dt,

n = 1, 2, ..., (22)

u0(Q, τ) = ul(Q, τ).

By virtue of (21) it is evident that

0 ≤ u1(Q, τ) ≤ u3(Q, τ) ≤ ... ≤ u2n+1(Q, τ) ≤ ... ≤ u(Q, τ),

u2(Q, τ) ≥ u4(Q, τ) ≥ ... ≥ u2n(Q, τ) ≥ ... ≥ u(Q, τ).
(23)



Accounting (20) we obtain

|u1(Q, τ)− u0(Q, τ)| =

= κ

∣∣∣∣∣∣∣

τ∫

0

∫

S2

G(P,Q; t− τ)u4
l (P, t)dsP dt

∣∣∣∣∣∣∣
≤ n(Q, τ),

(24)

|un+1(Q, τ)− un(Q, τ)| ≤

≤
∣∣∣∣∣∣∣

τ∫

0

∫

S2

R(P, Q; t, τ)|un(P, t)− un−1(P, τ)|dsP dt

∣∣∣∣∣∣∣
,

(25)

where n(P, τ) R(P,Q; t − τ) = κ[u3
n(Q, τ) + u2

n(Q, τ)un−1(Q, τ) + un(Q; τ)u2
n−1(Q, τ) +

u3
n−1(Q, τ)]G(P,Q; t− τ) are positive square integrable functions

T∫

0

dτ
∫

S2

n2(Q; τ)dsQ ≤ N2, N2 = const, (26)

T∫

0

dτ

τ∫

0

dt
∫

S2

dsP

∫

S2

R2(P, Q; t, τ)dsQ =

=

T∫

0

dτ
∫

S2

A2(Q, τ)dsQ ≤ A2, A2 = const.

(27)

From obtained inequalities (24)-(27) and Cauchi-Bunyakovsky inequality we get

[un+1(Q, τ)− u0(Q, τ)]2 ≤

≤ A2

τ∫

0

∫

S2

[un(P, t)− un−1(P, t)]2dsP dt.

The sequential substitutions lead to inequality

[un+1(Q, τ)− un(Q, τ)]2 ≤ N2A2(Q, τ)Fn−1(τ), (28)

where

Fn(τ) =

τ∫

0

dt
∫

S2

A2(P, t)Fn−1(t)dsP , n = 2, 3, ...,

F1(τ) =

τ∫

0

dt
∫

S2

A2(P, t)dsP ≤ A2.

Based on method of mathematical induction we can show that

Fn(τ) =
F n

1 (τ)

n!
, n = 1, 2, ..., (29)

then from (28) and (29) we get inequality

|un+1(Q, τ)− un(Q, τ)| ≤ NA(Q, τ)
An−1

√
(n− 1)!

, n = 1, 2, ..., (30)



which provide absolute convergence of functional series

U(Q, τ) =

u1(Q, τ) + [u2(Q, τ)− u1(Q, τ)] + [u3(Q, τ)− u2(Q, τ)] + ...,
(31)

which n-th partial sum is equal to un(Q, τ).
Indeed, series (31) according estimation (30) can be majorized by convergent series

beginning from the second term

NA(Q, τ)
∞∑

n=1

An−1

√
(n− 1)!

.

Therefore,
lim

n→∞un(Q, τ) = U(Q, τ).

We can show that limit function gives solution of integral equation (16). Indeed,
assuming

U(Q, τ) = un(Q, τ) + Rn(Q, τ), (32)

we transform (22) to a form
U(Q, τ)− ul(Q, τ)+

+κ

τ∫

0

∫

S2

G(P,Q; t− τ)U4(P, t)dsP dt = Rn(Q, τ)− (33)

−κ

τ∫

0

∫

S2

G(P, Q; t− τ)[u4
n−1(P, t)− U4(P, t)]dsP dt.

By majorizing right side of (33) with accounting obtained estimations and Caochi-
Bunyakovsky inequality we get

T∫

0

∫

S2

{U(Q, τ)− ul(Q, τ)+

+κ

τ∫

0

∫

S2

G(P, Q; t− τ)U4(P, t)dsP dt}dsQdτ ≤ (34)

≤ 2

T∫

0

∫

S2

[R2
n(Q, τ) + A2R2

n−1(Q, τ)]dsQdτ.

With proceeding limit transition for n →∞, we get that integral from left side of (34) is
equal zero, as

|Rn(Q, τ)| ≤ NA(Q, τ)
∞∑

m=n+1

Am

√
m!

.

Therefore, limit function U(Q, τ) satisfy integral equation (16).
Let’s show that obtained solution U(Q, τ) = u(Q, τ) is unique. Indeed for difference

of two solutions U(Q, τ) = u∗(Q, τ) we have

[u(Q, τ)−u∗(Q, τ)]2 ={κ
τ∫

0

∫

S2

G(P, Q; t− τ)[u∗4(P, t)−u4(P, t)]dsP dt}2≤



≤
τ∫

0

∫

S2

R2(P,Q; t, τ)dsP dt

τ∫

0

∫

S2

[u(P, t)− u∗(P, t)]2dsP dt ≤

≤ A2(Q, τ)

τ∫

0

∫

S2

[u(P, t)− u∗(P, t)]2dsP dt = k2A2(Q, τ).

Let’s fulfill sequential substitutions in last inequality and account (29). We get

τ∫

0

∫

S2

[u(P, t)− u∗(P, t)]2dsP dt ≤ k2

n!

τ∫

0

∫

S2

A2(P, t)dsP dt ≤ (kAn)2

n!
.

Hence for n →∞ we get u∗(Q, τ) = u(Q, τ), that accomplish the proof of Theorem 2.
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