УДК УДК 519.21

©2009. А.В. Логачёв

БОЛЬШИЕ УКЛОНЕНИЯ ДЛЯ ПРОЦЕССА ПУАССОНА

В настоящей работе рассматривается процесс $\eta_n(t) = \frac{\nu(nt) - \lambda nt}{\sqrt{\lambda n} \varphi(n)}$, где $\nu(t)$ – процесс Пуассона с параметром λt , $\varphi(n)$ – монотонно возрастающая функция, $n \in N$. Доказываются теоремы о больших уклонениях для процесса $\eta_n(t)$.

1. Введение. В работе обосновывается принцип больших уклонений для процессов

$$\eta_n(t) = \frac{\nu(nt) - \lambda nt}{\sqrt{\lambda n} \varphi(n)}.$$
 (1)

Здесь $\nu(t)$ – процесс Пуассона с параметром λt , заданный на вероятностном пространстве $(\Omega, \mathcal{F}, P), \ t \geq 0, \ \varphi(n)$ – монотонно возрастающая функция, $n \in N$ – множеству натуральных чисел, стремящаяся к $+\infty$. В отличии от принципа больших уклонений для винеровского процесса, здесь возможны три различных случая для описания функционала действия:

$$1)\lim_{n\to\infty}\frac{\varphi(n)}{\sqrt{n}}=0,\ \ 2)\lim_{n\to\infty}\frac{\varphi(n)}{\sqrt{n}}=k>0,\ \ 3)\lim_{n\to\infty}\frac{\varphi(n)}{\sqrt{n}}=\infty.$$

Случаи 1), 2) рассмотрены ниже в теореме 1. По-видимому, принцип больших уклонений для них может быть получен из результатов работ [3], [4], [5], [8]. Здесь же он доказывается иным способом, используя методы разработанные в [2]. Случай 3) требует привлечения других методов доказательства и сформулирован в теореме 3.

Для метрического пространства (X, ρ) через $\mathcal{B}(X, \rho)$ обозначим борелевскую σ -алгебру его множеств. Напомним [1, стр. 111], что семейство вероятностных мер P_n на пространстве (X, ρ) удовлетворяет принципу больших уклонений с функционалом действия S(x) и нормирующей функцией $\psi(n)$, если $\psi(n) \to \infty$ при $n \to \infty$ и выполнены следующие условия:

- i) для любого c > 0 множество $\Phi(x) = \{x : S(x) < c\}$ компактно;
- ii) $\overline{\lim_{n\to\infty}} \frac{1}{\psi(n)} \ln P_n(F) \le -S(F)$ для любого замкнутого множества $F \in \mathcal{B}(X,\rho),$
- iii) $\lim_{n\to\infty}\frac{1}{\psi(n)}\ln P_n(G)\geq -S(G)$, для любого открытого множества $G\in\mathcal{B}(X,\rho)$.

Будем использовать следующие обозначения: D[0,1] – пространство функций непрерывных справа и имеющих пределы слева, а при t=1 непрерывных и слева.

Работа поддержана фондом совместных научных проектов НАН Украины Российского фонда фундаментальных исследований $\Re 104$

 $AC_0[0,1]$ — множество абсолютно непрерывных функций x(t), таких, что x(0)=0, $AC_k[0,1]$ — множество абсолютно непрерывных функций x(t), таких, что x(0)=0, $\dot{x}(t)>-\frac{\sqrt{\lambda}}{k}$, где k — некоторая положительная константа. Через $L_1[0,1]=\left\{x:\int_0^1|x(t)|dt<\infty\right\}$ обозначим пространство суммируемых функций. Целая часть числа a обозначается [a], а дробная — $\{a\}$.

2. Принцип больших уклонений. Рассмотрим вначале 1-й и 2-й из отмеченных выше случаев. На прстранстве D[0,1] определим метрику $\rho(x,y)=\sup_{0\leq t\leq 1} \mid x(t)-y(t)\mid$.

