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ON LOCAL BLOW-UP OF SOLUTIONS OF QUASILINEAR ELLIPTIC
AND PARABOLIC INEQUALITIES

Quasilinear elliptic and parabolic inequalities with nonlinearities of the Burgers-Kardar-Parisi-Zhang type
are investigated. Sufficient conditions of nonexistence of local solutions are established.
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1. Introduction.

The phenomenon of complete (local) blow-up of solutions to elliptic semilinear equations and
inequalities was investigated in many papers of various authors (see [1] and references therein).
A relatively less number of papers is devoted to the quasilinear case (see [1, § 6] as well as [2]
and [3]). The pioneering results about the local (complete and instant) blow-up of solutions of
nonlinear parabolic inequalities were obtained in [4] by the comparison method. In [1], that result
was substantially strengthened (the nonlinear capacity method was applied). However, the above
results refer to semilinear inequalities, while the quasilinear case is still almost open (see [1] and
references therein).

In this paper, local blow-up theorems are established for solutions of inequalities of the kinds

Au+ g(u)|Vul]? + w(z,u) <0 (1)

and o
8—7: > Au +g(u)|vu|2 +LO(ZE,t,U),

which were not considered in [1, 2, 3, 4]. Nonlinearities of the specified kind arise in various
applications (see, e.g., [5] and [6]); they are interesting from the purely theoretical point of view
as well because the methods elaborated in [1] are used for a much more comprehensive area of
investigation.

In the sequel, we denote the domain {x eR"0 < |z] < r} by €, (for positive values of r), assuming

that n > 1.
2. Regular elliptic case.

In this section, we consider inequality (1), assuming that the function g is continuous on [0, +00)
and the function w is defined on R" x [0, 4+00).
The following assertion is valid:

THEOREM 1. Let g belong to C|[0,+oc). Let there exist 1 >0, ¢ > 1, and 0 < —2 such that

s T q s
[ 9(t)dt = [g(r)dr
w(z,s) > |z|” /eO e 0f for all (z,s) € Q x [0, 400).

0

Then inequality (1) has no classical nonnegative nontrivial solutions in €.

Proof. Suppose, to the contrary, that there exists a nonnegative function u(z) different from
the identical zero and satisfying (in the classical sense) inequality (1) in Q,. Following, e.g., |7,
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Ch. V, § 1] (see also [8] and [9] and cf. [10] for the global blow-up), we define the following function

f on [0, 400):
[ fowa
fls) = /60 dr. (2)
0
, [ a(yar ., [onyir . .
Then f'(s) = ed and f"(s) = g(s)ed . Since f is strictly positive on [0, +00), it follows
n
that g(s) = é,((::)) on [0, +00). Define the following function v(z) on Q,: v(z) € fu(z)]. Then
ov ,, \ Ou 0% ou \? 0u
I - d IR n il ! e - 1 )
ey = g G = (g) s =T
Therefore,
Av = f'(u)Au+ f"(u)|Vul* = f'(u) [Au + g(u)|Vul?|.
This implies that
Av
Au+ g(u)|Vu? = —
WIVu =
because f' vanishes nowhere.
A
Thus, the inequality Wz) + w(z,u) <0 holds in €,. This means that the inequality
P faoa
g(t)dt
/60 dr
A
i + Il ~— <0
f (u) [ g(r)dr
eo0
) ) : . Av o fl(u) )
holds in the same domain. Then the inequality i) + || i) < 0 holds in Q, as well (see (2)).
u u

By virtue of the (strict) positivity of the function f’, the latter inequality is equivalent to the
inequality
Av + |z|7v? < 0. (3)

However, there is no positive r such that inequality (3) has a classical nonnegative nontrivial solution
in 2, under the restrictions imposed on ¢ and o (see [1, Th 6.1]).
The obtained contradiction completes the proof.

3. Singular elliptic case.

The above approach is also applicable in the case where the coefficient at the principal nonlinear
term of inequality (1) has a singularity (cf. [9, Sec. 3|). Assume that @ # 0 and 0 < § # 1 and
consider the inequality

Au+ gﬁ|Vu|2 + w(z,u) <0. (4)
u
The following assertion is valid:
THEOREM 2. Let r > 0,q > 1, and 0 < —2 be such that

s q
w(z,s) > |z]” /eﬁTl_ﬁdT er=1s' for all (z,s) € Q. x (0, +00).
0
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Then inequality (4) has no classical positive solutions in §),.

