УДК 517.5

©2009. Ю.П. Дыбов

ЗАДАЧА ДИРИХЛЕ ДЛЯ УРАВНЕНИЙ БЕЛЬТРАМИ

В работе устанавливается целый ряд критериев существования регулярных решений задачи Дирихле для вырожденных уравнений Бельтрами.

1. Введение. Пусть G — область в комплексной плоскости \mathbb{C} , т.е. связное открытое подмножество \mathbb{C} , и пусть $\mu: G \to \mathbb{C}$ — измеримая функция с $|\mu(z)| < 1$ п.в. Уравнением Бельтрами называется уравнение вида

$$f_{\overline{z}} = \mu(z) \cdot f_z, \tag{1}$$

где $f_{\overline{z}}=\overline{\partial}f=(f_x+if_y)/2,\ f_z=\partial f=(f_x-if_y)/2,\ z=x+iy,\ f_x$ и f_y – частные производные отображения f по x и y, соответственно. Функция μ называется комплексным коэффициентом или просто характеристикой, а $K_{\mu}(z)=\frac{1+|\mu(z)|}{1-|\mu(z)|}$ – максимальной дилатацией или просто дилатацией уравнения (1). Уравнение называется вырожденным, если дилатация K_{μ} является существенно неограниченной, $K_{\mu}\notin L^{\infty}(D)$, т.е. если нет постоянной $K\in [1,\infty)$ такой, что $K_{\mu}(z)\leq K$ п.в. Гомеоморфизм f класса Соболева $W_{loc}^{1,1}$ назовем регулярным, если его якобиан $J_f(z)=|f_z|^2-|f_{\overline{z}}|^2>0$ п.в. Любой регулярный гомеоморфизм удовлетворяет некоторому уравнению Бельтрами с коэффициентом $\mu(z)=\mu_f(z)=\frac{f_{\overline{z}}}{f_z}$. Касательной дилатацией в точке z, относительно $z_0\in \overline{G}$, называется величина $K_{\mu}^T(z,z_0)=\frac{\left|1-\frac{\overline{z}-\overline{z_0}}{z-20}\mu(z)\right|^2}{1-|\mu(z)|^2}$. Известно, что для п.в. $z\in G$ $K_{\mu}^T(z,z_0)=\frac{|f_{\theta}(z)|^2}{r^2J_f(z)}$, где $z=z_0+re^{i\theta}$, см., напр., z=10. В [8]. Пусть z=11 область в z=12 область в z=13 область в z=14. В [8]. Пусть z=15 область в z=16 с z=16 область в z=17. Следуя работе [8], будем говорить, что гомеоморфизм z=17 область на z=18.

$$M\left(\Delta(fS_1, fS_2, fG)\right) \le \int_{A} Q(x) \cdot \eta^2(|z - z_0|) \ dm(z)$$
 (2)

выполнено для любого кольца $A = A(r_1, r_2, z_0), \ 0 < r_1 < r_2 < d_0$ и для каждой измеримой функции $\eta: (r_1, r_2) \to [0, \infty]$, такой, что

$$\int_{r_1}^{r_2} \eta(r) \ dr \ge 1. \tag{3}$$

Говорят, что гомеоморфизм $f: G \to \overline{\mathbb{C}}$ является кольцевым Q-гомеоморфизмом в G, если условие (2) выполнено для всех точек $z_0 \in G$. В работе [10] впервые рас-

сматривались кольцевые Q-гомеоморфизмы в граничных точках области G. Гомеоморфизм $f: G \to \overline{\mathbb{C}}$ называется кольцевым Q-гомеоморфизмом в граничной точке z_0 области G, если

$$M \left(\Delta \left(fC_1, fC_2, fG \right) \right) \le \int_{A \cap G} Q(x) \cdot \eta^2(|z - z_0|) \ dm(z)$$
 (4)

для любого кольца $A = A(z_0, r_1, r_2)$ и произвольных континуумов C_1 и C_2 в G, которые принадлежат различным компонентам дополнения кольца A в $\overline{\mathbb{C}}$, содержащим z_0 и ∞ , соответственно, и для любой измеримой функции $\eta: (r_1, r_2) \to [0, \infty]$, удовлетворяющей условию (3).

2. Характеризация кольцевых *Q*-гомеоморфизмов на границе единичного круга.

Лемма 1. Пусть $Q:\mathbb{D}\to [0\,,\infty]$ – измеримая функция. Гомеоморфизм $f:\mathbb{D}\to \mathbb{D}$ является кольцевым Q-гомеоморфизмом в точке $z_0\in\partial\mathbb{D}$ тогда и только тогда, когда

$$M \left(\Delta \left(f C_1^*, f C_2^*, f \left(A \cap \mathbb{D} \right) \right) \right) \le \int_{A \cap \mathbb{D}} Q(z) \cdot \eta^2(|z - z_0|) \ dm(z)$$
 (5)

для любого кольца $A = A(z_0, r_1, r_2), \ 0 < r_1 < r < r_2 < 2, \ где \ C_1^* = S(z_0, r_1) \cap \mathbb{D} \ u$ $C_2^* = S(z_0, r_2) \cap \mathbb{D}$ – границы кольца $A = A(z_0, r_1, r_2)$ в \mathbb{D} , u для любой измеримой функции $\eta: (r_1, r_2) \to [0, \infty], \ y$ довлетворяющей условию (3).