Теорема 1. 1) Если $\lim_{n\to\infty} \frac{\varphi(n)}{\sqrt{n}} = 0$, то семейство мер $P_n(A) = P\{\eta_n(\cdot) \in A\}$ удовлетворяет принципу больших уклонений на пространстве $(D[0,1],\rho)$ с функцией $\psi(n) = \varphi^2(n)$ и функционалом действия

$$S(x) = \begin{cases} \frac{1}{2} \int_{0}^{1} \dot{x}^{2}(t)dt, & ecnu \ x(t) \in AC_{0}[0,1], \\ \infty, & en pomueном \ cnyuae. \end{cases}$$

2) Если $\lim_{n\to\infty} \frac{\varphi(n)}{\sqrt{n}} = k$, то семейство мер $P_n(A) = P\{\eta_n(\cdot) \in A\}$ удовлетворяет принципу больших уклонений на пространстве $(D[0,1],\rho)$ с функцией $\psi(n) = \varphi^2(n)$ и функционалом действия

$$S(x) = \begin{cases} \int\limits_0^1 \biggl((\frac{\dot{x}(t)\sqrt{\lambda}}{k} + \frac{\lambda}{k^2}) \ln(\frac{k}{\sqrt{\lambda}}\dot{x}(t) + 1) - \frac{\dot{x}(t)\sqrt{\lambda}}{k} \biggr) dt, \ \textit{ecau } x(t) \in AC_k[0,1], \\ \infty, \ \textit{e противном случае}. \end{cases}$$

Доказательство. Для доказательства используем теоремы 3.2.1 и 3.2.2, [2]. Найдем кумулянту процесса (1). Для этого, согласно формуле 2.1.3, [2] необходимо рассмотреть форму

$$G(t, x, z) = \sum_{i} z_{i} b^{i}(t, x) + \frac{1}{2} \sum_{i, j} z_{i} z_{j} a^{ij}(t, x) + \int_{Rr} \left(e^{z(y-x)} - 1 - z(y-x) \right) \lambda_{t, x}(dy),$$

где функции $b^i(t,x)$, $a^{ij}(t,x)$ и мера $\lambda_{t,x}(dy)$ определяются из соответствующего стохастического уравнения. В рассматриваемом случае плотность меры Леви $\lambda_{t,x}(dy)$ будет иметь вид

$$\lambda_{t,x}(dy)=\lambda n\cdot\deltaigg(y-rac{1}{\sqrt{\lambda n}arphi(n)}igg)dy$$
, где $\delta(x)$ — функция Дирака,
$$\int\limits_{-\infty}^{\infty}\delta(x)f(x)dx=f(0),$$

r = 1, коэффициенты $b^{i}(t, x)$, $a^{ij}(t, x)$ равны нулю.

Таким образом мы получим следующую кумулянту процесса $\eta(t)$

$$G_n(x,z) = \lambda n \left(\exp\left(\frac{z}{\sqrt{\lambda n}\varphi(n)}\right) - \frac{z}{\sqrt{\lambda n}\varphi(n)} - 1 \right).$$

Проверим условия теорем 3.2.1, 3.2.2, [2].

Для случая 1 имеем

$$\lim_{n \to \infty} \frac{1}{\varphi^{2}(n)} G_{n}(x, \varphi^{2}(n)z) = \lim_{n \to \infty} \frac{\lambda n}{\varphi^{2}(n)} \left(\exp\left(\frac{\varphi(n)z}{\sqrt{\lambda n}}\right) - \frac{\varphi(n)z}{\sqrt{\lambda n}} - 1 \right) =$$

$$= \frac{z^{2}}{2} = G_{0}(z),$$

$$\lim_{n \to \infty} \frac{\partial}{\partial z} \left(\frac{1}{\varphi^{2}(n)} G_{n}(x, \varphi^{2}(n)z) \right) = \lim_{n \to \infty} \frac{\sqrt{\lambda n}}{\varphi(n)} \left(\exp\left(\frac{\varphi(n)z}{\sqrt{\lambda n}}\right) - 1 \right) =$$

$$= z = \frac{\partial}{\partial z} G_{0}(z),$$

$$\lim_{n \to \infty} \frac{\partial^{2}}{\partial z^{2}} \left(\frac{1}{\varphi^{2}(n)} G_{n}(x, \varphi^{2}(n)z) \right) = \lim_{n \to \infty} \exp\left(\frac{\varphi(n)z}{\sqrt{\lambda n}}\right) < \infty$$

равномерно по z на компактах. Применив преобразование Лежандра

$$H_0(u) = \sup_{z} (zu - G_0(z)) = \sup_{z} \left(zu - \frac{z^2}{2} \right),$$

получаем $H_0(u) = \frac{u^2}{2}$. Условия А–Д стр.61-66, [2] для функций $H_0(u)$ и $G_0(z)$ проверяются элементарным образом. Таким образом, в случае 1 функционал действия имеет вид, указанный в формулировке теоремы.

