UDK 517.5

©2010. D.A. Kovtonyuk, I.V. Petkov, V.I. Ryazanov

THE BELTRAMI EQUATIONS AND LOWER Q-HOMEOMORPHISMS

In this article it is shown that each homeomorphic $W^{1,1}_{\rm loc}$ solution to the Beltrami equation $\overline{\partial} f = \mu \, \partial f$ is the so-called lower Q-homeomorphism with $Q(z) = K_{\mu}(z)$ where $K_{\mu}(z)$ is dilatation quotient of this equation. It is developed on this base the theory of the boundary behavior and the removability of singularities of such solutions.

Key words: Beltrami equations, lower Q-homeomorphism

1. Introduction. In this paper we present applications of our results on the so-called lower Q-homeomorphisms in the monograph [9] to the study of the boundary behavior of solutions for the Beltrami equations with degeneration.

Let D be a domain in the complex plane \mathbb{C} , i.e., a connected and open subset of \mathbb{C} , and let $\mu: D \to \mathbb{C}$ be a measurable function with $|\mu(z)| < 1$ a.e. (almost everywhere) in D. The **Beltrami equation** is the equation of the form

$$f_{\overline{z}} = \mu(z) f_z \tag{1}$$

where $f_{\overline{z}} = \overline{\partial} f = (f_x + i f_y)/2$, $f_z = \partial f = (f_x - i f_y)/2$, z = x + i y, and f_x and f_y are partial derivatives of f in x and y, correspondingly. The function μ is called the **complex coefficient** and

$$K_{\mu}(z) = \frac{1 + |\mu(z)|}{1 - |\mu(z)|} \tag{2}$$

the dilatation quotient for the equation (1). The Beltrami equation (1) is said to be degenerate if ess sup $K_{\mu}(z) = \infty$.

The existence theorem for homeomorphic $W_{\text{loc}}^{1,1}$ solutions was established to many degenerate Beltrami equations, see, e.g., the recent monographs [1] and [9] and the surveys [6] and [13].

A continuous mapping γ of an open subset Δ of the real axis \mathbb{R} or a circle into D is called a **dashed line**, see, e.g., Section 6.3 in [9]. Recall that every open set Δ in \mathbb{R} consists of a countable collection of mutually disjoint intervals. This is the motivation for the term.

Given a family Γ of dashed lines γ in complex plane \mathbb{C} , a Borel function $\varrho : \mathbb{C} \to [0, \infty]$ is called **admissible** for Γ , write $\varrho \in \operatorname{adm} \Gamma$, if

$$\int_{\gamma} \varrho \, ds \geqslant 1 \tag{3}$$

for every $\gamma \in \Gamma$. The (conformal) modulus of Γ is the quantity

$$M(\Gamma) = \inf_{\varrho \in \operatorname{adm} \Gamma} \int_{\mathbb{C}} \varrho^{2}(z) \, dm(z)$$
 (4)

where dm(z) corresponds to the Lebesgue measure in \mathbb{C} . We say that a property P holds for **a.e.** (almost every) $\gamma \in \Gamma$ if a subfamily of all lines in Γ for which P fails has the modulus zero, cf. [3]. Later on, we also say that a Lebesgue measurable function $\varrho : \mathbb{C} \to [0, \infty]$ is **extensively admissible** for Γ , write $\varrho \in \operatorname{ext} \operatorname{adm} \Gamma$, if (3) holds for a.e. $\gamma \in \Gamma$, see, e.g., Section 9.2 in [9].

The following concept was motivated by Gehring's ring definition of quasiconformality in [4]. Given domains D and D' in $\overline{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$, $z_0 \in \overline{D} \setminus \{\infty\}$, and a measurable function $Q: D \to (0, \infty)$, we say that a homeomorphism $f: D \to D'$ is a **lower** Q-homeomorphism at the point z_0 if

$$M(f\Sigma_{\varepsilon}) \geqslant \inf_{\varrho \in \text{ext adm } \Sigma_{\varepsilon}} \int_{D \cap R_{\varepsilon}} \frac{\varrho^{2}(x)}{Q(x)} dm(x)$$
 (5)

for every ring

$$R_{\varepsilon} = \{ z \in \overline{\mathbb{C}} : \varepsilon < |z - z_0| < \varepsilon_0 \}, \quad \varepsilon \in (0, \varepsilon_0), \ \varepsilon_0 \in (0, d_0),$$

where

$$d_0 = \sup_{z \in D} |z - z_0|,$$

and Σ_{ε} denotes the family of all intersections of the circles

$$S(r) = S(z_0, r) = \{ z \in \mathbb{C} : |z - z_0| = r \}, \quad r \in (\varepsilon, \varepsilon_0),$$

with the domain D.

