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1. Some elliptic equations with degenerate coercivity.

In the paper [3], existence and regularity results of the following elliptic problem are
studied: 




−div(a(x, u)∇u) = f in Ω,

u = 0 on ∂Ω,

(0.1)

where Ω is a bounded, open subset of IRN , with N > 2, and a(x, s) : Ω × IR → IR is
a Carathéodory function (which is measurable with respect to x for every s ∈ IR, and
continuous with respect to s for almost every x ∈ Ω) satisfying the following conditions:

α

(1 + |s|)θ
≤ a(x, s) ≤ β , (0.2)

for some real number θ such that
0 ≤ θ ≤ 1 , (0.3)

for almost every x ∈ Ω, for every s ∈ IR, where α and β are positive constants. The
datum f belongs to Lm(Ω), for some m ≥ 1.

The main difficulty in dealing with problem (0.1) is the fact that, because of assump-
tion (0.2), the differential operator A(u) = −div(a(x, u)∇u), even if well defined between
H1

0 (Ω) and its dual H−1(Ω), is not coercive on H1
0 (Ω) (when u is, 1

(1+|u|)θ goes to zero: for

an explicit example see [6]).
This implies that the classical methods used in order to prove the existence of a

solution for problem (0.1) cannot be applied even if the datum f is regular.

In this note, two new and short proofs of the existence theorems will be presented.
The shortness depends on the use of previous results of [7] and [5]; by contrast the original
ones of [3] are selfcontained.

We will recall here the existence and regularity results proved in [3], then we will give
new proofs of the first two theorems.

The first result concerns the existence of bounded solutions, and coincides with the
classical boundedness results for uniformly elliptic operators (see [7]). The main tool of
the proof will be an L∞(Ω) a priori estimate, which then implies the H1

0 (Ω) estimate,
since if u is bounded then the operator A is uniformly elliptic.

Theorem 0.1 Let f be a function in Lm(Ω), with m > N
2
. Assume (0.2) and (0.3). Then

there exists a weak solution of (0.1) u in H1
0 (Ω) ∩ L∞(Ω).

The next result deals with data f which give unbounded solutions in H1
0 (Ω).



Theorem 0.2 Let 0 < θ < 1 and f be a function in Lm(Ω), with m such that

2N

N + 2− θ(N − 2)
≤ m <

N

2
. (0.4)

Assume (0.2) and 0 < θ < 1. Then there exists a function u in H1
0 (Ω) ∩ Lm∗∗(1−θ)(Ω),

which is weak solution of (0.1), where m∗∗ = (m∗)∗ = mN
N−2m

.

Remark that, since 2N
N+2−θ(N−2)

≤ m and 0 < θ < 1, then m ≥ 2N
N+2

, so that f belongs

to the dual of H1
0 (Ω).

We recall that Example 1.5 of [3] shows that the result of Theorem 0.2 is sharp.
Remark that if θ = 0, the result of the preceding theorems coincides with the classical

regularity results for uniformly elliptic equations (see [7] and [5]).

We refer to [6] for a uniqueness result for (0.1).

If we decrease the summability of f , we find solutions which do not in general belong
any more to H1

0 (Ω), even if our assumptions on f (f ∈ Lm(Ω), m ≥ 2N
N+2

) implies that

f ∈ H−1(Ω).
We recall now other results of [3]

Theorem 0.3 Let 0 < θ < 1 and f be a function in Lm(Ω), with m such that

N

N + 1− θ(N − 1)
< m <

2N

N + 2− θ(N − 2)
. (0.5)

Then there exists a function u in W 1,q
0 (Ω), with

q =
Nm(1− θ)

N −m(1 + θ)
< 2 , (0.6)

which solves (0.1) in the sense of distributions, that is,

∫

Ω
a(x, u)∇u · ∇ϕ =

∫

Ω
f ϕ , ∀ϕ ∈ C∞

0 (Ω) . (0.7)

Moreover, the truncation Tk(u) belongs to H1
0 (Ω) for every k > 0, where

Tk(s) = max{−k, min{k, s}} . (0.8)

Up to now, we have obtained solutions belonging to some Sobolev space. If we weaken
the summability hypotheses on f , then the gradient of u (and even u itself) may no longer
be in L1(Ω). However, it is possible to give a meaning to solution for problem (0.1), using
the concept of entropy solutions which has been introduced in [2].