Для случая 2 получим

$$\lim_{n \to \infty} \frac{1}{\varphi^{2}(n)} G_{n}(x, \varphi^{2}(n)z) = \lim_{n \to \infty} \frac{\lambda n}{\varphi^{2}(n)} \left(\exp\left(\frac{\varphi(n)z}{\sqrt{\lambda n}}\right) - \frac{\varphi(n)z}{\sqrt{\lambda n}} - 1 \right) =$$

$$= \frac{\lambda}{k^{2}} \left(\exp\left(\frac{kz}{\sqrt{\lambda}}\right) - \frac{kz}{\sqrt{\lambda}} - 1 \right) = G_{0}(z),$$

$$\lim_{n \to \infty} \frac{\partial}{\partial z} \left(\frac{1}{\varphi^{2}(n)} G_{n}(x, \varphi^{2}(n)z) \right) = \lim_{n \to \infty} \frac{\sqrt{\lambda n}}{\varphi(n)} \left(\exp\left(\frac{\varphi(n)z}{\sqrt{\lambda n}}\right) - 1 \right) =$$

$$= \frac{\sqrt{\lambda}}{k} \left(\exp\left(\frac{kz}{\sqrt{\lambda}}\right) - 1 \right) = \frac{\partial}{\partial z} G_{0}(z),$$

$$\lim_{n \to \infty} \frac{\partial^{2}}{\partial z^{2}} \left(\frac{1}{\varphi^{2}(n)} G_{n}(x, \varphi^{2}(n)z) \right) = \lim_{n \to \infty} \exp\left(\frac{\varphi(n)z}{\sqrt{\lambda n}}\right) < \infty,$$

равномерно по z на компактах.

Проверим условие A стр.61, [2] $G_0''(z) = \exp\left(\frac{kz}{\sqrt{\lambda}}\right) > 0$, значит, $G_0(z)$ выпукла вниз – условие А выполнено.

Найдем преобразование Лежандра $H_0(u) = \sup_{z} (zu - G_0(z)) =$

$$=\sup_z \biggl(zu-\tfrac{\lambda}{k^2}\biggl(\exp\biggl(\tfrac{kz}{\sqrt{\lambda}}\biggr)-\tfrac{kz}{\sqrt{\lambda}}-1\biggr)\biggr).$$
 Решаем уравнение $G_0'(z)=u$, находим $z(u)=\tfrac{\sqrt{\lambda}\ln(\tfrac{k}{\sqrt{\lambda}})}{k}.$

Значит, $H_0(u)=(\frac{u\sqrt{\lambda}}{k}+\frac{\lambda}{k^2})\ln(\frac{k}{\sqrt{\lambda}}u+1)-\frac{u\sqrt{\lambda}}{k}$. Условия Б, В, [2] выполнены в силу того, что $H(\cdot)$ не зависит от x и t. Область определения функции $H_0(u)$, $u \in (-\frac{\sqrt{\lambda}}{k}, \infty)$, значит, условие Γ , [2] тоже выполнено.

$$H'_0(u) = \frac{\sqrt{\lambda}}{k} \ln(\frac{k}{\sqrt{\lambda}}u + 1), \quad u \in U_k,$$

где компакт $U_k \subset \{u: H_0(u) < \infty\}$ - условие Д, [2] выполнено. Таким образом, и в

случае 2 функционал действия имеет вид, указанный в формулировке теоремы. \square Рассмотрим случай, когда $\lim_{n\to\infty} \frac{\varphi(n)}{\sqrt{n}} = \infty$. На пространстве $L_1[0,1]$ определим метрику $\tilde{\rho}(x,y)=\int_0^1|x(t)-y(t)|dt$. Рассмотрим вначале случайный процесс $\gamma_n(t)=$ $\frac{\nu(nt)}{\sqrt{\lambda n}\varphi(n)}$. Через $D_1[0,1]$ обозначим множество функций $x(t)\in D[0,1]$, таких, что $x(0) \ge 0$, и x(t) не убывает.