The notion can be extended to the case $z_0 = \infty \in \overline{D}$ in the standard way by applying the inversion T with respect to the unit circle in $\overline{\mathbb{C}}$, $T(x) = z/|z|^2$, $T(\infty) = 0$, $T(0) = \infty$. Namely, a homeomorphism $f: D \to D'$ is a **lower** Q-homeomorphism at $\infty \in \overline{D}$ if $F = f \circ T$ is a lower Q-homeomorphism with $Q_* = Q \circ T$ at 0. We also say that a homeomorphism $f: D \to \overline{\mathbb{C}}$ is a **lower** Q-homeomorphism in ∂D if f is a lower Q-homeomorphism at every point $z_0 \in \partial D$.

Further we show that each homeomorphic $W_{\text{loc}}^{1,1}$ solution of the Beltrami equation (1) is a lower Q-homeomorphism with $Q(z) = K_{\mu}(z)$ and, thus, the whole theory of the boundary behavior in [7], see also Chapter 9 in [9], can be applied to such solutions. In other words, in the plane this holds for homeomorphisms with finite distortion by Iwaniec, see, e.g., related references in the monographs [1] and [9].

2. The main result.

Theorem. Let f be a homeomorphic $W^{1,1}_{loc}$ solution of the Beltrami equation (1). Then f is a lower Q-homeomorphism at each point $z_0 \in \overline{D}$ with $Q(z) = K_{\mu}(z)$.

Proof. Let B be a (Borel) set of all points z in D where f has a total differential with $J_f(z) \neq 0$ a.e. It is known that B is the union of a countable collection of Borel sets B_l , $l = 1, 2, \ldots$, such that $f_l = f|_{B_l}$ is a bi-Lipschitz homeomorphism, see e.g. Lemma 3.2.2 in [2]. With no loss of generality, we may assume that the B_l are mutually disjoint. Denote also by B_* the set of all points $z \in D$ where f has a total differential with f'(z) = 0.

Note that the set $B_0 = D \setminus (B \cup B_*)$ has the Lebesgue measure zero in \mathbb{C} by Gehring-Lehto-Menchoff theorem, see [5] and [11]. Hence by Theorem 2.11 in [8], see also Lemma 9.1 in [9], length($\gamma \cap B_0$) = 0 for a.e. paths γ in D. Let us show that length($f(\gamma) \cap f(B_0)$) = 0 for a.e. circle γ centered at z_0 .

The latter follows from absolute continuity of f on closed subarcs of $\gamma \cap D$ for a.e. such circle γ . Indeed, the class $W_{\text{loc}}^{1,1}$ is invariant with respect to local quasi-isometries, see e.g. Theorem 1.1.7 in [10], and the functions in $W_{\text{loc}}^{1,1}$ is absolutely continuous on lines, see e.g. Theorem 1.1.3 in [10]. Applying say the transformation of coordinates $\log(z-z_0)$, we come to the absolute continuity on a.e. such circle γ .

Thus, length $(\gamma_* \cap f(B_0)) = 0$ where $\gamma_* = f(\gamma)$ for a.e. circle γ centered at z_0 . Now, let $\varrho_* \in \operatorname{adm} f(\Gamma)$ where Γ is the collection of all dashed lines $\gamma \cap D$ for such circles γ and $\varrho_* \equiv 0$ outside f(D). Set $\varrho \equiv 0$ outside D and

$$\varrho(z):=\varrho_*(f(z))(|f_z|+|f_{\bar{z}}|)$$
 for a.e. $z\in D$

Arguing piecewise on B_l , we have by Theorem 3.2.5 under m=1 in [2] that

$$\int\limits_{\gamma}\varrho\,ds\,\,\geqslant\,\,\int\limits_{\gamma_*}\varrho_*\,ds_*\,\,\geqslant\,\,1\qquad\text{for a.e.}\ \, \gamma\in\Gamma$$

because length $(f(\gamma) \cap f(B_0)) = 0$ and length $(f(\gamma) \cap f(B_*)) = 0$ for a.e. $\gamma \in \Gamma$, consequently, $\varrho \in \operatorname{ext} \operatorname{adm} \Gamma$.

