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MODAL APPROACH TO THE CONTROLLABILITY PROBLEM OF
DISTRIBUTED PARAMETER SYSTEMS

This paper is devoted to the analysis of the controllability for a class of linear control systems in a Hilbert
space. It is proposed to use the minimum energy control of a reduced lumped parameter system for
solving the infinite dimensional steering problem approximately. Sufficient conditions of the approximate
controllability are formulated for a modal representation of a flexible structure with small dissipation.
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1. Introduction. The problems of spectral, approximate, exact, and null con-
trollability of distributed parameter systems have been intensively studied in the last
few decades [2, 3, 4]. On the one hand, the question of the approximate controllability
of a linear time-invariant system on a Hilbert space can be formulated in terms of an
invariant subspace of the corresponding adjoint semigroup [5], [3, p. 56]. On the other
hand, the problem of an effective control design remains challenging for a wide range of
mechanical systems with distributed parameters.

The goal of this work is to propose a constructive control strategy, based on a
reduced model, and to justify that this approach can be used to solve the approximate
controllability problem for the whole infinite dimensional system.

2. Problem statement. This paper addresses the problem of approximate con-
trollability of a linear differential equation

z=Axr+ Bu, x€ H, ueR™, (1)

where H is a Hilbert space, A : D(A) — H is a closed densely defined operator, and
B :R™ — H is a continuous operator. We assume that A generates a strongly continuous
semigroup of operators {e/4};~0 on H. Hence, for any 2° € H and u € L?(0,7), the mild
solution of (1) corresponding to the initial condition x|;—¢ = 2° and control u = u(t) can
be written as follows

t
z(t; 2% u) = a2l + / e ABu(s)ds, 0 <t <. (2)
0
Recall that that system (1) is approzimately controllable in time T > 0 if (cf. [3]),
given 20, 2! € H and & > 0, there exists u € L?(0,7) such that

0

|x(7; 2", u) — :le <e.

In order to study the approximate controllability of system (1), we use the following
result.
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Proposition 1. [7| Let {Qn}X_; be a family of bounded linear operators on H
satisfying the following conditions:

1)
A}im |Qnz|| =0, forallx € H; (3)

2) the operators et and Qn commute;

3) for each 2%, x' € H, N > 1, there is a control ui\g o1 € L2(0,7) such that
(I —Qn) (1’(7‘; xo,ui\gjxl) - xl) =0, (4)

dim (OBl a1 22007 ) = 0. (5)

Then system (1) is approximately controllable in time T, and the above family of functions
U = ui\gwl (t), 0 <t <7, can be used to solve the approzimate controllability problem.

In this paper, I stands for the identity operator on H. For a possible application of
the above proposition, we assume that each operator Py = I — Q) is a finite dimensional
projection.

Let dim(Im Py) = dy. For given x°

,3:1 € H, we introduce vectors
~0 0 1 1 = ~0 ~1 =~
Iy = Pyz’, 2y = Pnz', Ty = Pyx, (Zy,Zy,Zn € Im Py),

and operators Ay = Py A, By = PyB. Then condition (4) implies that ui\g 1(t) should
solve the following control problem:

i‘N:ANi'N+BNU, t e [0,7’], (6)

«%N’t:() = i?Va ij|t:T = j}v

Here we have used the assumption that Py and A commute as well as the property
Py = P]%, of a projection. To satisfy condition (5), it is natural to look for a control
u =u’, ,(t) that minimizes the functional

J = /0 (Qu,u) dt — min (7)

with some symmetric positive definite m x m-matrix Q). As control system (6) evolves on
a real dy-dimensional vector space Im Py, we may treat (6) as a system on R without
lack of generality. By applying the Pontryagin maximum principle (see [1]), we get the
optimal control for problem (6)-(7):

i(t) = Q' Bye Ty, (®)
T - _ - -1 B
v = </ AN ByQ T BiyetAn ds> (zh — eV i%),
0
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where the prime stands for the transpose. Proposition 1 implies that the proof of the
approximate controllability can be reduced to the checking conditions (3) and (5) with a
family of smooth controls u%@l = u(t) given by (8). The main contribution of this paper
is the application of such a scheme for a class of systems (1) representing the oscillations
of a flexible structure with damping.