Теорема 2. Пусть $\lim_{n\to\infty}\frac{\varphi(n)}{\sqrt{n}}=\infty$. Тогда семейство мер $P_n(A)=P(\gamma_n(\cdot)\in A),$ $A\in\mathcal{B}(\underline{L_1}[0,1],\tilde{\rho})$ удовлетворяет принципу больших уклонений с функцией $\psi(n)=0$ $\varphi(n)\sqrt{\lambda n}\ln\frac{\varphi(n)}{\sqrt{\lambda n}}$ и функционалом действия

$$S(x) = \begin{cases} x(1), & ecnu \ x(t) \in D_1[0,1], \\ \infty, & en pomuenom \ c.yyae. \end{cases}$$
 (2)

Предварительно докажем вспомогательные утверждения

Пемма 1. Функционал S(x) из (2) полунепрерывен снизу, множество функций $\{x(t): S(x) \leq c\}$ компактно в $(L_1[0,1], \tilde{\rho}).$

Доказательство. Обозначим $L = \{x(t) : S(x) \le c\}$. Возьмем любую последовательность функций $x_n(t) \in L$. Покажем, что из последовательности $x_n(t)$ можно выделить фундаментальную в $(L_1[0,1], \tilde{\rho})$ подпоследовательность. Пусть ε любое положительное число, такое, что $\frac{2c}{\varepsilon}\in N$. Разобьем отрезок [0,1] на непересекающиеся интервалы длины $\frac{\varepsilon}{2c}$, получим набор точек $t_0=0,\ t_1=\frac{\varepsilon}{2c},...,t_{\frac{2c}{\varepsilon}}=1$. Из последовательности $x_n(t)$ выбираем подпоследовательность $x_{n_k}(t):\lim_{k\to\infty}x_{n_k}(t_i)=$ $x_i,\ i=0,1,...,rac{2c}{arepsilon},$ такой выбор возможен по лемме Больцано-Вейерштрасса, так как $x_n(t) \le c$ при $t \in [0,1], n \in N$.

Покажем, что $\exists \ k(\varepsilon): \forall \ p,q \geq k(\varepsilon) \ \int_0^1 |x_{n_p}(t)-x_{n_q}(t)| dt < \varepsilon$. По предложенному выше построению

$$\exists k(\varepsilon) : \forall p, q \ge k(\varepsilon) |x_{n_p}(t_i) - x_{n_q}(t_i)| < \frac{\varepsilon}{2}, i = 0, 1, ..., \frac{2c}{\varepsilon}.$$

Тогда, используя монотонность функций $x_{n_p}(t)$ и $x_{n_q}(t)$, имеем

$$\forall p, q \ge k(\varepsilon) \int_0^1 |x_{n_p}(t) - x_{n_q}(t)| dt = \sum_{k} \int_{t_{k-1}}^{t_k} |x_{n_p}(t) - x_{n_q}(t)| dt \le$$

$$\leq \sum_{k} \int_{t_{k-1}}^{t_k} \left| \frac{\varepsilon}{2} + x_{n_p}(t_k) - x_{n_p}(t_{k-1}) \right| dt = \frac{\varepsilon}{2} + \frac{\varepsilon}{2c} \sum_{k} (x_{n_p}(t_k) - x_{n_p}(t_{k-1})) \leq \varepsilon. \tag{3}$$

Таким образом, в силу того, что ε может быть сколь угодно малым, мы доказали, что из последовательности $x_n(t)$ можно выделить фундаментальную подпоследовательность $x_{n_k}(t)$. Подпоследовательность $x_{n_k}(t)$ будет сходиться по мере, а значит из нее можно выделить подпоследовательность $x_{n_{k_r}}(t)$, которая будет сходиться почти всюду на отрезке [0,1]. Пусть $T\subseteq [0,1]$ множество лебеговой меры 1, на котором $x_{n_{k_r}}(t)$ сходится поточечно. Обозначим предел этой подпоследовательности на множестве T через $x(t),\ t\in T$. Функция x(t) ограничена константой c, так как $x_n(t)\leq c$ при всех $t\in [0,1],\ n\in N$. Покажем, что эта функция является неубывающей. Пусть существуют $t_1,t_2\in T:t_1>t_2$ $x(t_2)-x(t_1)=2\delta>0$. Тогда существует $r(\delta):\ \forall\ r>r(\delta)\ x_{n_{k_r}}(t_2)-x_{n_{k_r}}(t_1)>\delta$, а это невозможно, так как функции $x_n(t)$ неубывающие при всех $n\in N$. Аналогично доказывается, что $x(t)\geq 0\ \forall\ t\in T$. В остальных точках отрезка [0,1] доопределим функцию x(t) следующим образом:

$$x(t) = \lim_{s \to t+0} x(s), \ s \in T.$$

Эти пределы существуют в силу монотонности функции x(t) на множестве T. Полученная таким образом неотрицательная функция $x(t), t \in [0,1]$ ограничена константой c и неубывающая, значит,

$$\exists \ \widetilde{x}(t) \in L: \ \int_0^1 |x(t) - \widetilde{x}(t)| dt = 0.$$

Компактность доказана. Полунепрерывность снизу следует из компактности в силу полноты пространства $(L_1[0,1],\tilde{\rho})$. \square

Лемма 2. Пусть $a,b \in R$, a < b, $\lim_{n \to \infty} f(n) = \infty$, тогда для всех достаточно больших n $[bf(n)] \in [af(n),bf(n)]$.

