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SYMPLECTIC INTEGRATION FOR THE EULER CASE OF MOTION
OF A NEARLY SYMMETRIC RIGID BODY

In this paper a new approach useful for numerical integration of the motion equations for a free rigid body
with a fixed point is studied. The approach employs symplectic integration schemes of the second and third
order. These schemes are presented as a sequence of rotations with two frequencies per each integration step.
Both schemes are implemented and tested against Runge-Kutta-Fehlberg fifth order method, the represented
computational results are satisfactory.

Introduction. In space applications such as attitude and orbital control of artificial
satellites the practical implementation of control often cause a need in precise numerical
integration of main variables characterizing the satellite motion. For small and cheap satelli-
tes the budget cost of payload is a reason to put some restrictions on the satellite design,
for example, the bounds on the mass. Due to strong solar radiation on the orbit the mission
safety also restricts the configuration of the main onboard computer to low frequency models
like Intel 80386. Long computational time usual for that models gives rise to the question
of choice of the fastest numerical method. Thus the integration method has to be as fast as
accurate and give satisfactory results for long term predictions.

Modern theory of numerical methods for ordinary differential equations (ODEs) systems
allows to satisfy all those requirements by choosing an algorithm with good efficiency, even
comparable to a complicated approximate solution expressed in terms of special mathema-
tical functions. Nowadays, for example, symplectic integration methods are successfully
applied to various Hamiltonian systems [1-4]. To provide fast computation and good accuracy
symplectic methods are constructed to use integrable parts of the force field and geometric
behavior of Hamiltonian systems.

In celestial mechanics for the planetary n-body problem the symplectic integrator was
presented by Wisdom and Holman [1] and then used by Wisdom and Sussman [2] to integrate
the evolution of the whole solar system for long time period. The symplectic method for
integration the motion equations of a free rigid body, which conserves the magnitude of
angular momentum vector and is accurate to the first order of the time step, was introduced
in [3]. Then gravitational interacting of the body with mass points was incorporated into
dynamics to generate the symplectic scheme which conserves the total angular momentum
of the system. It was confirmed that the presented integrators provide high precision and
fast computation. The book [4] by Sanz-Serna and Calvo represents extensive numerical
experiments with symplectic integration applied to different Hamiltonian systems like Henon-
Heiles and Kepler problems. In the area of satellite orbit dynamics the paper [5] shows the
practical effectivness of symplectic integration technique which has been incorporated into
a batch filter to solve the orbit estimation problem.

This paper expands application of symplectic integrators of the second and third order
in the problem of attitude dynamics of small satellite rotating about a fixed point on orbital
trajectory. The most simple model to begin the study with, concerns the propagation of
angular velocity of a free rigid body rotating about the mass center as the fixed point. Then
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according to the well-known Euler integrability case the motion equations are integrated in
quadratures and expressed in terms of elliptical Jacobi functions. However, the calculation of
Jacobi function can be time consuming operation for the computer in hand. Fortunately, the
symplectic approach is applicable for this problem because of the practical and theoretical
features formulated next. Indeed, many of small satellites have nearly axisymmetric mass
distribution and this fact eliminates the particular Euler case of regular precession about one
of principal inertia axes among different rotational regimes. In such a case the hodograph
of angular velocity is easily propagated in terms of trigonometric functions. Following [3], in
this paper the corresponding exact solution is used to construct the symplectic schemes of
the second and third order. The angular dynamics of the body can be further complicated
by introduction of disturbances due to Earth gravity and magnetic fields, but these issues
will be left to the future work.