Доказательство. Действительно, семейство кривых $\Delta(fC_1^*, fC_1^*, f(A \cap \mathbb{D}))$ минорирует любое семейство $\Delta(fC_1, fC_1, \mathbb{D})$, где C_1 , C_2 – произвольные континуумы в \mathbb{D} , принадлежащие разным компонентам дополнения кольца A и, таким образом, $M(\Delta(fC_1, fC_2, \mathbb{D})) \leq M(\Delta(fC_1^*, fC_2^*, f(A \cap \mathbb{D})))$. Следовательно, (5) влечет (4). Покажем наоборот, что (5) имеет место для любого кольцевого Q-гомеоморфизма $f: \mathbb{D} \to \mathbb{D}$ в точке z_0 . Для этого возьмем в (4) расширяющиеся последовательности $C_1 = C_1^n$ и $C_2 = C_2^n$ замкнутых дуг, которые исчерпывают открытые дуги C_1^* и C_2^* , соответственно. Тогда $\Delta(fC_1^*, fC_2^*, \mathbb{D}) = \bigcup_{n=1}^{\infty} \Delta(fC_1^n, fC_2^n, \mathbb{D})$ и, следовательно, см. [11],

$$M(\Delta(fC_1^*, fC_2^*, \mathbb{D})) = \lim_{n \to \infty} M(\Delta(fC_1^n, fC_2^n, \mathbb{D})).$$

Таким образом, (4) влечет (5), т.к. $\Delta(fC_1^*, fC_2^*, f(A \cap \mathbb{D})) \subseteq \Delta(fC_1^*, fC_2^*, \mathbb{D}).$

Лемма 2. Пусть $Q:\mathbb{D}\to [0,\infty]$ – измеримая функция $u\ f:\mathbb{D}\to\mathbb{D}$ – кольцевой Q-гомеоморфизм в точке $z_0\in\partial\mathbb{D}$. Тогда

$$M\left(\Delta\left(fC_{1}^{*}, fC_{2}^{*}, \mathbb{D}\right)\right)\right) \leq \left(\int_{r_{1}}^{r_{2}} \frac{dr}{\|Q\|_{1}(r)}\right)^{-1}$$
 (6)

для любых $0 < r_1 < r_2 < 2$, где $\|Q\|_1(r) = \int\limits_{\gamma_r} Q(z)|dz|$ – норма в L_1 функции Q над дугами $\gamma_r = \mathbb{D} \cap S(z_0,r), \ C_1^* = S(z_0,r_1) \cap \mathbb{D}$ и $C_2^* = S(z_0,r_2) \cap \mathbb{D}$.

 \mathcal{A} оказательство. Пусть $I=\int\limits_{r_1}^{r_2} \frac{dr}{\|Q\|_1(r)}$. Не ограничивая общности рассуждений, можно полагать, что $\infty \neq I \neq 0$. Тогда $\|Q\|_1(r) \neq 0$ п.в. на $(r_1\,,r_2)$. Положим

$$\psi(t) = \begin{cases} \frac{1}{\int Q(z)|dz|}, & t \in (r_1, r_2), \\ 0, & t \notin (r_1, r_2). \end{cases}$$

Тогда, по теореме Фубини в полярных координатах с центром в точке z_0 , имеем

$$\int_{A\cap\mathbb{B}} Q(z) \cdot \psi^{2}(|z-z_{0}|) \ dm(z) = \int_{r_{1}}^{r_{2}} \frac{dr}{\int_{r_{1}} Q(z) |dz|}. \tag{7}$$

Пусть Γ – семейство всех кривых, соединяющих окружности C_1^* и C_2^* в $A\cap\mathbb{D}$. Пусть также ψ^* – борелевская функция, такая, что $\psi^*(t)=\psi(t)$ для п.в. $t\in[0,\infty]$. Такая функция ψ^* существует по теореме Лузина. Тогда функция $\rho(z)=\psi^*(|z-z_0|)/I$ является допустимой для семейства Γ и, согласно соотношению (7), для любого кольцевого Q-гомеоморфизма в точке z_0 будем иметь, что $M(f\Gamma)\leq\int\limits_{A\cap\mathbb{D}}Q(z)\cdot$

$$\rho^2(z) \ dm(z) = \left(\int_{r_1}^{r_2} \frac{dr}{\int_{\gamma_r} Q(z) |dz|} \right)^{-1}.$$