Доказательство. Пусть [bf(n)] < af(n), тогда $af(n) - [bf(n)] = (a-b)f(n) + \{bf(n)\} > 0$.

А это невозможно, так как при достаточно больших n (a-b)f(n) < -1. \square Перейдем к доказательству теоремы 2.

Доказательство.

1) Пусть $F \in \mathcal{B}(L_1[0,1], \tilde{\rho})$ – любое замкнутое множество, тогда, воспользовавшись тем, что случайный процесс $\gamma_n(t)$ с вероятностью 1 не убывает, имеем

$$\overline{\lim_{n\to\infty}} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P_n(F) = \overline{\lim_{n\to\infty}} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P_n(F \cap D_1[0,1]) \le C$$

$$\leq \overline{\lim_{n \to \infty}} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P\left(\gamma_n(1) \geq S(F)\right) \leq$$

$$\leq \overline{\lim_{n \to \infty}} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln \left(\sum_{k=[\varphi(n)\sqrt{\lambda n}S(F)]}^{\infty} \frac{\exp\{-\lambda n\}(\lambda n)^k}{k!} \right) \leq$$

$$\leq \overline{\lim_{n \to \infty}} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln \left(\frac{\exp\{-\lambda n\}(\lambda n)^{[\varphi(n)\sqrt{\lambda n}S(F)]}}{[\varphi(n)\sqrt{\lambda n}S(F)]!} \right) +$$

$$+ \overline{\lim_{n \to \infty}} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln \left(1 + \sum_{k=1}^{\infty} \frac{(\lambda n)^k}{([\varphi(n)\sqrt{\lambda n}S(F)]^k} \right) =$$

$$= \overline{\lim_{n \to \infty}} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln \left(\frac{\exp\{-\lambda n\}(\lambda n)^{[\varphi(n)\sqrt{\lambda n}S(F)]}}{[\varphi(n)\sqrt{\lambda n}S(F)]!} \right).$$

Обозначим $[\varphi(n)\sqrt{\lambda n}S(F)] = f_n$ и применим формулу Стирлинга. Тогда выражение в последнем равенстве запишется как:

$$\frac{\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln \left(\frac{\exp\{-\lambda n + f_n + \ln(\lambda n) f_n - \ln(f_n) f_n\}}{\sqrt{2\pi n}} \right) = \\
= \frac{\lim_{n \to \infty} \frac{-f_n \ln \frac{f_n}{\lambda n}}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} = -S(F).$$

2) Пусть $G \in \mathcal{B}(L_1[0,1], \tilde{\rho})$ – любое открытое множество. Для доказательства теоремы достаточно рассмотреть случай $S(G) < \infty$. Так как множество G открытое, то для любого $\delta > 0$ найдется такая монотонно возрастающая функция $x_{\delta}(t) \in G$, что $S(x_{\delta}(t)) < S(G) + \delta$ и $V_{r_{\delta}}(x_{\delta}(t)) \subset G$, где $V_{r_{\delta}}(x_{\delta}(t)) = \{y(t) \in L_1[0,1] : \int_0^1 |x_{\delta}(t) - y(t)| dt < r_{\delta}\}$. Тогда

$$\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P_n(G) \ge \lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P_n(V_{r_{\delta}}(x_{\delta}(t))) \ge
\ge \lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P_n\{|\gamma_n(t_1) - x_{\delta}(t_1)| < r_{\delta}/2, \ |\gamma_n(t_2) - x_{\delta}(t_2)| < r_{\delta}/2,
\dots, |\gamma_n(1) - x_{\delta}(1)| < r_{\delta}/2, \ \gamma_n(t) \in V_{r_{\delta}}(x_{\delta}(t))\},$$
(4)

где $t_1 = \frac{r_\delta}{2x_\delta(1)}, \ t_2 = \frac{2r_\delta}{2x_\delta(1)},..., \ t_{\frac{2x_\delta(1)}{r_\delta}} = 1.$ Тогда, используя монотонность процесса $\gamma_n(t)$ аналогично (3), получаем, что выражение (4) равно

$$\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P(|\gamma_n(t_1) - x_{\delta}(t_1)| < r_{\delta}/2, ..., |\gamma_n(1) - x_{\delta}(1)| < r_{\delta}/2) \ge$$