1. Splitting methods for numerical integration of ODEs. It is often difficult to
find analytically general exact solution for ODEs system, however numerical integration
allows to compute particular solution for the initial value given. Splitting methods for
numerical integration of ODEs system are especially effective when the force field can be
divided into two or more integrable parts. This is also shared by symplectic methods. It is
assumed that the autonomous system of ODEs is written in the form

X =) Fi(X), (1)

where X € R", the vector-functions, Fy, = (F},... ,F¥) (k =1,...,m), represent the parts
of the acting force field. The initial conditions are

X (to) = Xo. (2)

The advantageous feature of splitting methods permits to construct easily the approxi-
mate numerical solution for (1),(2), without application any of conventional ODEs integrators
as, for example, Runge-Kutta methods. The assumption, that the vector-functions F, are
linear on X, provides the existence and uniqueness of exact solutions for the initial value
problems

X =F. X, X(t))=X,, (k=1,...,m), (3)

then the corresponding solutions are given explicitly
Xk (t) = XOGXp(Fkt). (4)
Next, all the solutions, X, (t) (k = 1,...,m), are composed into the approximate solution

for (1),(2). According to the Baker - Campbell - Hausdorff formula the general operator
exponent is the composition

exp(A + B) = exp(C), (5)
1 1 1 1
C=> Ci= A+ B+ {A B} + S{A A BY+ {B, B, A} + {A, B, B, A} + ..., (6)

here {A, B} = AB — BA designate the commutator brackets of two linear noncommutative
operators A and B. If the first order accuracy is satisfactory, then, based on (3)-(6), the
approximate solution of (1),(2)is

X(t) = Xo (exp (i Fkt> + 0(152)) : (7)

k=1
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Therefore, the composition of exact solutions (4) results in explicit procedure (7) of numerical
integration of the ODE system called as the splitting method.

For Hamiltonian systems the exact solutions are symplectic maps (i.e. canonic). If it is
assumed that two sets of the canonic variables (q,p) € R?" and (q*,p*) € R*" are given
for Hamiltonian system considered, then the definition of symplectic mapping [4] can be
introduced as following.

DerINITION. The mapping G : (q,p) — (q*,p*) is called symplectic, if its Jacobian
matrix (2n x 2n) satisfies to the relation

oG \7* ( oG ) < 0 E )
J =17, here : J = nxn e
((9(q,p)) d(q,p) —E.xn Onxn

The symplectic maps form the group, preserve a given symplectic 2-form and its Lie
algebra is the set of locally Hamiltonian vector fields. Then any composition of Hamiltonian
flows lies in the group and eliminates another advantageous property of splitting methods.
It is supposed that the total Hamiltonian is divided on simpler parts:

H:Hl(q7p)+H2(qap)7 (8)

where H; represents the major dynamic Hamiltonian, Hs corresponds to all remaining
disturbances, q and p are generalized coordinates and momenta. If the general solution
corresponding to H is complex and not efficiently evaluable in contrast to the solutions
generated by Hy, Hy separately, then the symplectic integration schemes can be used.

The simplest symplectic scheme of the first order which preserves Hamiltonian structure
of the motion equations of a rigid body with a fixed point was obtained in the paper [3]| by
multiplying the perturbation Hy by a periodic sequence of Dirac delta functions

Hmap = Hl + 27 527r(’7t) HQa (9)
where
oo 1 (o]
Bor (1) = n;x, O(t —n2m) = — n:zoo cos(nt), (10)

and ~ is the mapping frequency, which is related to the step size h of the mapping v = 2%
Although each Hamiltonian H;(i = 1,2) is separately integrable in the canonical Andoyer-
Deprit variables, to achieve good performance for symplectic integration Wisdom and Touma
used the components of the angular momentum vector in the body fixed coordinate frame
instead.

As the second order algorithm accurate in step size, according to (7), the leapfrog scheme
[1,6] can be generated for the Hamiltonian H divided into two parts. This scheme is given
symbolically using Lie operator notation [7] :

ezt oMt oy Hi (11)
The interpretation of this notation is that the operator e3H1 means motion with respect to
H, dynamics over the time step of length h/2. This is then followed by the operator e/
meaning moving the system over the time step h assuming H, to be the Hamiltonian of the
system. Finally, another time step of length h/2 is performed according to H; dynamics.
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These three stages result in propagation the phase space trajectory corresponding to H over
the time step h.

More advanced methods than the leapfrog scheme described can be constructed [8] using,
for example, kernels of the form

eUthgewthleUQhngWQhHleUthQ .

where the U’s and W’s are determined by a conventional numerical integration formula.
The W coefficients are proportional to the differences of abscissae and the U coefficients are
weights from the formula in question. Then the well known Simpson’s rule can be applied:

QHQ

e3" e

M o 5 Ha ght g 5 Ha (12)
Methods constructed in this way have similar orders to the error of the associated numerical
integration formula, but this applies only to the first order perturbations. Thus it is necessary
that Hs is small enough for the formula to be useful.