Лемма 3. Пусть $Q: \mathbb{D} \to [0,\infty]$ — измеримая функция $u \ f: \mathbb{D} \to \mathbb{D}$ — кольцевой Q-гомеоморфизм в точке $z_0 \in \partial \mathbb{D}$. Положим $\eta_0(r) = \frac{1}{\|Q\|_1(r)} \frac{1}{r_2} \frac{dt}{\|Q\|_1(t)}$, где $\|Q\|_1(r) = \frac{1}{\|Q\|_1(r)} \frac{dt}{r_1}$

$$\int\limits_{\gamma_r}Q(z)|dz|\ u\ \gamma_r=\mathbb{D}\cap S(z_0,r).$$
 Torða

$$\left(\int_{r_1}^{r_2} \frac{dr}{\|Q\|_1(r)}\right)^{-1} = \int_{A \cap \mathbb{D}} Q(z) \cdot \eta_0^2(|z - z_0|) \ dm(z) \le \int_{A \cap \mathbb{D}} Q(z) \cdot \eta^2(|z - z_0|) \ dm(z)$$
(8)

для любой функции $\eta:(r_1,r_2)\to [0,\infty]$ такой, что

$$\int_{r_1}^{r_2} \eta(r) \ dr = 1. \tag{9}$$

Доказательство. Пусть $I = \int_{r_1}^{r_2} \frac{dr}{\|Q\|_1(r)}$. Не ограничивая общности, можно считать, что $0 < I < \infty$. Тогда из (8) следует, что $\|Q\|_1(r) \neq 0$ п.в. в (r_1, r_2) . Поэтому без ограничения общности при доказательстве неравенства в (8) можно считать, что также $\eta(r) \neq \infty$ п.в. в (r_1, r_2) . Полагая $\alpha(r) = \|Q\|_1(r) \, \eta(r)$, $w(r) = \frac{1}{\|Q\|_1(r)}$, имеем, что $\eta(r) = \alpha(r) w(r)$ п.в. в (r_1, r_2) . Пусть $C := \int\limits_{A \cap \mathbb{D}} Q(z) \cdot \eta^2(|z-z_0|) \, dm(z) =$

 $\int\limits_{r_1}^{r_2}\alpha^2(r)\cdot w(r)dr.$ Применяя неравенство Иенсена с весом w(r) в интервале $\Omega=(r_1,\,r_2),$ см. теорему 2.6.2 в [6], с выпуклой функцией $\varphi(t)=t^2$, и вероятностной мерой $\nu\left(E\right)=\frac{1}{I}\int\limits_E w(r)\ dr, \quad E\subset\Omega,$ получаем $\left(\int\limits_{r_1}^{r_2}\alpha^2(r)w(r)\ dr\right)^{1/2}\geq\int\limits_{r_2}^{r_2}\alpha(r)w(r)\ dr=\frac{1}{I},$ где мы также использовали тот факт, что $\eta(r)=\alpha(r)\,w(r)$ удовлетворяет соотношению (9) и что $I=\int\limits_{r_1}^{r_2}\frac{dr}{\|Q\|_1(r)}.$ Следовательно, $C\geq\left(\int\limits_{r_1}^{r_2}\frac{dr}{\|Q\|_1(r)}\right)^{-1},$ что и доказывает (8).

Теорема 1. Пусть $Q: \mathbb{D} \to [0,\infty]$ — измеримая функция. Гомеоморфизм $f: \mathbb{D} \to \mathbb{D}$ является кольцевым Q-гомеоморфизмом в точке $z_0 \in \partial \mathbb{D}$, тогда и только тогда, когда

$$M\left(\Delta\left(fC_{1}^{*}, fC_{2}^{*}, f\left(\mathbb{D}\cap A\right)\right)\right) \leq \left(\int_{r_{1}}^{r_{2}} \frac{dr}{\|Q\|_{1}(r)}\right)^{-1},\tag{10}$$

для всех $0 < r_1 < r_2 < 2$, где $\|Q\|_1(r) = \int\limits_{\gamma_r} Q(z)|dz|$ – норма в L_1 функции Q над дугами $\gamma_r = \mathbb{D} \cap S(z_0,r), \ C_1^* = S(z_0,r_1) \cap \mathbb{D}$ и $C_2^* = S(z_0,r_2) \cap \mathbb{D}$.

Замечание 1. Инфимум в выражении справа в (4) достигается для функции $\eta_0(r)=\frac{1}{\|Q\|_1(r)\int\limits_{r_1}^{r_2}\frac{dt}{\|Q\|_1(t)}}.$

3. Регулярные гомеоморфизмы.

Лемма 4. Пусть $f:\mathbb{D}\to\mathbb{D}$ регулярный гомеоморфизм класса $W^{1,1}_{loc}$ и пусть $z_0\in\partial\mathbb{D}.$ Тогда

$$M\left(\Delta\left(fC_{1}^{*}, fC_{2}^{*}, f\left(\mathbb{D}\cap A\right)\right)\right) \leq \left(\int_{r_{1}}^{r_{2}} \frac{dr}{\|K_{\mu}^{T}\|_{1}(r)}\right)^{-1}$$
(11)

для любых $0 < r_1 < r_2 < 2$, где $\|K_\mu^T\|_1(r) = \int\limits_{\gamma_r} K_\mu^T(z,z_0)|dz|$ – норма в L_1 функции $K_\mu^T(z,z_0)$ над дугами $\gamma_r = \mathbb{D} \cap S(z_0,r), \ C_1^* = S(z_0,r_1) \cap \mathbb{D}$ и $C_2^* = S(z_0,r_2) \cap \mathbb{D}$.