Большие уклонения для процесса Пуассона

$$\geq \lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n \ln \frac{\varphi(n)}{\sqrt{\lambda n}}}} \ln P(x_{\delta}(t_1) - r_{\delta}/2 < \gamma_n(t_1) < x_{\delta}(t_1) + r_{\delta}/2,$$

$$\dots, x_{\delta}(1) - r_{\delta}/2 < \gamma_n(1) < x_{\delta}(1) + r_{\delta}/2).$$

Продолжим цепочку оценивания, используя лемму 2. Тогда последнее выражение в предыдущем неравенстве оценивается снизу как

$$\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P\{\nu(nt_1) = [(x_{\delta}(t_1) + r_{\delta}/2)\varphi(n)\sqrt{\lambda n}],$$

$$\dots, \nu(n) = [(x_{\delta}(1) + r_{\delta}/2)\varphi(n)\sqrt{\lambda n}]\}. \tag{5}$$

Обозначим $[(x_{\delta}(t_k)+r_{\delta}/2)\varphi(n)\sqrt{\lambda n}]=f_k$, тогда в (5)

$$\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P\{\nu(nt_1) = f_1, \nu(nt_2) = f_2, ..., \nu(n) = f_{\frac{2x_{\delta}(1)}{r_{\delta}}}\} = \\
= \lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P\{\nu(nt_1) = f_1, \nu(nt_2) - \nu(nt_1) = f_2 - f_1, \\
..., \nu(n) - \nu(nt_{\frac{2x_{\delta}(1)}{r_{\delta}} - 1}) = f_{\frac{2x_{\delta}(1)}{r_{\delta}}} - f_{\frac{2x_{\delta}(1)}{r_{\delta}} - 1}\}.$$

Используя свойство независимости приращений процесса $\nu(t)$ и формулу Стирлинга, имеем

$$\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \sum_{k} \ln P\{\nu(n \frac{r_{\delta}}{2x_{\delta}(1)}) = f_{k} - f_{k-1}\} =$$

$$= -\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \sum_{k} (f_{k} - f_{k-1}) \ln \frac{f_{k} - f_{k-1}}{\lambda n} =$$

$$= -\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} [(x_{\delta}(1) + r_{\delta}/2)\varphi(n)\sqrt{\lambda n}] \ln \frac{\varphi(n)}{\sqrt{\lambda n}} > -x_{\delta}(1) - r_{\delta}.$$

Сделав предельный переход $\delta \longrightarrow 0$, получим

$$\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P_n(G) \ge -S(G).$$

Лемма 3. Пусть последовательности случайных процессов $\zeta_n(t)$ и $\tilde{\zeta}_n(t)$ заданы на некотором вероятностном пространстве $(\Omega, \mathcal{F}, P), \ t \geq 0$. Пусть их траектории принадлежат некоторому польскому пространству (X, ρ) . На борелевской σ -алгебре $\mathcal{B}(X, \rho)$ определим семейства мер

$$P_n(B) = P(\zeta_n(\cdot) \in B), \quad \tilde{P}_n(B) = P(\tilde{\zeta}_n(\cdot) \in B).$$

Пусть для некоторой числовой последовательности a(n) и функционала I(x) таких, что $\lim_{n\to\infty} a(n)=0$, функционал I(x) полунепрерывен снизу, множество функций $\{x(t): I(x)\leq c\}$ компактно, выполнены неравенства

$$\overline{\lim_{n\to\infty}} a(n) \ln P_n(F) \le -I(F),$$
 для любого замкнутого множества $F,$

 $\lim_{n \to \infty} a(n) \ln P_n(G) \ge -I(G), \,\,$ для любого открытого множества G,

где $I(B) = \inf_{x \in B} I(x)$. Пусть, кроме того, $\forall \ \delta > 0$

$$\lim_{n \to \infty} a(n) \ln P(\rho(\zeta_n, \tilde{\zeta}_n) > \delta) = -\infty.$$

Тогда

 $\overline{\lim_{n\to\infty}} a(n) \ln \tilde{P}_n(F) \leq -I(F),$ для любого замкнутого множества F,

 $\lim_{n\to\infty} a(n)\ln \tilde{P}_n(G) \geq -I(G)$, для любого открытого множества G.

Доказательство.