Definition 0.4 Let f be a function in L1(Ω). A measurable function u is an entropy
solution of (0.1) if Tk(u) belongs to H1

0 (Ω) for every k > 0 and if

∫

Ω
a(x, u)∇u · ∇Tk(u− ϕ) ≤

∫

Ω
f Tk(u− ϕ) , (0.9)

for every k > 0 and for every ϕ ∈ H1
0 (Ω) ∩ L∞(Ω).



We observe that every term in (0.9) is meaningful. This is clear for the right hand
side, while for the left hand side we have

∫

Ω
a(x, u)∇u · ∇Tk(u− ϕ) =

∫

Ω
a(x, u)∇TM(u) · ∇Tk(u− ϕ) ,

where M = k + ‖ϕ‖
L∞(Ω)

. Then if f is a function in Lm(Ω), with

1 ≤ m ≤ max

{
N

N + 1− θ(N − 1)
, 1

}
, (0.10)

we refer to [3] for the existence of an entropy solution u of (0.1).

Remark that if 0 ≤ θ < 1
N−1

, then (0.10) becomes m = 1 and q = N(1−θ)
N−1−θ

which is
greater than 1. If in particular θ = 0, this is the same result obtained in [4] for elliptic
equations with L1(Ω) (or measure) data.

If 1
N−1

≤ θ < 1, then the upper bound on m is N
N+1−θ(N−1)

, which is the lower bound

on m given by Theorem 0.3.

2. Proofs.

The proofs of the existence results will be obtained by approximation.
Let f be a function in Lm(Ω), with m as in the statements of Theorems 0.1, 0.2 and

0.3. Let {fn} be a sequence of functions such that

fn ∈ L
2N

N+2 (Ω) , fn → f strongly in Lm(Ω), (0.11)

and such that ‖fn‖Lm(Ω)
≤ ‖f‖

Lm(Ω)
, ∀n ∈ IN . (0.12)

For instance, fn = Tn(f).
Let us define the following sequence of problems:





−div(a(x, Tn(un))∇un) = fn in Ω,

un = 0 on ∂Ω.

(0.13)

The existence of weak solutions un in H1
0 (Ω) of the Dirichlet problem (0.13) is classical,

since the differential operator in (0.13) is uniformly elliptic.

Lemma 0.5 Assume the same hypotheses of Theorem 1.1. Let f be in Lm(Ω) and let
un be a solution of (0.13) with fn = f for every n ∈ IN . Then the norms of un in L∞(Ω)
and in H1

0 (Ω) are bounded by a constant which depends on θ, m, N , α, |Ω| and on the
norm of f in Lm(Ω).

Proof. Let us start with the estimate in L∞(Ω). Define, for s in IR and for k > 0,

Gk(s) = (|s| − k)+ sgn(s) = s− Tk(s) ,

and

H(s) =
∫ s

0

1

(1 + |t|)θ
dt.



For k > 0, if we take Gk(H(un)) as test function in (0.13) and use assumption (0.2),
we obtain

α
∫

{x∈Ω:|H(un(x))|>k}
|∇un|2

(1 + |un|)2θ
≤

∫

{x∈Ω:|H(un(x))|>k}
f Gk(H(un)).

That is

α
∫

Ak

|∇(H(un))|2 ≤
∫

Ak

f Gk(H(un)) (0.14)

where we have set
Ak = {x ∈ Ω : |H(un(x))| > k} .

The inequality (0.14) is exactly the starting point of Stampacchia’s L∞-regularity proof
(see [7]), so that there exists a constant c1 such that

‖H(un)‖
L∞(Ω)

≤ c1. (0.15)

The properties of the functions h and H ( lim
s→∞H(s) = +∞) yield a bound for un in L∞(Ω)

from (0.15):
‖un‖L∞(Ω)

≤ c2.