2. Motion of a free rigid body with a fixed point. To describe the angular dynamics
of a rigid body with a fixed point it is assumed that the body is fixed in its mass center
where the origin O of the body-fixed coordinate system XY 7 is placed so that the principal
coordinate axes coincide with the frame OXY Z. If the body angular motion is free from any
external disturbances then the angular momentum vector is constant in inertial space. The
following above characterizes the well-known Euler’s case of motion of the rigid body with
the fixed point. The kinetic energy of rotation of the body about the mass center is

Hy — %(M M), (13)

Here: M = Iw is the angular momentum vector of the body in the coordinate frame OXY Z,
I = diag(/3, I5, I3) is the inertia matrix with respect to the point O. As it was shown in [3],
the Euler equations for the angular momentum M with respect to the body-fixed coordinate
frame have the Poisson structure:

OHg

M:{M,—}: M x I"'M), 14
L (M xTM) (14
the dot over the variable designates the time derivative in the body-fixed frame.

Following (8)-(10), the Hamiltonian (13) is splitted into two parts
Hp = Ha + Hy. (15)

Here H 4 governs the motion of an axisymmetric body and Hrp acts as a perturbation. In the
paper [3] it was assumed that the body is nearly axisymmetric in the plane passing trough
the first and second principal axes with I = I1(1 + ¢€), ¢ < 1. Under this assumption the
Hamiltonian Hr is the small perturbation to H,. Based on (13), those Hamiltonians are
written in the form:

(M} + M3) Mg

Hy= 2T M) A% 16
A 212 +2]37 ( )

M2 /11
Hp="—"L(—__—_). 1
=9 (11 12) (17)
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However, Wisdom and Touma [3] suggested that the splitting (15) - (17) is valid not only for
the nearly axisymmetric rigid body € < 1, but for more general mass distribution € < 1 as
well. Note, that for both H4 and Hp the corresponding exact solutions still can be found, this
allows to combine them into single symplectic scheme and avoid the use of elliptic functions.
Those exact solutions are formulated in the next two subsections.

Case of the axisymmetric body. At first, the part of vector field of the Euler dynamic
equations corresponding to the Hamiltonian H 4 is considered. The Euler dynamic equations
(14) become

d 1 1

% 1= (I_g - I_Q)M2M37
d 1 1
M=~ — ) MM,
d

%M:g == 0

This ODEs system can be taken as linear with respect to M; and M,, because M3 = const.
Then the exact solution for the initial value problem on the time interval [ty,?] is given in
the vector form:

M (t) = [Rz(a(to, 1)) M (to), (18)
where
1 1
altn,t) = (1 - ) M)t ), (19)
3 2
and the matrix of rotation about the body axis 7 is
cosa(to,t) sina(ty,t) 0
Rz(a(ty,t)) = | —sina(t,t) cosa(ty,t) 0 (20)
0 0 1

Case of the triaxial body. The part of the vector field of the Euler dynamic equations
corresponding to Hr under the assumption € < 1 is studied. The motion equations (14) are
reduced to

d

%Mlzov

d 1 1

Oy = (= — =) M

dt 2 <[1 I2> 14V43,
d 1 1

= (== =) M
dt 3 (]1 ]2> 14VL2,

On the time interval [ty, t] for the initial value problem these equations have the exact solution

M (t) = [Rx(B(to, 1)) M (to), (21)
where . .
B(to,t) = <]_1 — [—2> M (to)(t — to). (22)
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The rotation about X axis is given by the matrix

1 0 0
RX (ﬁ(tm t)) = 0 cos ﬁ(th t) sin B(t()? t) : (23)
0 —sinf(to,t) cosfP(to,t)

Thus, following the ideas of Wisdom and Touma |[3], the splitting (16),(17) eliminates that
the rigid body motion is represented as the sequence of rotations with two frequencies given
in (19), (22). The combination of two such rotations can be used to construct the various
symplectic schemes.