Proof. Suppose, to the contrary, that there exists a nonnegative function wu(x) satisfying
inequality (4) in €2,. Define the function f on (0,+o00) as follows:

f(s) = / er’s" dr. (5)

0
Then f/(s) = e17° > 0and f"(s) = —=e75° * on (0 Therefore, < = 7)o (0
en f'(s)=¢e > 0 and f7(s) ik on (0, +00). erefore, —5 = 705 on (0, +00).
Define the following function v(z) on Q,: v(z) € flu(z)]. Then
Av = f'(u)Au+ f"(u)|Vul2 = f'(u )[Au + —|Vu| ]
(see the proof of Th. 1).
This means that Au + —|Vu|2 7 ( ] because f’ vanishes nowhere.
A
Thus, the inequality 7 (v) w(z,u) <0 holds in €,. Hence, the inequality
u
U q
eﬁTdeT
Av 0
g < 0
f’(u) + |‘/E| eﬁulfﬁ =
holds in €2, as well.
o : - : . Av o /(1)
Taking into account relation (5), we obtain (in €2,) the inequality () + |z] Fla) <0
u u
By virtue of the (strict) positivity of the function f’, inequality (3) holds in £2,. As above (see

Th. 1), this contradicts [1, Th 6.1]. This completes the proof.
4. Critical elliptic case.

In this section, inequality (4) is considered for the case where § = 1. Substitution (5) is not
applicable in this case, but the local blow-up of solutions still occurs.
Agsuming that a > —1, we consider the inequality

Au + %|Vu|2 + w(z,u) < 0. (6)

The following assertion is valid:

THEOREM 3. Let r > 0,7 > 1, and 0 < —2 be such that

w(z,s) > 21757
T a+1

for all (z,s) € Q, x (0,400).

Then inequality (6) has no classical positive solutions in §2,.

Proof. Suppose, to the contrary, that there exists a positive function u(x) satisfying inequality
(6) in Q,. Define a function v(z) on §2, as follows:

v(z) = u®(x). (7)

Then 5 5
v u
Yv Du® () ——
P (a+1)u (x)('):vj
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and

5% ar ou \? apPu o) |Pu, o (ouY’
W:a(a-i-l)u (z) <8—x]> +(a+1Du (:v)w—(a—l-l)u (x) la—xz—i-m <8—m]> ]

J J

for j =1,n.
Hence,
Av = (a+1)u® (Au + g|Vu|2) .
u
Since (a + 1)u® vanishes nowhere, it follows that
Av Av

(0%
Au+ —|Vul? = = o
alv (a+Du* (@4 1)va+t

(note that, due to (7), the function v(z) is positive in the domain €2, because the function u(x) is
positive in the domain ;).

Thus, the inequality
Av 1
—_—a_ +w($avo‘+1) <0
(a0 + 1)vatt

holds in the domain €2,. Therefore, the inequality

Av |ac|°"uo%r1

= <0 8
(a+ 1)ve+tt at+l — ®)

holds in the same domain.
Since the function (a + 1)ve+I(z) is positive in £, it follows from inequality (8) that the inequality

ot
Av + |$|”'ua_+} <0

is valid in €.

a
Now, denoting % by ¢, we see that the function v(z) is positive in €, and there exist ¢ > 1 and

!
o < —2 such that v(z) satisfies inequality (3). This contradicts [1, Th. 6.1] and, therefore, completes
the proof.

If « = —1, then substitution (7) is, obviously, not applicable. However, a weakened result on
local blow-up of solutions can be obtained in this critical case as well. More exactly, the following
assertion is valid:

THEOREM 4. Let r > 0,g > 1,8 >0, and o < —2 be such that
s\ ¢
w(z,s) > |z|%s <ln E) for all (z,s) € Q. x [, 400).

Then the inequality

2
A — |Vul

+ w(z,u) <0 (9)

has no classical solutions in €., satisfying the condition B < u(x) Z S.