Доказательство. Пусть $\Gamma = \Delta(fC_1^*, fC_2^*, f(A \cap \mathbb{D}))$. Рассмотрим криволинейный четырехсторонник $R = \{z \in A \cap \mathbb{D} : r_1 < |z - z_0| < r_2\}$. Существует конформное отображение h, которое отображает образ криволинейного четырехсторонника fR на круговое полукольцо $R' = \{w : 1 < |w| < L, \operatorname{Im} w > 0\}$. Пусть Γ^* – семейство кривых, соединяющих граничные компоненты |w| = 1 и |w| = L полукольца R'. Тогда, в силу конформной инвариантности модуля $M(\Gamma^*) = M(h\Gamma)$. Таким образом, $M(\Gamma^*) = \frac{\pi^2}{\int \frac{dudv}{|w|^2}}$, где w = u + iv. Для $g = h \circ f$ имеем, что $g \in W_{loc}^{1,1}\left(f(A \cap \mathbb{D})\right)$, и

потому отображение g является абсолютно непрерывным и дифференцируемым п.в.

на γ_r для п.в. $r \in (r_1, r_2)$, см., напр., [5]. Заметим, что

$$\int_{r_1}^{r_2} \int_{\theta_1(r)}^{\theta_2(r)} \frac{J_g(z_0 + re^{i\theta})}{|g(z_0 + re^{i\theta})|^2} r \, dr \, d\theta \le \int_{R'} \frac{du \, dv}{|w|^2} = \frac{\pi^2}{M(\Gamma^*)}, \tag{12}$$

где $\theta_1(r)$ и $\theta_2(r)$ – угловые координаты концов дуг γ_r , J_g – якобиан отображения g. Замена переменных здесь корректна в силу теоремы Лебега и теоремы Геринга-Лехто, см., напр., теорему III. 3.1 в [4], и леммы III. 3.2 в [4]. Для почти всех $r \in$

$$(r_1, r_2)$$
, имеем $\pi \leq \int\limits_{\gamma_r} |d \arg g| \leq \int\limits_{\gamma_r} |d \log g| = \int\limits_{\gamma_r} \frac{|dg(z)|}{|g(z)|} = \int\limits_{\theta_1(r)}^{\theta_2(r)} \frac{|g_{\theta}(z_0 + re^{i\theta})|}{|g(z_0 + re^{i\theta})|} d\theta$. Отсюда,

применяя неравенство Коши-Шварца, получаем, что $\pi^2 \leq \left(\int\limits_{\theta_1(r)}^{\theta_2(r)} \frac{|g_{\theta}(z_0 + re^{i\theta})|}{|g(z_0 + re^{i\theta})|} d\theta\right)^2 \leq$

$$\int_{\theta_1(r)}^{\theta_2(r)} \frac{|g_{\theta}(z_0 + re^{i\theta})|^2}{J(z_0 + re^{i\theta})} d\theta \int_{\theta_1(r)}^{\theta_2(r)} \frac{J(z_0 + re^{i\theta})}{|g(z_0 + re^{i\theta})|^2} d\theta, \quad \text{r.e.}$$

$$\frac{\pi^2}{\int\limits_{\theta_1(r)}^{\theta_2(r)} \frac{|g_{\theta}(z_0 + re^{i\theta})|^2}{rJ(z_0 + re^{i\theta})} d\theta} \le r \int\limits_{\theta_1(r)}^{\theta_2(r)} \frac{J(z_0 + re^{i\theta})}{|g(z_0 + re^{i\theta})|^2} d\theta.$$

Интегрируя обе части последнего неравенства по $r \in (r_1, r_2)$, имеем

$$\int_{r_1}^{r_2} \frac{dr}{\int_{\theta_1(r)}^{\theta_2(r)} \frac{|g_{\theta}(z_0 + re^{i\theta})|^2}{rJ(z_0 + re^{i\theta})} d\theta} \le \pi^{-2} \int_{r_1}^{r_2} r \int_{\theta_1(r)}^{\theta_2(r)} \frac{J(z_0 + re^{i\theta})}{|g(z_0 + re^{i\theta})|^2} d\theta dr.$$
(13)

Наконец, комбинируя последнее неравенство с (12), имеем, что

$$M\left(\Gamma^{*}\right) \leq \left(\int_{r_{1}}^{r_{2}} \frac{dr}{\frac{\left|g_{\theta}\left(z_{0}+re^{i\theta}\right)\right|^{2}}{rJ\left(z_{0}+re^{i\theta}\right)}} d\theta\right)^{-1},\tag{14}$$

и так как модуль семейства кривых является конформным инвариантом, получаем (11).

Теперь, комбинируя предыдущие леммы $1,\,2$ и $4,\,$ получаем следующее заключение.