3. Flexible system with damping. Consider a particular case of system (1) as
follows

&= Ax+ Bu, z€/l? ueR, (9)

where

x = (&0, M0, 1,1, &2, 12, ...)’,

o

lzlZ =D (&% + )

n=0

We assume that the operator A : D(A) — ¢2 in (9) is given by its block-diagonal matrix:

Ay 0 0
' 0 A 0 ...
A = diag(Aop, A1, A, ...) = 0 0 Ay ... |>

01 0 Wn _
e () = (0 ) e,

and B = (0,1,0,b1,0,bs,...) € £2. Control system (9) is a linear model of a rotating
flexible beam attached to a rigid body. The components &, and 7, of x are the modal
coordinate and modal velocity corresponding to the mode number n. The control u is
the angular acceleration of the body. Coefficients w,, and b, are, respectively, the modal
frequency and the control coefficient corresponding to the n-th mode of oscillations of the
beam. The coefficient xk > 0 represents the viscous damping in the beam. The procedure
of deriving the equations of motion with modal coordinates is described in paper [6] for
a rotating rigid body with several Euler-Bernoulli beams.

The main result of this paper is as follows.

Proposition 2. Assume that b, # 0 and w, > 0 for alln = 1,2, .... Then there exists
a T > 0 such that system (9) is approximately controllable in time T provided that

P (10)

ij=1
i#

and that the damping coefficient k is small enough.
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Proof. Let us introduce the family of operators Py : ¢ — (2 and Qn : £ — (2 as

follows:
€o o
1o Mo
Pl & = |, Qu=1-Py, N=12..,
1IN NN
EN+1 0
TIN+1 0

where I is the identity operator on ¢2. Condition 1) of Proposition 1 holds with the above
choice of Qn. To check condition 2), we compute the semigroup {etA} generated by A:

A= diag (etAO, etAl,etAQ, ) ,
cos Bt + A= sin Bt Yn gin Bt
etAO _ < 1t ) , etAn — e*lit ﬁn2+5267f n Bn . n. . n 2 17
0 1 — 4, sin Byt cos fpt — 5= sin Byt

where (3, = /w2 — k%2 > 0. We assume that the sequence {w,} is separated from zero
and that the damping coefficient x is small enough:

0 < Kk < infw,.
n

It is easy to see that condition 2) of Proposition 1 holds because of the block diagonal
form of Qn and et

For arbitrary 2°,2!' € ¢* and N > 1, we define the control u’, ,(t) = a(t) by
formula (8). In the case considered here, 7

m=dimu=1, Q =1, By =(0,1,0,by,...,0,bx),

Ay = diag(Ag, Ay, ..., An), AN — diag(etdo, et etAN),

xN - (5077707' '76%7”{\[)/7 j:O,].
Then formula (8) takes the form

w1 (8) = a(t) = ByeT 0Ny, (11)

-1 .
V= (/ My (s ) (h — eV i%),

where the matrix My (s) = (M;;)N Yi—o is represented by its 2 x 2-blocks M;; as follows

2 s Sjs Cjs
o= () = ().
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Sis S; S8 S;C;
My = ! ! M;: = v v 1,7=1,2,...,N). 12
20 < CZ'S Cz ; i Csz CZC] ) ( ) 3 Ly eeey ) ( )
Here C,, and S,, are functions of s:

C, = b,e "* (cos Ons — ﬂi sin ﬂns> ,

bpwn _
Sn, = ——e "sin G,s.

D

By exploiting formulae (12), we get the following representation of [ My (s) ds for
large 7:

HN(T) = /OT MN(S) ds = BNV_VNBN + O(Teim-), (13)

where B
By = diag(1,1,b1,b1,...,bx,bN)

and the 2 x 2-blocks W;; of Wy = (Wij)z]'?/j:o are

s g Z g 3 1
W()o:(fz 2>, Wo;‘Z(“’f 6)]'>7 ‘/Vi():<_i1 %)7
2 T wj w?
1 dkwiw; w;(w? — w?) > .
Wi; = ! 5. b |, hi=1
Y 4R 4 (B - B7)2H4R? + (B + 57)%) ( wi(wi —wf) 26w} +w;) "
14
In particular, by using the identity ﬁjz + k2= wJQ-, one obtains
1 10 .
o= > 1.
Wi 4H<0 1>’ 721
Let us denote
WN = diag(Woo, W117 ceey WNN); FN = V_VN — WN. (15)

It is easy to see that Wy is invertible for any 7 > 0 and x > 0. Then a sufficient condition
for the matrix Wy = Wy + Fv to be invertible is the condition of diagonal dominance:

1

IENI < e
W

(16)
Straightforward computations yield

Wit = max {4/{,0 <71_>} as T — +oo. (17)

The definition of Fiy in (15) (and Wj; in (14)) implies that, under condition (10), there
exists a constant C' > 0 such that

|Fy|| < C, forall N=1,2,... (18)
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Estimates (17) and (18) mean that condition (16) holds if 7 is large enough and x > 0 is

small enough. Hence, the matrix Hx(7) in (13) is invertible for large 7. This implies that

the control ufc\é’zl(t) in (11) is well-defined under our assumptions. As ui\{)@l (t) solves

finite-dimensional boundary value problem (6), condition (4) is satisfied for any N > 1.
By exploiting formula (11) together with representation (13) and the property

oo
2
Z b, < o0,
n=1

we conclude that condition (5) holds for a dense in ¢2 set of initial (2°) and terminal (z)
points. Then system (9) is approximately controllable in #2 by Proposition 1. [J

4. Conclusions. This work extends the result of [7] for the case of a flexible system
with damping. As it was shown earlier in [7], condition (10) is satisfied for the Euler-
Bernoulli beam without damping. Hence, condition (10) is sufficient for the approximate
controllability in both conservative (k = 0) and dissipative (small £ > 0) cases under our
assumptions. An open question is whether is it possible to relax restriction (10) in order
to justify the relevance of controls (8) under a weaker assumption on the distribution of
the modal frequencies {wy,}.
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A.JI. 3yeB
MopasbHblil oaxod K NpobjieMe yIpaBJIIeMOCTH CUCTEM C pacIpeleIEeHHBIMU ITapaMeTpa-

MHA.

CraTbsl MOCBSIIEHA AHAJIU3Y YIPAB/ISIEMOCTH KJIACCA JIMHEHHBIX CUCTEM yIPABJIEHUs] B TMILOEPTOBOM
npocTtpancTse. s npub/imKeHHOro perieHns 66CKOHETHOMEPHOM MTPOOIeMbI YIIPABJISEMOCTHA UCIIOJIb3Y-
eTCsl yIpaBJ/ieHne C MUHUMAJIBLHON SHEpPrueil, KoTOpoe COOTBETCTBYET IMOJICUCTEME C COCPEIOTOYEHHBIMU
napaMmerpamu. [IpenmokeHbl 10CTATOYHbBIE YCIOBUS IPUOINKEHHON YIIPABISEMOCTH CUCTEMBI C MOJIAJIb-
HBIMU KOOP/IMHATAMH, KOTOPAasi OIMCHIBAET KOJEOAHUST YIIPYTOil MEXaHUIECKON MOJEIN C MAJION JUCCH-
aluen.

Karouesbie ca068a: cucmema ¢ pacnpeieiecHnvMy napamMempam, nPpubAUHNCEHHAL YNPABAAEMOCTID,

MOOAALHIL aHaAU3, NEPEAUBAHUE IHEP2UU.
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O.JI. 3yeB

Mopanbuuii miaxima g0 mpobJiieMn KepOBAHOCTI CHMCTEM 3 PO3IIO/IiJIEHUMU IIapaMeTpaMu.

CraTrTiO IPUCBAYEHO aHAJI3y KEPOBAHOCTI KJIACy JIHIMHUX CUCTEM KepyBaHHsI B IJILOEPTOBOMY IIPOCTOPI.
Jl1st HabIMKEHHOTO PO3B’A3aHHs HECKIHYEHHOBUMIPHOI TPOOIEMU KEPOBAHOCTI BUKOPUCTOBYETHCS KEPY-
BaHHsI 3 MiHIMAJILHOIO €HEPTi€lo, 110 BiAIOBiIae mijicucreMi 3i 30cepe/PKEHNMHU TIapaMeTpaMu. 3amporo-
HOBaHO JIOCTATHI YMOBU HaOJIMKEHOT KEPOBAHOCTI JIjIsl CHCTEMU 3 MOJAJIBHUMU KOOPIUHATAMU, IO OTIUCYE

KOJIMBAHHS IIPY2KHOI MEXaHIYHOI MOJEJ 3 MaJIOI0 JUCHIIAIIIEIO.

Karowosi caosa: cucmema 3 po3nodiaeHumu NAPAMEMPamu, HabAUICEHA KEPOBAHICMD, MOOGALHUL

aHaNl3, NEPENUBAHHA EHEP2TI.
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