On the other hand, again arguing piecewise on B_l , we have the inequality

$$\int_{D} \frac{\varrho^{2}(x)}{K_{\mu}(z)} dm(z) \leqslant \int_{f(D)} \varrho_{*}^{2}(w) dm(w)$$

because $\varrho(z) = 0$ on B_* . Consequently, we obtain that

$$M(f\Gamma) \geqslant \inf_{\varrho \in \text{ext adm } \Gamma} \int_{\Gamma} \frac{\varrho^2(z)}{K_{\mu}(z)} dm(z),$$

i.e., f is really a lower Q-homeomorphism with $Q(z) = K_{\mu}(z)$.

- 1. Astala K., Iwaniec T. and Martin G.J. Elliptic differential equations and quasiconformal mappings in the plane. Princeton Math. Ser., v. 48, Princeton Univ. Press, Princeton, 2009.
- 2. Federer H. Geometric Measure Theory. Springer-Verlag, Berlin 1969.
- 3. Fuglede B. Extremal length and functional completion // Acta Math. -1957.- V. 98.- P. 171-219.
- 4. Gehring F.W. Rings and quasiconformal mappings in space // Trans. Amer. Math. Soc. 1962. V. 103. P. 353-393.
- 5. Gehring F.W., Lehto O. On the total differentiability of functions of a complex variable // Ann. Acad. Sci. Fenn. A1. Math. 1959. V. 272. P. 1-9.
- 6. Gutlyanskii V., Ryazanov V., Srebro U. and Yakubov E. On recent advances in the degenerate Beltrami equations // Ukraininan Math. Bull. 2010. V. 7, no. 4. P. 467-515.
- 7. Kovtonyuk D., Ryazanov V. On the theory of lower Q-homeomorphisms // Ukrainian Math. Bull. -2008.- V. 5, no. 2.- P. 157-181.

- 8. Kovtonyuk D., Ryazanov V. On the theory of mappings with finite area distortion // J. Anal. Math. 2008. V. 104. P. 291-306.
- 9. Martio O., Ryazanov V., Srebro U., Yakubov E. Moduli in Modern Mapping Theory. Springer, New York, 2009.
- 10. Maz'ya V. Sobolev Classes. Springer-Verlag, Berlin, 1985.
- 11. Menchoff D. Sur les differentielles totales des fonctions univalentes // Math. Ann. 1931. V. 105. P. 75-85.
- 12. Ryazanov V., Srebro U. and Yakubov E. BMO-quasiconformal mappings // J. d'Anal. Math. 2001. V. 83. P. 1-20.
- 13. Srebro U. and Yakubov E. The Beltrami equation // Handbook in Complex Analysis. Geometric function theory. 2005. V. 2. P. 555-597.

Д.А. Ковтонюк, И.В. Петков, В.И. Рязанов

Уравнения Бельтрами и нижние *Q*-гомеоморфизмы.

В работе показано, что любое гомеоморфное $W_{\rm loc}^{1,1}$ решение уравнения Бельтрами $\overline{\partial} f = \mu \, \partial f$ является так называемым нижним Q-гомеоморфизмом с $Q(z) = K_{\mu}(z)$, где $K_{\mu}(z)$ – коэффициент дилатации этого уравнения. На этой основе развита теория граничного поведения и устранимость сингулярностей таких решений.

Ключевые слова: Уравнения Бельтрами, нижние Q-гомеоморфизмы

Д.О. Ковтонюк, І.В. Пєтков, В.І. Рязанов

Рівняння Бельтрамі та нижні Q-гомеоморфізми.

У роботі показано, що будь-який гомеоморфний $W_{\rm loc}^{1,1}$ розв'язок рівняння Бельтрамі $\overline{\partial} f = \mu \, \partial f$ є так званим нижнім Q-гомеоморфізмом з $Q(z) = K_{\mu}(z)$, де $K_{\mu}(z)$ – коефіцієнт дилатації цього рівняння. На цій основі розвинуто теорію граничної поведінки і усунення сингулярностей таких розвязків.

Ключові слова: Рівняння Бельтрамі, нижні Q-гомеоморфізми

Ин-т прикл. математики и механики НАН Украины, Донецк denis_koutonyuk@bk.ru, igorpetkou@list.ru, vlryazanou1@rambler.ru

 $Received\ 10.12.10$