Теорема 2. Пусть $f: \mathbb{D} \to \mathbb{D}$ – регулярный гомеоморфизм класса Соболева $W^{1,1}_{loc}$. Тогда f является кольцевым Q-гомеоморфизмом в каждой точке $z_0 \in \partial \mathbb{D}$ с $Q(z) = K_\mu^T(z, z_0)$.

Следствие 1. Пусть $f: \mathbb{D} \to \mathbb{D}$ – регулярный гомеоморфизм класса Соболева $W^{1,1}_{loc}$. Тогда f является кольцевым Q-гомеоморфизмом в каждой точке $z_0 \in \partial \mathbb{D}$ c $Q(z) = K_{\mu}(z)$.

4. О гомеоморфном продолжении на границу. Граничную терминологию см. в [7].

Лемма 5. Пусть $f: \mathbb{D} \to \mathbb{D}$ – регулярный гомеоморфизм такой, что

$$\int_{\mathbb{D}(z_0,\varepsilon)} K_{\mu}^T(z,z_0) \cdot \psi_{z_0,\varepsilon}^2(|z-z_0|) \, dx \, dy = o(I_{z_0}^2(\varepsilon))$$
 (15)

 $npu\ arepsilon o 0$, $arepsilon de\ \mu(z) = \mu_f(z),\ z_0 \in \partial \mathbb{D},\ D(z_0, arepsilon) = \{z \in \mathbb{D} : \varepsilon < |z - z_0| < \varepsilon(z_0)\},\ \varepsilon(z_0) \in (0,1),\ u\ \psi_{z_0,\varepsilon}(t)$ — семейство неотрицательных измеримых (по Лебегу) функций на $(0,\infty)$ таких, что $0 < I_{z_0}(\varepsilon) = \int\limits_{\varepsilon}^{\varepsilon_0} \psi_{z_0,\varepsilon}(t)\,dt < \infty \quad \forall \quad \varepsilon \in (0,\varepsilon_0).$ Тогда f продолжим ε точку z_0 по непрерывности.

Доказательство. Покажем, что предельное множество $E=C(z_0,f)$ состоит из единственной точки. Отметим, что $E\neq\emptyset$ ввиду компактности $\overline{\mathbb{D}}$, а $\partial\mathbb{D}$ сильно достижима в любой точке $w_0\in E$. Допустим, что существует хотя бы еще одна точка $w^*\in E$. Пусть $U=B(w_0,r_0):=\{w\in\mathbb{C}:|w-w_0|< r_0\}$, где $0< r_0< d(w_0,w^*)$, и $D_m=\{z\in\mathbb{D}:|z-z_0|<\frac{1}{m}\},\ m=1,2,...$ Тогда найдутся точки w_m и $w_m^*\in F_m=fD_m$, близкие к w_0 и w^* , соответственно, для которых $|w_0-w_m|< r_0$ и $|w_0-w_m^*|>r_0$. Точки w_m и w_m^* можно соединить непрерывными кривыми C_m в областях F_m . По построению $m\cap\partial B(w_0,r_0)\neq\emptyset$ ввиду связности C_m . Поскольку $\partial\mathbb{D}$ является сильно достижимой, найдется компакт $C\subset\mathbb{D}$ и число $\delta>0$ такие, что $M(\Delta(C,C_m,\mathbb{D}))\geq\delta$ для больших m, поскольку dist $(w_0,C_m)\to 0$ при $m\to\infty$. Заметим, что $K=f^{-1}(C)$ является компактом как непрерывный образ компакта. Таким образом, $\varepsilon_0={\rm dist}\,(z_0,K)>0$. Пусть $\Gamma_\varepsilon-{\rm семейство}$ всех непрерывных путей в \mathbb{D} , соединяющих круг $B_\varepsilon=D(z_0,\varepsilon)=\{z\in\mathbb{D}:|z-z_0|<\varepsilon\},\ \varepsilon\in(0,\varepsilon_0)$, с компактом K. Тогда функция

$$\eta_{\varepsilon}(t) = \begin{cases} \psi_{z_0,\varepsilon}(t)/I_{z_0}(\varepsilon), & t \in (\varepsilon,\varepsilon_0), \\ 0, & t \in \mathbb{R} \setminus (\varepsilon,\varepsilon_0) \end{cases}$$

удовлетворяет условию $\int_{\varepsilon}^{\varepsilon_0} \eta_{\varepsilon}(t) dt = 1$. Следовательно, по леммам 1, 2 и 4, M (Γ_{ε}^*) $\leq \int_{A\cap \mathbb{D}} Q(x) \cdot \eta_{\varepsilon}^2(|z-z_0|) dm(z)$, где $\Delta \left(fC_{\varepsilon}^*, fC_{\varepsilon_0}^*, fA \right)$, $A = A(z_0, \varepsilon, \varepsilon_0) = \{ z \in \mathbb{C} : \varepsilon < A\cap \mathbb{D} \}$ ($z \in \mathbb{C} : \varepsilon < |z-z_0| < \varepsilon_0 \}$, $C_1^* = S(z_0, \varepsilon) \cap \mathbb{D}$ и $C_2^* = S(z_0, \varepsilon_0) \cap \mathbb{D}$. Таким образом, ввиду минорирования $\Gamma_{\varepsilon}^* < \Gamma_{\varepsilon}$, эквивалентно $f\Gamma_{\varepsilon}^* < f\Gamma_{\varepsilon}$, мы имеем, что $M(\Gamma_{\varepsilon}) \leq M(\Gamma_{\varepsilon}^*)$ и поэтому $M(\Gamma_{\varepsilon}) \to 0$ при $\varepsilon \to 0$ по условию (15). С другой стороны, для любого $\varepsilon \in (0, \varepsilon_0)$ при больших m имеет место включение $D_m \subset B_{\varepsilon}$ и потому $C_m \subset fB_{\varepsilon}$. Следовательно, $M(f\Gamma_{\varepsilon}) \geq M(\Delta(C, m; \mathbb{D})) \geq \delta > 0$. Полученное противоречие опровергает предположение, что предельное множество E является невырожденным.