Proof. Suppose, to the contrary, that a function u(z) satisfies inequality (9) in Q, and u(z) > 8
in Q. Define a function v(z) on €, as follows:

v(z) =1In % (10)
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Then
%u ou 2
oo oo (@) 0 w1 o]
dr;  wu(x) Oz, 8:5?_ u?(z) u(z) 8:5? u(z) \ 0z; =
|[Vul?

Therefore, Au —

= uAv = e’ Av (note that u(z) vanishes nowhere). Hence, the inequality

e*’l)

g

means that the inequality Av + e*”|x|"(ln e”)qe” < 0 holds in the same domain. Thus, we obtain
the inequality Av + |z|7v? < 0. The latter inequality is inequality (3). By virtue of [1, Th. 6.1], it
has no classical nonnegative nontrivial solutions in €, (under the assumptions of Th. 4). On the
other hand, it follows from (10) that 0 < v(z) # 0. The obtained contradiction concludes the proof.

Remark 1. All the assertions proved above are valid if inequalities (1), (4), (6), and (9) are
replaced by the following inequality of a more general kind:

Be¥ Av —i—w(m,ﬁe”) < 0 holds in Q,, i.e., the inequality Av + w(:v,ﬁe”) < 0 holds in Q,. This

n 2
Au+ Y aj(z,u) <a—“) + w(z,u) <0, (11)
7=1

axj

where the coefficients a; satisfy the following conditions (for j = 1,n):
there exists a function g from C[0, +00) such that a;(z,s) > g(s) on Q, x [0,+00) (for Th. 1);

the inequality a;(z,s) > % holds on Q, x (0,400) (for Th. 2);
s
the inequality a;(z,s) > 2 holds on Q, x (0,+00) (for Th. 3);
s
1
the inequality a;j(z,s) > —— holds on ©Q, x (0,+00) (for Th. 4).
s
To prove this, it suffices to note that any function u(z), satisfying inequality (11), satisfies the

corresponding inequality (i.e., (1), (4), (6), or (9)) a fortiori (under the corresponding assumption
above).

5. Regular parabolic case.

Consider the inequality

g—: > Au+ a(z, t,u)| Vul> + w(z, t,u) (12)

and the initial-value condition

The following assertion is valid:

THEOREM 5. Let r > 0,19 > 0,0 < —2, ¢ > 1, and g € C[0,4+00) be such that ug € C(,) and the
following inequalities hold in Q, x (0,%y) x RY :

s T q s
(0)do — [g(r)dr
a(z,t,s) > g(s) and w(z,t,s) > |z’ /eofg dr | e Ofg . (14)

0

Then problem (12),(13) has no classical nonnegative nontrivial solutions in Q. x (0,%p).
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Proof. Suppose, to the contrary, that a nonnegative function u(z, t) is different from the identi-
cal zero and satisfies (in the classical sense) problem (12),(13) in €2, x (0,%). Then the following
inequality holds in €, x (0,%):

u T q u
(6)do — [g(m)dr
% > Au+ g(u)|Vul? + |z|” /eofg dr | e Ofg .
0

Similarly to Th. 1, we define the function f on [0,4o00) by relation (2). Defining the function
v(z,t) € flu(z,t)] on Q. x (0,%), we see that

o ., Ou v,  Ou v, ouN2 . OPu
5t =G g =W and g = 17 () + g, i =T
Therefore,
Av = f'(u)Au+ f"(u)|Vu|* = f'(u) [Au +g(u)|Vu|2}.
Hence, Au + g(u)|Vu|* = Av and Gu_ 1 O (because f’ vanishes nowhere).

f'w) =0t fr(u) Ot
Thus, the following inequality holds in Q, x (0,g):
1 Ov Av f4(u)

Py ot = Fly T

By virtue of the (strict) positivity of the function f’, it is equivalent to the inequality

% > Av + |z|7v%. (15)

It follows from (2) that the function v(z,t) satisfies the following initial-value condition in ,:

v = vo(x), (16)

uo(x)

where vg(z) = /

0
The latter function is continuous in £2,, and its sign coincides with the sign of wug(z) at each

point of €,. However, ug(z) is nonnegative in €2, because u(z,t) is a classical nonnegative solution
of problem (12),(13). Finally, v(z,t) is different from the identical zero because u(z,t) would be
equal to the identical zero otherwise (due to (2)), while it is different from the identical zero by
assumption. However, by virtue of [1, Ch. 3, §28], problem (15),(16) has no classical nonnegative
nontrivial solutions in €, x (0,%) under the restrictions imposed on ¢ and o.
The obtained contradiction completes the proof.