3. Leapfrog and Simpson symplectic schemes for a free rigid body. It is assumed
that the numerical integration of equations (14) with the initial condition M(ty) = My
is needed for the time interval [to,ty]. Then the propagation formula for every time step
(i=0,...,N) is given by the nonlinear iterated mapping S : M — M, M € R?

M(tip1) = [P(M(t:), hs) [M(t:), (24)

where P (3.3 is the transformation matrix combining a sequence of rotations, the time step
is constant h; = t;4; —t; = h, 1 = 0,..., N. In the following subsections the leapfrog and
Simpson schemes are generated to propagate the angular moment of the rigid body for the
Euler case. The corresponding iterated mappings are symplectic in terms of the canonical
Andoyer-Deprit variables.

Leapfrog scheme. Using Lie operator notation, leapfrog scheme (11) for symplectic
integration of (14) is symbolically represented by

ezt ohHa 5 Hr, (25)

The scheme has the accuracy of O(h?). Based on (24), the transformation matrix of scheme
(25) implies three steps

P = [Rx(h/2), [Rz(h), Rx (h/2)]], (26)

where [,] designates the product of two (3 x 3) matrixes. Hence, according to (16)-(23),
matrix (26) has the components

LS _ LS _ LS _ i
Pj° = cos oy, P35> = —P,;° = sinq; cos >

PES — PLS _ ina, sin%, PLS = (1+ COSai)COSZ% -1

1 i
PL = —PL = é(cos a; +1)sin B, PE% = (1+cos 042-)0082% — Cos Q.

The components depend on both a; = «a(t;,t;11), Bi = B(ti, tir1), i-e. the time step and the
vector M(tl) = (Ml(tz), MQ(tl), Mg(tl))
Simpson scheme. To integrate (14), Simpson scheme (12) is written by using Lie
operator
e5HT ghHa 5Hr ohHa oGHr (27)
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The scheme has the accuracy of O(h?). Following (24), the matrix of scheme (27) is the
sequence of five rotations

P> = [Rx(h/3). [Rz(h), [Rx (4h/3), [Rz(h), Rx (h/3)]]]]. (28)

Taking into account (16)-(23), the components of matrix (28) are given by the formulas

403
Pﬁs = cos’a; — sin’aqy; cos ?ﬁ,
1 7 41 7 7 11
Plgs = _P152S ~ 95 sin 2qy; cos %(1 + cos 5 ) — sin % sin ?ﬁ sin qy,
LB 16, B
]z)fgt; — ]j)ﬁ?l; _ 92 ; M 1 i 7
o i 5 sin 2q; sin 3 (1 + cos 3 ) 3
4 1 . 4 i . 2 ) i
P;;S =(— sin’qy; + cos £0082Oé,)00826 B b , — COS — 45, stﬁ
3 3 3 3
1 2 7 . 4 7 4 i . 4 2
PQ%S = —P3SQS = —sin ﬁ(—stOq + cos ﬁcosgai + cos b ) + sin ﬁ cos ﬁ oS vy,
2 3 3 3 3
45 Lo L AB L 2 4 ;
P:%S = (sin?a; — cos ?BCOSQCYi)SIHQ% — sin :f si b 4 oS — Bi co QB

Here §; = B(t;, tiv1), o = a(ty, t;41) are given by (19), (22).

4. Computational experiments. In this section the leapfrog and Simpson symplectic
schemes are tested against, obtained by Fehlberg [9], the fifth order Runge - Kutta method
with six stages and constant step size. To setup integration the principal inertia moments
are chosen I = diag(40.5,40.6,50.0)(kg*m?). The initial conditions are given for the angular
velocity in the body fixed frame w(ty) = (1.0,0.0,10.0) (deg/sec). At first, the leapfrog
scheme integration results for w’(t) are represented on figures 1,2 for all the coordinates

separately and on picture 3 as the phase space trajectory. The time step is h = 0.1 sec and
the integration time is 600 seconds.
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Fig. 1. Propagation of wf?(t) and wl?(t). Fig. 2. Propagation of w§®(t).
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Fig. 3. The hodograph w™°(t) in the phase space. Fig. 4. The hodograph e®°(t) in the phase

space.