Лемма 6. Пусть $f: \mathbb{D} \to \mathbb{D}$ – регулярный гомеоморфизм $c \ K_{\mu} \in L^{1}(\mathbb{D}), \ \epsilon \partial e$ $\mu = \mu_{f}. \ Tor \partial a \ C(z_{1}, f) \cap C(z_{2}, f) = \emptyset \quad \forall \ z_{1}, z_{2} \in \partial \mathbb{D}, \ z_{1} \neq z_{2}.$

Доказательство. Пусть $i=C(z_i,f),\ i=1,2,\$ и $\delta=|z_1-z_2|$. Предположим, что $E_1\cap E_2\neq\emptyset$. Пусть $W_1=\mathbb{D}\cap D_1$ и $W_2=\mathbb{D}\setminus\overline{D}_2,$ где $D_1=D(z_1,\frac{\delta}{3})$ и $D_2=D(z_1,\frac{2\delta}{3})$. Для функции

$$\eta(t) = \begin{cases} \frac{3}{\delta}, & t \in \left(\frac{\delta}{3}, \frac{2\delta}{3}\right), \\ 0, & t \in \mathbb{R} \setminus \left(\frac{\delta}{3}, \frac{2\delta}{3}\right) \end{cases}$$

имеем, что $\int_{\frac{\delta}{3}}^{\frac{2\delta}{3}} \eta(t) \, dt = 1$, и по следствию 1, $M\left(\Delta\left(fC_1, fC_2, \mathbb{D}\right)\right) \leq \int\limits_{A\cap \mathbb{D}} K_{\mu}(x) \cdot \eta^2(|z-z_0|) \, dm(z) \leq \frac{9}{\delta^2} \int\limits_{\mathbb{D}} K_{\mu}(z) \, dm(z) < \infty$, поскольку $K_{\mu} \in L^1(\mathbb{D})$, для произвольных континуумов C_1 и C_2 в \mathbb{D} , которые принадлежат различным компонентам дополнения кольца $A = A\left(z_1, \frac{\delta}{3}, \frac{2\delta}{3}\right)$ в $\overline{\mathbb{C}}$. Последняя оценка противоречит, однако, условию слабой плоскости границы единичного круга \mathbb{D} , если найдется $w_0 \in E_1 \cap E_2$. Действительно, тогда $w_0 \in \overline{fW_1} \cap \overline{fW_2}$ и в областях $W_1^* = fW_1$ и $W_2^* = fW_2$ найдется по непрерывной кривой, пересекающей любые наперед заданные сферы $\partial B(w_0, r_0)$ и $\partial B(w_0, r_*)$ с достаточно малыми радиусами r_0 и r_* . Поэтому предположение, что $E_1 \cap E_2 \neq \emptyset$ было неверным.

Следствие 2. Для любого регулярного гомеоморфизма $f: \mathbb{D} \to \mathbb{D}$ с $K_{\mu} \in L^{1}(\mathbb{D})$, обратный гомеоморфизм f^{-1} продолжим по непрерывности на границу $\partial \mathbb{D}$.

Таким образом, комбинируя леммы 5 и 6, получаем следующее заключение.

 $egin{aligned} egin{aligned} egin{aligned\\ egin{aligned} egin{aligned} egin{aligned} egin{aligned} eg$

5. Теоремы существования решений задачи Дирихле. Любая аналитическая функция f в области D удовлетворяет простейшему уравнению Бельтрами $f_{\overline{z}}=0$, когда $\mu(z)\equiv 0$. Если аналитическая функция f задана в единичном круге $\mathbb{D}=\{z\in\mathbb{C}:|z|<1\}$ и непрерывна в его замыкании, то по формуле Шварца, см., напр., \S 8, Гл. III часть 3 в [2], с. 346, $f(z)=i\operatorname{Im} f(0)+\frac{1}{2\pi i}\int\limits_{|\zeta|=1}\operatorname{Re} f(\zeta)\cdot\frac{\zeta+z}{\zeta-z}\frac{d\zeta}{\zeta}$ и, таким