Remark 2. Th. 5 is valid if the term a(=,t,u)|Vu|? in (12) is replaced by the following term

of a more general kind:
n 2
ou
> ateton) () (17)
j

=1

[ gty
eo ! dr.

provided that its coefficients aj, j € 1,n, satisfy condition (14) for the function a.
This is proved in the same way as Remark 1.

6. Singular parabolic case.
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The above approach can be applied for the case were the coefficient at the principal nonlinear
term of inequality (12) is singular (cf. Sec. 3). More exactly, the following assertion is valid:

THEOREM 6. Let r > 0,tg > 0,0 < =2, ¢ > 1, a # 0, and f € (0,1) U (1,400) be such that
ug € C(Q) and the following inequalities are valid in Q, x (0,19) x R} :
s q
p _a - 1-8 o
and w(z,t,s) > |z /el—ﬁ dr | ef-T
0

a(z,t,s) > (18)

%l e

Then problem (12),(13) has no classical positive solutions in Q. x (0,t).

Proof. Suppose, to the contrary, that a positive function u(z,t) satisfies problem (12),(13) in
Q, x (0,%p). Then the following inequality holds in €2, x (0,%g):

u q

_a_-1-8
/el—ﬁT dr

0

ou ! 9 .
N > Au + u—ﬂ|Vu| + |z| g
Define the function f on (0, +o0c) by relation (5) and define the function v(z,t) <! f[u(z,t)] on Q, x
(0,p). This yields the relation

Av = f'(u)Au+ f"(u)|Val? = f/(u) | Au+ 1%|Vu|2]
(see the proofs of Th. 1 and Th. 5).
A
This implies that Au + gﬁ|Vu|2 = f/(v) because f’ vanishes nowhere. In the same way, we have
u u
ou_ 1o
ot f'(u) 0t
. i 1 v Av f(u) : . e
Thus, the inequality ——— > ——— + |z|° holds in 2, x (0, tg). Due to the (strict) positivity
P ot~ pa T ) (0 o) sricy

of the function f’, this inequality is equivalent to inequality (15). The function v(z,t) satisfies
condition (16) in €, and the sign of the initial-value function vy (z) coincides with the sign of the
function ug(z) at each point of ©, (due to (5)). The latter function is nonnegative because the
function u(z,t) is a classical positive solution of problem (12),(13). Finally, the function v(z,t) is
different from the identical zero because the function u(z,t) would be equal to the identical zero
otherwise (by virtue of (5)), while it is positive by assumption.
Similarly to Th. 5, we obtain a contradiction with [1]. This concludes the proof.

Remark 3. Th. 6 remains valid if the term a(z,t,u)|Vu|? in (12) is replaced by a term of
kind (17) provided that its coefficients a;, j € 1,n, satisfy condition (18) for the function a.
The proof coincides with the proof of Remark 2.

7. Critical parabolic case.

In this section, condition (18) for the function a is considered in the case where f = 1.
Substitution (5) is not applicable in this case, but the local blow-up still occurs.
The following assertion is valid:

THEOREM 7. Let r > 0,tg > 0,0 < —2, v > 1, and a > —1 be such that ug € C(,) and the
iequalities
|77

a+1

a(z,t,s) > and w(z,t,s) > (19)

@ [ Q
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hold in Q, x (0,t9) x RL.. Then problem (12),(13) has no classical positive solutions in € x (0,to).

Proof. Suppose, to the contrary, that a positive function u(z,t) satisfies problem (12),(13) in
Q, x (0,9). Then the following inequality holds in €2, x (0,%¢):

au (0% |x|0u7
— > A - 2 )
57 2 u+u|Vu| +oz+1
Define the following function v(z,t) on £, x (0,%g):
ol ) = uo* (o, ). (20)
Then 5 5 ) ,
v u v u
- — 1 a _— —_ = 1 « _
and
0% a-1 ou )’ oy O o 0%u a [ 0u\2
87? = a(a+1)u®" () <8—:c]) +(a+1)u (m)a—xg = (a+ Du®(z) 3—$3+@<8—x])
for j = 1,n.