To compare the leapfrog "LLS"and Simpson "SS"methods against the high order Runge-
Kutta method "RK"on longer time intervals, the solutions obtained above are propagated
up to 100 minutes, i.e. approximately for one orbital period for small satellite on low Earth
orbit. Then the absolute error vectors

eI (1) = W (1) —whS(1), €% (1) = W () — w(1),

are calculated and plotted on figures 4, 5 and 6, converted in (deg/sec). It can be noted, that
these errors remain small for first 10 minutes of integration time. The difference between
"LS"and "SS"integration results is also in agreement with the orders of these methods and
the time step, i.e. the Simpson scheme has the smallest absolute error. It is shown that
the absolute errors between "LS"and "RK"methods are in the band of order 1075. For the
Simpson scheme the relative errors with respect to the Runge - Kutta results are in the
smaller band of order 10~7.

; ; ; ; ;
0 1000 2000 3000 4000 5000 6000 2 1000 2000 3000 2000 5000 6000
sec

i | | !
0 1000 2000 3900 4000 5000 6000 o 1050 2500 3500 4500 5500 6000
sec

LS SS
€3 0 ' 63 | ! w

i i i i i
5 ; i ; i i

0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
sec

Fig. 5. Evolution of el5(t) (i = 1,2,3). Fig. 6. Evolution of e (t) (i = 1,2,3).

To demonstrate the error in the kinetic energy and magnitude of angular momentum
vector, the deviations from the initial values

dH(t) = H(t) — H(to),  dM(t) = [M(t)| — [M(to)],

are plotted on figures 7 and 8 for all three integration methods. The energy deviations for
"RK"and "SS'"results are about the same order, that is hundred times smaller than for
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"LS"scheme. The deviations in |[M] for all three methods are staying in the band of order
10713,
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Fig. 7. The deviations in H for all three methods. Fig. 8. The deviations in |M]| for all three
methods.

To study the dependence between the deviations in H and |M| and different time
steps for the leapfrog, Simpson and Runge-Kutta methods, the maximum absolute values of
deviations obtained above are calculated for the time step values

h = {1.0,0.8,0.6,0.4,0.2,0.1,0.08, 0.06, 0.04, 0.02, 0.01}.

The maximums are plotted on figures 9 and 10 against the time steps with decimal logarithmic
scaling.
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Fig. 9. The maximums of deviations in H. Fig. 10. The maximums of deviations in |M|.

It is shown that the leapfrog scheme has the biggest energy deviation. The Simpson scheme
has the smallest energy and |M| deviations in the range h = {1.0,0.8,0.6,0.4}. The biggest
M| deviations are produced by the Runge-Kutta method for the same time step range.
Thus, in this range the Simpson scheme outperforms the Runge-Kutta method. However,
in the range h = {0.1,0.08,0.06} the Simpson scheme and Runge-Kutta methods have the
same order for deviations.

Finally, the number of computational operations per one integration step for the Runge-
Kutta method "RK", leapfrog "LLS" and Simpson "SS" schemes implemented for the Euler
dynamic equations is calculated in table to estimate the speed of calculation. It is known
that starting from the processor Intel 80 386 up to modern high frequency models the
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trigonometric functions are included as commands for the co-processor. However the real
Method | 1oj¢ | LS 1SS | 191 | SS1 processing tigle for ar?thmetic operatioqs
operation and calculation of trigonometric functi-

*/ 99 |18 | 30 | 33 55 on relies upon the processor model. If this

+/ _ 63 | 6 | 10| 12 20 time can be precalculated on average for
sun 3 | 5 the processor in use, then one can select
cos 3 15 the fastest method from the table.

If the integration time step is chosen small enough to put the approximations of the trigono-
metric functions sinf = 6 — 0.1(6)6% and cos# = 1 — 0.56% for small values of 6 in agreement
with accuracy needed, then the number of operations is further reduced for the implementa-
tions of leapfrog ”"LS1” and Simpson 7551”7 schemes. Hence, the leapfrog scheme and
Simpson schemes are faster about 3 and 2 times correspondingly then the "RK"method.
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