1) Пусть F – замкнутое множество из $\mathcal{B}(X,\rho)$. Заметим, что $\forall \ \delta>0 \ \{\omega: \tilde{\zeta}_n \in F\}\subseteq \{\omega: \tilde{\zeta}_n \in F \cap \omega: \rho(\zeta_n, \tilde{\zeta}_n) < \delta\} \cup \{\omega: \rho(\zeta_n, \tilde{\zeta}_n) \geq \delta\}$. Через F^δ обозначим множество $\{x(t): \inf_{y(t) \in F} \rho(x,y) < \delta\}$

$$\tilde{P}_n(F) \le P_n(F^{\delta}) + P(\rho(\zeta_n, \tilde{\zeta}_n) \ge \delta).$$

Если $P_n(F^{\delta}) \leq P(\rho(\zeta_n, \tilde{\zeta}_n) \geq \delta)$, то

$$\overline{\lim_{n\to\infty}} a(n) \ln \tilde{P}_n(F) \le \lim_{n\to\infty} a(n) \ln 2P(\rho(\zeta_n, \tilde{\zeta}_n) \ge \delta) = -\infty$$

Если $P_n(F^\delta) > P(\rho(\zeta_n, \tilde{\zeta}_n) \ge \delta)$, то

$$\tilde{P}_n(F) \le 2P_n(F^{\delta}), \quad \overline{\lim}_{n \to \infty} a(n) \ln \tilde{P}_n(F) = -I(F^{\delta}).$$

Перейдем к пределу при $\delta \to 0$, используя лемму 1 [7 с.366], получим $\overline{\lim}_{n \to \infty} a(n)$ $\ln \tilde{P}_n(F) = -S(F)$.

2) Пусть G – открытое множество из $\mathcal{B}(X,\rho)$. Достаточно рассмотреть случай $I(G)<\infty$. Так как G – открытое множество, то $\forall \ \alpha>0 \ \exists \ x_{\alpha}\in G: I(x_{\alpha})< S(G)+\alpha$. При этом $\exists \ \delta_{\alpha}: \ V_{\delta_{\alpha}}=\{y\in G: \rho(x_{\alpha},y)<\delta_{\alpha}\}\subset G$

$$\underline{\lim_{n\to\infty}} a(n) \ln \tilde{P}_n(G) \ge \underline{\lim_{n\to\infty}} a(n) \ln \tilde{P}_n(V_{\delta_\alpha}) = \underline{\lim_{n\to\infty}} a(n) \ln \frac{P_n(V_{\delta_\alpha}) P_n(V_{\delta_\alpha/2})}{P_n(V_{\delta_\alpha/2})} \ge \underline{\lim_{n\to\infty}} a(n) \ln \tilde{P}_n(G) \ge \underline{\lim_{n\to\infty}} a(n) + \underline{\lim_{n\to\infty}} a(n) + \underline{\lim_{n\to\infty}} a(n) = \underline{\lim_{n\to\infty}} a(n) + \underline{\lim_{n\to\infty}} a(n) = \underline{\lim_{n\to\infty}} a(n) + \underline{\lim_{n\to\infty}} a(n) = \underline{\lim_{n\to\infty}} a(n)$$

$$\geq -I(G) - \alpha + \lim_{n \to \infty} a(n) \ln \frac{P_n(V_{\delta_{\alpha}})}{P_n(V_{\delta_{\alpha}/2})}.$$

$$\{\omega: \zeta_n \in V_{\frac{\delta_{\alpha}}{2}}\} = \{\omega: \zeta_n \in V_{\frac{\delta_{\alpha}}{2}} \cap \rho(\zeta_n, \tilde{\zeta}_n) \ge \frac{\delta_{\alpha}}{2}\} \cup \{\omega: \zeta_n \in V_{\frac{\delta_{\alpha}}{2}} \cap \rho(\zeta_n, \tilde{\zeta}_n) < \frac{\delta_{\alpha}}{2}\}.$$

$$P_n(V_{\delta_{\alpha}/2}) \le P(\{\omega: \zeta_n \in V_{\frac{\delta_{\alpha}}{2}} \cap \rho(\zeta_n, \tilde{\zeta}_n) < \frac{\delta_{\alpha}}{2}\}) + P(\{\omega: \rho(\zeta_n, \tilde{\zeta}_n) \ge \frac{\delta_{\alpha}}{2}\}) = \frac{1}{2} \frac{1}{$$

 $= P_n^1 + P_n^2.$

Покажем, что $\exists \ N_0: \ \forall \ n \geq N_0 \ P_n^1 > P_n^2.$ Допустим это не так, то есть $\forall \ N_0 \ \exists \ \tilde{n} > N_0: \ P_{\tilde{n}}^1 \leq P_{\tilde{n}}^2.$