Therefore, Av = (o + 1)u® (Au + g|Vu|2). Since (a+ 1)u® vanishes nowhere, it follows that
u

e 9 Av Av ou 1 ov 1 ov
Au+—|Vu| = = - and — = —_ = _
v @+ Dw (ot 1o G @r D O (o 1)orT OF

(note that, by virtue of (20), the function v(z,t) is positive in the domain €2, x (0,%p) because the

function u(zx, t) is positive in the same domain). Thus, the following inequality holds in the domain
QT X (O,tU)Z

1

(o + l)vo%rl ot

Q
S

Av |x|"va_7+_1

> =
(a_i_l)/vrﬂ a+1

. . . . . . v oty . e
This inequality is equivalent to the inequality o > Av + |z|%v att by virtue of the positivity of

(a+ 1)vatt.
. a+y . . ..
Denoting P by ¢, we see that there exist ¢ > 1 and o < —2 such that v(z,t) is a nontrivial
a
(because it is positive) solution of inequality (15) in Q, x (0,%). The function v(z,t) also satisfies
condition (16) with the initial-value function vg(z) % u§g™! (), which is continuous in €, due to the

continuity of the function ug(z) in the domain Q,.
Thus, we obtain a contradiction with [1]. This completes the proof.

If @ = —1, then substitution (20) is, obviously, not applicable. However, a (weakened) result
on the local blow-up of solutions can be obtained in this critical case as well. More exactly, the
following assertion is valid:

THEOREM 8. Let r > 0,tg > 0,0 < =2, >0, and q > 1 be such that ug € C(Q,) and the
inequalities

1 q
a(z,t,s) > —= and w(z,t,s) > |z|%s <1n %)
s

hold in Q, x (0,t9) x [B,+0c). Then problem (12),(13) has no classical solutions in Q. x (0,tp),
satisfying the condition f < u(z,t) Z f.
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Proof. Suppose, to the contrary, that a function u(z, ) satisfies problem (12),(13) in the domain
Q, x (0,t9) and is such that the inequality 8 # u(z,t) >  is valid €, x (0,%). Then the following
inequality holds in the domain €, x (0,%):

ou |Vul? u)?
— > Au— “ul{ln—) .
5 = Au ot |z|%u <nﬁ>

Define the following function v(z,t) on £, x (0,%g):

v(z,t) =In u(ag ) (21)
Then
ol ou |
RS R el Gy M S WA
or;  u(z,t) Oz, an 8:3? B u?(x,t) Tz, t) 8$§ u(z,t) \ dz; 7 =L5n,
and
o0 _ 1 ou
ot u(z,t) ot
Therefore,
[Vul? _ o ou  , ,0v
Au ” = ulAv = e’ Av, 5 = Be 5

q
(note that u vanishes nowhere), and u(ln%) = pe’v? (note that v is nonnegative due to (21)).
Thus, the inequality

ﬁe”% > Be’ Av + pe’|z|7v?

holds in €, x (0,%). Therefore, inequality (15) holds in the same domain. Further, the function
uo(z)

v(z,t) satisfies condition (16) with vg(z) = In . The latter function is continuous in 2, because

ug € C(Q,) and ug(z) > B in Q, (the latter inequality is valid because the function u(z,t) satisfies
it, while this function is a classical solution of problem (12),(13)). Finally, the function u(z,t) is
different from the constant §. Then relation (21) implies that v(z,t) is not only nonnegative, but
is different from the identical zero.

Thus, the function v(z,t) is a classical nonnegative nontrivial solution of problem (15),(16) in €, x
(0,%p) and the initial-value function of the latter problem is continuous. This contradicts |[1]. The
obtained contradiction completes the proof.

Remark 4. Th. 7 and Th. 8 remain valid if the term a(z,t,u)|Vu|? in (12) is replaced by a
term of kind (17) provided that its coefficients a;, j € 1, n, satisfy condition (19) (in the case of Th.
8, it is assigned a = —1 in the latter condition) for the function a.

The proof coincides with the proof of Remark 3.

The author is indebted to S. I. Pohozhaev and A. L. Skubachevskii for their attentive concern.
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