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THE BELTRAMI EQUATIONS AND LOWER @Q-HOMEOMORPHISMS

In this article it is shown that each homeomorphic Wﬁ)j solution to the Beltrami equation 0f = puof
is the so-called lower @-homeomorphism with Q(z) = K, (z) where K, (z) is dilatation quotient of this
equation. It is developed on this base the theory of the boundary behavior and the removability of
singularities of such solutions.
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1. Introduction. In this paper we present applications of our results on the so-called
lower Q-homeomorphisms in the monograph [9] to the study of the boundary behavior
of solutions for the Beltrami equations with degeneration.

Let D be a domain in the complex plane C, i.e., a connected and open subset of C,
and let p: D — C be a measurable function with |u(z)] < 1 a.e. (almost everywhere) in
D. The Beltrami equation is the equation of the form

z = N(z)fz (1)
where f; = 0f = (fe+ify)/2, f- =0f = (fo —ify)/2, 2 =z + iy, and f, and f, are

partial derivatives of f in z and y, correspondingly. The function p is called the complex

coefficient and
L+ [u(2)]

KM(Z) 1— |M(Z)‘ (2>
the dilatation quotient for the equation (1). The Beltrami equation (1) is said to be
degenerate if esssup K,(z) = oo.

The existence theorem for homeomorphic VV&)’C1 solutions was established to many
degenerate Beltrami equations, see, e.g., the recent monographs 1] and [9] and the surveys
[6] and [13].

A continuous mapping vy of an open subset A of the real axis R or a circle into D
is called a dashed line, see, e.g., Section 6.3 in [|9]. Recall that every open set A in R
consists of a countable collection of mutually disjoint intervals. This is the motivation
for the term.

Given a family I" of dashed lines 7 in complex plane C, a Borel function g : C — [0, 00]
is called admissible for I', write ¢ € admT, if

/st > 1 (3)

for every v € I'. The (conformal) modulus of I' is the quantity

M) = inf /QQ(Z) dm(z) (4)

oc€admTI”
C
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where dm(z) corresponds to the Lebesgue measure in C. We say that a property P
holds for a.e. (almost every) v € I if a subfamily of all lines in T" for which P fails has
the modulus zero, cf. [3]. Later on, we also say that a Lebesgue measurable function
0: C — [0,00] is extensively admissible for I, write ¢ € extadmT, if (3) holds for
a.e. v € I, see, e.g., Section 9.2 in [9].

The following concept was motivated by Gehring’s ring definition of quasiconforma-
lity in [4]. Given domains D and D’ in C = CU {c}, 20 € D \ {00}, and a measurable
function @ : D — (0,00), we say that a homeomorphism f : D — D’ is a lower
(Q-homeomorphism at the point zj if

: 0% (x)
M(fZ) =l s / Q(z) dm(z) (5)

DNR.

for every ring
R.={2€C:e<|z—2|<eo}, ¢€€(0,e0), o€ (0,dp),

where
dp = sup |z — 2|,
ze€D

and Y. denotes the family of all intersections of the circles
S(r)=S(z0,7) ={2€C:|z—2| =71}, 7re€(ee0),

with the domain D.

The notion can be extended to the case zy = co € D in the standard way by applying
the inversion T with respect to the unit circle in C, T'(x) = z/|z|?, T'(c0) = 0, T(0) = oo.
Namely, a homeomorphism f : D — D’ is a lower (Q-homeomorphism at co € D
if ¥ = foT is alower QQu,-homeomorphism with Q, = @ o T at 0. We also say that
a homeomorphism f : D — C is a lower Q-homeomorphism in 9D if f is a lower
(Q-homeomorphism at every point zy € dD.

Further we show that each homeomorphic Wlicl solution of the Beltrami equation
(1) is a lower Q-homeomorphism with Q(z) = K,(z) and, thus, the whole theory of the
boundary behavior in [7], see also Chapter 9 in [9], can be applied to such solutions.
In other words, in the plane this holds for homeomorphisms with finite distortion by
Iwaniec, see, e.g., related references in the monographs [1| and [9].

2. The main result.

Theorem. Let f be a homeomorphic Wlicl solution of the Beltrami equation (1).
Then f is a lower Q-homeomorphism at each point zg € D with Q(z) = K,(2).