Возьмем предел по таким \tilde{n}

$$-I(G) - \alpha \le \lim_{\tilde{n} \to \infty} a(\tilde{n}) \ln(P_{\tilde{n}}^1 + P_{\tilde{n}}^2) \le \lim_{\tilde{n} \to \infty} a(\tilde{n}) \ln(2P_{\tilde{n}}^2) = -\infty.$$

Получили противоречие, значит, при достаточно больших $n P_n^1 > P_n^2$

$$\{\omega: \zeta_n \in V_{\frac{\delta_{\alpha}}{2}} \cap \rho(\zeta_n, \tilde{\zeta}_n) < \frac{\delta_{\alpha}}{2}\} \subseteq \{\omega: \tilde{\zeta}_n \in V_{\delta_{\alpha}}\}.$$

Значит, $\lim_{n\to\infty} a(n)\ln \tilde{P}_n(G) \geq -I(G) - \alpha + \lim_{n\to\infty} a(n)\ln \frac{P_n^1}{2P_n^1} = -I(G) - \alpha$. Перейдем к пределу при $\alpha \to 0$, получим $\lim_{n \to \infty} a(n) \ln \tilde{P}_n(G) \ge -I(G)$. \square

Теорема 3. Пусть $\lim_{n\to\infty} \frac{\varphi(n)}{\sqrt{n}} = \infty$. Тогда семейство мер $P_n(A) = P(\eta_n(\cdot) \in A)$, $A \in \mathcal{B}(L_1[0,1], \tilde{\rho})$ удовлетворяет принципу больших уклонений с функцией $\psi(n) = \varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}$ и функционалом действия

$$S(x) = \begin{cases} x(1), & ecnu \ x(t) \in D_1[0,1], \\ \infty, & endown end \ converged e. \end{cases}$$

Доказательство. Так как

$$\lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P(\tilde{\rho}(\gamma_n, \eta_n) > \delta) =$$

$$= \lim_{n \to \infty} \frac{1}{\varphi(n)\sqrt{\lambda n} \ln \frac{\varphi(n)}{\sqrt{\lambda n}}} \ln P\left(\int_0^1 \frac{\sqrt{\lambda n}t}{\varphi(n)} dt > \delta\right) = -\infty,$$

то теорема 3 следует из леммы 3 и теоремы 2. \square

Замечание 1. В теоремах 2, 3 рассматривалось пространство $(L_1[0,1], \tilde{\rho})$. Аналогичный результат можно получить, если рассмотреть пространство $(L_p, \tilde{\rho}_p)$, где $1 \le p < \infty$, $\tilde{\rho}_p(x,y) = \int_0^1 |x(t) - y(t)|^p dt$. Большие уклонения в таких пространствах рассматривались, например, в [3], [5]. Если рассмотреть пространство L_p с более сильной топологией: равномерной или Скорохода, то утверждение леммы 1 несправедливо.

Замечание 2. В теореме 1 можно рассматривать пространство D[0,1] с метрикой Скорохода. Функционал действия будет иметь такой же вид. Это следует из теоремы 3.1 [1].

А.В. Логачёв

- 1. Вентиель А.Д., Фрейдлин М.И. Флуктации в динамических системах под действием малых случайных возмущений // М. 1979. 424c.
- 2. Вентиель A. Д. Предельные теоремы о больших уклонениях для марковских случайных процессов // М. 1986. 176c.
- 3. Mogulskii A.A. Large deviations for processes with independent increments // The annals of probability. -1993. Vol.21, N = 1 P.202-216.
- 4. Arcones M. A. The large deviation principe // Теория вероятностей и ее применения. 2003. T.52, № 2 P.134-149.
- 5. James Lynch., Jayaram Sethuraman. Large deviations for processes with independent increments // The annals of probability. 1987. Vol.15, N 2 P.610-627.
- 6. Deuchel J.D., Stroock D.W. Large deviations // N-Y., Academic Press, 1989.
- 7. *Булинский А.В.*, *Ширяев А.Н.* Теория случайных процессов // М. 2003. 400с.
- 8. Пухальский А.А. Большие уклонения стохастических динамических систем. Теория и приложения // М. -2005. -512c.

 $\mathit{И}$ н-т прикл. математики и механики HAH $\mathit{У}$ краины, Донецк omboldovskaya@mail.ru

Получено 25.03.09