образом, аналитическая функция f в единичном круге $\mathbb D$ определяется с точностью до чисто мнимого числа ic, $c=\mathrm{Im}\, f(0)$, её реальной частью $\varphi(\zeta)=\mathrm{Re}\, f(\zeta)$ на границе единичного круга. Поэтому под задачей Дирихле для уравнения Бельтрами (1) в области $D\subset\mathbb C$ мы будем понимать проблему нахождения непрерывной функции $f:D\to\mathbb C$, имеющей частные производные первого порядка п.в., удовлетворяющей (1) п.в. и такой, что

$$\lim_{z \to \zeta} \operatorname{Re} f(z) = \varphi(\zeta) \qquad \forall \quad \zeta \in \partial D \tag{16}$$

для предписанной непрерывной функции $\varphi:\partial D\to\mathbb{R}$. Очевидно, что если f — решение такой задачи, то и функция F(z)=f(z)+ic, для любой постоянной $c\in\mathbb{R}$, также является её решением. Под **регулярным решением** задачи Дирихле (2) с $\varphi(\zeta)\equiv c,\ \zeta\in\partial D$, для уравнения Бельтрами (1) будем понимать функцию $f(z)\equiv c,\ z\in D$. Если же $\varphi(\zeta)\not\equiv const$, то под регулярным решением такой задачи будем понимать непрерывное дискретное и открытое отображение $f:D\to\mathbb{C}$ класса

Соболева $W^{1,1}_{loc}$ с якобианом $J_f(z)=|f_z|^2-|f_{\overline{z}}|^2\neq 0$ п.в., удовлетворяющее условию (16) и п.в. (1). Если $D=\mathbb{D}$, то мы дополнительно будем предполагать, что $\mathrm{Im}\,f(0)=0$.

Лемма 8. Пусть $\mu : \mathbb{D} \to \mathbb{D}$ – измеримая функция. Если $K_{\mu} \in L^{1}(\mathbb{D})$ и $K_{\mu}^{T}(z, z_{0})$ удовлетворяет условию (15) в каждой точке $z_{0} \in \overline{\mathbb{D}}$, то уравнение Бельтрами (1) имеет регулярное решение f задачи Дирихле (16) для любой непрерывной функции $\varphi : \partial \mathbb{D} \to \mathbb{R}$.

Доказательство. По теореме Стоилова о факторизации, любое непрерывное открытое дискретное отображение $f: \mathbb{D} \to \mathbb{C}$ может быть представлено в виде

$$f = h \circ q, \tag{17}$$

где g — гомеоморфизм $\mathbb D$ на $\mathbb D$, а h — аналитическая функция в $\mathbb D$. Поэтому регулярное решение задачи Дирихле (16) ищем в виде (17). По лемме 5.1 в [9] и теореме Римана следует существование регулярного гомеоморфизма $g:\mathbb D\to\mathbb D$, g(0)=0, который продолжим по лемме 7 до гомеоморфизма $\overline{\mathbb D}$ на $\overline{\mathbb D}$. По формулам Шварца и Пуассона, см., напр., § 8 и 10, Гл. III часть 3 в [2], искомая аналитическая функция h из (3) с $\mathrm{Im}\,h(0)=0$ восстанавливается в $\mathbb D$ по её действительной части на границе, $h(z)=\frac{1}{2\pi i}\int\limits_{|\zeta|=1}^{\infty}\mathrm{Re}\,f\circ g^{-1}(\zeta)\cdot\frac{\zeta+z}{\zeta-z}\cdot\frac{d\zeta}{\zeta}.$

Теорема 3. Пусть $\mu : \mathbb{D} \to \mathbb{D}$ – измеримая функция такая, что K_{μ} имеет ВМО мажоранту. Тогда при любой непрерывной функции $\varphi : \partial \mathbb{D} \to \mathbb{R}$ уравнение Бельтрами (1) имеет регулярное решение задачи Дирихле (16).

Эта теорема допускает следующее обобщение.

Теорема 4. Пусть $\mu: \mathbb{D} \to \mathbb{D}$ – измеримая функция такая, что

$$K_{\mu}(z) = \frac{1 + |\mu(z)|}{1 - |\mu(z)|} \leq Q(z) \in FMO\left(\overline{\mathbb{D}}\right). \tag{18}$$

Тогда уравнение (1) имеет регулярное решение задачи Дирихле (16) для любой непрерывной функции $\varphi : \partial \mathbb{D} \to \mathbb{R}$.

Замечание 2. Поскольку $W^{1,2}(\mathbb{D})\subset VMO(\mathbb{D})$, см., напр., [1], имеем следующее. Если вместо (18) потребовать, чтобы $K_{\mu}(z)\leq Q(z)\in W^{1,2}_{loc}(\mathbb{D})$, то заключение предыдущей теоремы остается в силе. Более того, в этом случае $f\in W^{1,2}_{loc}$. Определения и свойства BMO, VMO, FMO см., напр., в [3] и [9].