Proof. Let B be a (Borel) set of all points z in D where f has a total differential with
J¢(2) # 0 a.e. It is known that B is the union of a countable collection of Borel sets By,
l=1,2,...,suchthat f; = f|p, is a bi-Lipschitz homeomorphism, see e.g. Lemma 3.2.2 in
[2]. With no loss of generality, we may assume that the B; are mutually disjoint. Denote
also by B, the set of all points z € D where f has a total differential with f’(z) = 0.
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Note that the set By = D\ (B U By) has the Lebesgue measure zero in C by Gehring-
Lehto-Menchoff theorem, see [5] and [11]. Hence by Theorem 2.11 in [8], see also Lemma
9.11n [9], length(yNBy) = 0 for a.e. paths v in D. Let us show that length(f(v)Nf(By)) =
0 for a.e. circle v centered at z.

The latter follows from absolute continuity of f on closed subarcs of v N D for a.e.
such circle . Indeed, the class W]})cl is invariant with respect to local quasi-isometries,
see e.g. Theorem 1.1.7 in [10], and the functions in I/Vlzcl is absolutely continuous on lines,
see e.g. Theorem 1.1.3 in [10]. Applying say the transformation of coordinates log(z — zp),
we come to the absolute continuity on a.e. such circle ~.

Thus, length(y, N f(Bp)) = 0 where v, = f(v) for a.e. circle v centered at zy. Now,
let 0. € adm f(I') where I' is the collection of all dashed lines v N D for such circles ~y
and g, = 0 outside f(D). Set ¢ = 0 outside D and

0(2) : = o(f)(Ifl+1f:)  forae zeD

Arguing piecewise on Bj, we have by Theorem 3.2.5 under m =1 in [2] that

/st > /Q*ds* > 1 for a.e. veT
v T
because length(f(y) N f(Bo)) = 0 and length(f(y) N f(Bx)) = 0 for a.e. v € T,

consequently, o € extadmT.
On the other hand, again arguing piecewise on B, we have the inequality

() 2
[ Fane) < [ ) dmw
D f(D)

because o(z) = 0 on B,. Consequently, we obtain that

2
: 0°(»)
M(fT) > £ dm(z),
(f ) Qeexltnade/ m(Z)
D

ie., f is really a lower Q-homeomorphism with Q(z) = K,(2).
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.A. Kosroniok, 11.B. IlerkoB, B.I1. Psazanos

¥YpaBuenuss Besbsrpamu u Hu>kHHUE (J-roMeoMopu3MbI.

1,1 5
B pabore mokaszano, uTo moboe romeomopduoe W ' pemenue ypasnenus bBenbrpamum Of = pdf as-
JISIeTCs TaK HAa3bIBAEMBIM HIDKHUM (Q-romeomopdusmom ¢ Q(z) = K, (z), rue K, (z) — xoadpdunuent
JIMJIATAIMA 9TOr0 ypaBHeHHs. Ha 9Toil OCHOBe pa3BUTA TEOpUsi TPAHUYHOIO [TOBEJIEHHs U yCTPAHUMOCTD

CUHTYJIAPHOCTEH TaKUX PEHICHUN.

Karoueswvie caosa: Ypasnenua Beavmpamu, Huocrhue QQ-2omeomophudmot

1.0. Kosrontok, I.B. Ilerkos, B.I. Psazanos
Piusinusa Beaprpami Ta Hu>kHiI ()-romeomopdizmu.

. - o 1,1 . Py
Y pobori nokazano, mo Oyap-axuii romeomopduuit W)~ poss’asok pisuanns Bemsrpami 0f = puof
€ Tak 3BaHUM HIDKHIM @Q-romeomopdizmom 3 Q(z) = K, (z), ne Ku(z) — xoedinienr munaranii 10ro
piBasiHHs. Ha 11iif OCHOBI pO3BUHYTO TEOPil0 I'PAHUYHOI ITOBEIIHKH 1 YCYHEHHsSI CUHI'YJISIPHOCTENH TaKUX

PO3BSA3KIB.

Karowoei caosa: Pisnanna Beavmpami, nuotchi QQ-20meomopgiamu
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