The estimate in H1
0 (Ω) is now very easy. Taking un as test function in (0.13), one obtains

α

(1 + c2)θ

∫

Ω
|∇un|2 ≤

∫

Ω
f un ,

and the right hand side is bounded since f belongs, at least, to L1(Ω).

The next result will be used in the proof of Theorem 0.2.

Lemma 0.6 Assume the same hypotheses as in Theorem 1.2. Let f belong to L∞(Ω),
and let u ∈ H1

0 (Ω) ∩ L∞(Ω) be a solution of (0.1) (which exists by Theorem 1.1). Then
the norms of u in Lm∗∗(1−θ)(Ω) and in H1

0 (Ω) are bounded by constants depending only
on θ, m, N , α, |Ω| and the norm of f in Lm(Ω).

Proof. Multiplying (0.1) by γ(u), where

γ(t) = ((1 + |t|)p − 1)sign(t), p =
(1− θ)N(m− 1)

N − 2m
,

integrating on Ω and using the standard Sobolev imbedding H1
0 (Ω) ⊂ L2∗(Ω), yields

‖u‖
L(p+1−θ)2∗/2(Ω)

≤ c3, (0.16)

and ∫

Ω
|∇u|2(1 + |u|)p−1−θ ≤ c4. (0.17)

It is convenient to observe that pm′ = (p + 1 − θ)2∗/2. So far, we have not used (0.4).
Note that clearly

(p + 1− θ)2∗/2 = m∗∗(1− θ)

and that (0.4) is equivalent to p − 1 − θ ≥ 0. Thus, if (0.4) holds, then (0.16) implies a
bound for ∇u in L2(Ω). Here the constants c3 and c4 depend only on θ, m, N , α, |Ω| and
the norm of f in Lm(Ω).



Proof of Theorems 0.1 and 0.2
The estimates for un in H1

0 (Ω) imply that there exist a subsequence {unj
} and a

function u ∈ H1
0 (Ω), such that unj

converges weakly in H1
0 (Ω) to u. The coefficient

a(x, unj
) converges to a(x, u) in any Lp(Ω). Thus it is possible to pass to the limit in

(0.13) and to obtain the existence of a weak solution u.

Remark 0.7 We point out that Lemma 0.5 can be proved under the slightly more general
assumption

h(s) ≤ a(x, s) ≤ β, (0.18)

where the real function h(s) is continuous, decreasing, strictly positive and such that its
primitive

H(s) =
∫ s

0
h(t) dt (0.19)

is unbounded.
Thus it is possible, for instance, to study also problems where h(s) = 1

(e+|s|) ln(e+|s|) .

3. Lower order terms.

The presence of lower order terms in the Dirichlet problem (0.1) can change the exis-
tence results. For instance, consider the following boundary value problem





−div(a(x, u)∇u) + u = f in Ω,

u = 0 on ∂Ω,

(0.20)

where a(x, s) still satisfies the following inequality

α

(1 + |s|)θ
≤ a(x, s) ≤ β , (0.21)

for some real number θ > 0 (for almost every x ∈ Ω, for every s ∈ IR, α, β > 0) and f
belongs to Lm(Ω), for some m ≥ 1.

Let {fn} be the sequence of functions

fn = Tn(f) (0.22)

Define the following sequence of problems:





−div(a(x, Tn(un))∇un) + un = fn in Ω,

un = 0 on ∂Ω.

(0.23)

It is classical that

Lemma 0.8 ‖un‖Lm(Ω)
≤ ‖fn‖Lm(Ω)

.

Now we can prove that



Lemma 0.9 Assume
m ≥ θ + 2. (0.24)

Then the sequence {un} is bounded in H1
0 (Ω).

Proof. The use of
[(1 + |un|)1+θ − 1]sign(un)]

as test function in (0.23) implies that
∫

Ω

|∇un|2 ≤ c5{1 + ‖fn‖Lm(Ω)
}‖|un|(1+θ)‖

Lm′ (Ω)
.

Remark that (1 + θ)m′ ≤ m if and only if m ≥ 2 + θ.

Then, if f belongs to Lm(Ω) and if (0.24) holds, the existence of solutions follows as
in the proofs of Theorems 1.1 and 1.2.
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