Следствие 3. Пусть $\mu: \mathbb{D} \to \mathbb{D}$ – измеримая функция такая, что $\overline{\lim_{\varepsilon \to 0}} \int_{\mathbb{D}(z_0,\varepsilon)} K_{\mu}(z) \, dx dy < \infty \quad \forall \ z_0 \in \overline{\mathbb{D}}$. Тогда уравнение (1) имеет регулярное решение задачи Дирихле (16) для любой непрерывной функции $\varphi: \partial \mathbb{D} \to \mathbb{R}$.

Следствие 4. Пусть $\mu: \mathbb{D} \to \mathbb{D}$ – измеримая функция такая, что $k_{z_0}(\varepsilon) = O\left(\log \frac{1}{\varepsilon}\right) \quad \forall z_0 \in \overline{\mathbb{D}}$ при $\varepsilon \to 0$, где $k_{z_0}(\varepsilon)$ – среднее интегральное значение функции K_{μ} на $\mathbb{D} \cap S(z_0, \varepsilon)$. Тогда (1) имеет регулярное решение задачи Дирихле (16) для любой непрерывной функции $\varphi: \mathbb{D} \to \mathbb{R}$.

Замечание 3. B частности, это так, если $npu\ z \to z_0\ K_\mu(z) = O\left(\log\frac{1}{|z-z_0|}\right) \forall z_0 \in \overline{\mathbb{D}}.$

Теорема 5. Пусть $\mu: \mathbb{D} \to \mathbb{D}$ – измеримая функция $c \ K_{\mu} \in L^{1}(\mathbb{D})$ такая, что $\int_{0}^{\delta(z_{0})} \frac{dr}{\|K_{\mu}\|_{1}(r)} = \infty \quad \forall \ z_{0} \in \overline{\mathbb{D}}, \ \textit{где} \ \|K_{\mu}\|_{1}(z_{0},r) = \int_{\gamma_{r}} K_{\mu}(z)|dz|$ – норма в L_{1} функции K_{μ} над дугами окружностей $\gamma_{r} = \mathbb{D} \cap S(z_{0},r), \ 0 < \delta(z_{0}) < 1$. Тогда уравнение (1) имеет регулярное решение задачи Дирихле (16) для любой непрерывной функции $\varphi: \partial \mathbb{D} \to \mathbb{R}$.

6. Примеры в задаче Дирихле для уравнения Бельтрами. Пусть $\mu(z) = k(|z|)\frac{z}{z}$, где $k(\tau): \mathbb{R} \to (-1,1)$ – измеримая функция такая, что $\int_{\varepsilon}^{1} \frac{1+k(\tau)}{1-k(\tau)} \frac{d\tau}{\tau} < \infty \ \forall \, \varepsilon \in (0,1)$ и $\int_{0}^{1} \frac{1+k(\tau)}{1-k(\tau)} \frac{d\tau}{\tau} = \infty$. Тогда регулярное решение задачи Дирихле (16) для уравнения Бельтрами (1) имеет явный вид:

$$f(z) = \frac{1}{2\pi i} \int_{|\zeta|=1} \operatorname{Re} \varphi(\zeta) \cdot \frac{\zeta + \omega(z)}{\zeta - \omega(z)} \cdot \frac{d\zeta}{\zeta}, \qquad (19)$$

где
$$\omega(z) = \frac{z}{|z|} \exp\left(-\int\limits_{|z|}^{1} \frac{1+k(\tau)}{1-k(\tau)} \frac{d\tau}{\tau}\right).$$

- 1. Brezis H., Nirenberg L. Degree theory and BMO. I. Compact manifolds without boundaries // Selecta Math. (N.S.). 1, no 2. 1995. P.197-263.
- 2. Гурвиц А., Курант Р. Теория функций, Москва: Наука, 1968.
- 3. *Игнатьев А.*, *Рязанов В.* Конечное среднее колебание в теории отображений // Укр. матем. вестник. -2, №3. -2005. -P.395–417.
- 4. Lehto O., Virtanen K. Quasiconformal Mappings in the Plane, New York etc.: Springer, 1973.
- 5. Maz'ya V. Sobolev classes, Berlin-New York: Springer, 1985.
- 6. Ransford Th. Potential Theory in the Complex Plane, Cambridge: C. Univ. Press, 1995.
- 7. Ryazanov V., Salimov R. Weakly flat spaces and boundaries in the mapping theory // Ukrainian Math. Bull. 4, no 2. 2007. P.199-234.
- 8. Ryazanov V., Srebro U., Yakubov E. On ring solutions of Beltrami equations // J. d'Anal. Math. $\bf 96.-2005.-P.117-150.$
- 9. Ryazanov V., Srebro U., Yakubov E. The Beltrami equation and ring homeomorphisms // Ukrainian Math. Bull. -4, no 1.-2007.- P.79-115.
- Ryazanov V., Srebro U., Yakubov E. On convergence theory for Beltrami equations // Ukr. Math. Bull. - 5, no 4. - 2008. - P.524-535.
- 11. Ziemer W.P. Extremal length and p-capasity // Michigan Math. J. 16. 1969. P.43-51.

C.-Петербургский государственный технический ун-т dybov2009@rambler.ru, dip57@inbox.ru, yury@pro-face.ru, yury@pro-face.dk

Получено 27.02.09