УДК 517.5

© 2008. Ю.С. Коломойцев

ОЦЕНКИ НАИЛУЧШЕГО ПРИБЛИЖЕНИЯ ФУНКЦИЙ ТРИГОНОМЕТРИЧЕСКИМИ ПОЛИНОМАМИ СО СПЕКТРАЛЬНЫМ ПРОПУСКОМ В $L_p,\ 0$

Получены двусторонние оценки наилучшего приближения функций тригонометрическими полиномами со спектром в $\mathbb{Z} \setminus (-m,m)$ в метрике пространства $L_p, 0 .$

Введение. Пусть $\mathbb{T}=(-\pi,\pi]$ – единичная окружность. Обозначим через L_p множество всех 2π -периодических функций f таких, что

$$||f||_p := \left(\int_{\mathbb{T}} |f(x)|^p dx\right)^{\frac{1}{p}} < \infty.$$

Пусть A — собственное подмножество множества \mathbb{Z} . Тогда тригонометрическая система $\{e^{ikx}\}_{k\in A}$ не полна в пространстве интегрируемых функций. Более того, в работах С.Н. Бернштейна [1] и Л.В. Тайкова [2] было показано, что для любого $n\in\mathbb{N}$

$$\begin{split} \inf_{g_\perp}\|\cos nt - g_\perp(t)\|_\infty &= \frac{\pi}{4},\\ \inf_{g_\perp}\|\cos nt - g_\perp(t)\|_p &= \pi\|\cos t\|_q^{-1}, \quad 1 \leq p < \infty, \end{split}$$

где $\frac{1}{p}+\frac{1}{q}=1$, а нижняя грань берется по всем функциям $g_{\perp}\in L_p$, ортогональным $\cos nt$.

Совсем иначе дело обстоит в пространстве L_p , когда $0 . А.А. Талаляном в работе [3], по-видимому, впервые было показано, что для любого конечного множества <math>B \subset \mathbb{Z}$ система $\{e^{ikx}\}_{\mathbb{Z}\setminus B}$ будет полна в пространстве L_p , 0 , более того, существуют бесконечные множества целых чисел, обладающие этим свойством. Различные достаточные и необходимые условия полноты тригонометрической системы с пропусками были получены в работах [4]–[8].

Пусть T_n – множество тригонометрических полиномов порядка не выше n. Утверждения следующей теоремы были получены В.И. Ивановым и В.А. Юдиным в работе [5].

Теорема А. Пусть $0 и <math>m \leq n$. Справедливи следующие соотношения:

(i)
$$\inf_{\{c_{\nu}\}} \left\| \cos mt - \sum_{|\nu| \le n, \nu \ne m} c_{\nu} e^{i\nu t} \right\|_{p} \asymp (n - m + 1)^{1 - \frac{1}{p}},$$

 $zde \asymp -deycmopoннee$ неравенство с положительными константами, зависящими только от p;

(ii) для любого тригонометрического полинома $\phi_m \in \mathcal{T}_m$

$$\inf_{\{c_{\nu}\}} \left\| \phi_{m}(t) - \sum_{m < |\nu| \le n} c_{\nu} e^{i\nu t} \right\|_{p} \approx n^{1 - \frac{1}{p}},$$

 $z de \simeq - deycmoponhee$ неравенство с положительными константами, не зависящими от n.

Цель настоящей работы – получить оценки скорости приближения функции полиномами, которые построены по системе $\{e^{ikx}\}_{k\in\mathbb{Z}\setminus(-m,m)}$.

Введем необходимые обозначения. Пусть $\widehat{f}(k):=\frac{1}{2\pi}\int_{\mathbb{T}}f(x)e^{-ikx}dx,\ k\in\mathbb{Z}$ – коэффициенты Фурье интегрируемой функции f; spec $f:=\{k\in\mathbb{Z}:\widehat{f}(k)\neq 0\}$ – спектр функции f; $\widetilde{f}_{k,n}(t):=\frac{1}{4n+1}\sum_{j=0}^{4n}f\left(x_{j,n}+t\right)e^{-ik(x_{j,n}+t)}$, где $x_{j,n}:=\frac{2\pi j}{4n+1}$. Буквой C будем обозначать положительные константы, зависящие от указанных параметров. Константы C могут быть различными даже в одной строке.

Пусть $1 \le m < n$. Введем класс тригонометрических полиномов

$$\mathcal{T}_{m,n} := \{ T \in \mathcal{T}_n : \operatorname{spec} T \subset [-n, n] \setminus (-m, m) \}.$$

Величину наилучшего приближения функции $f \in L_p$ полиномами со спектром во множестве $\mathbb{Z} \setminus (-m, m)$ определим следующим образом:

$$E_n^{(m)}(f)_p := \inf_{T \in \mathcal{T}_{m,n}} \|f - T\|_p.$$

Положим также

$$E_n(f)_p := \inf_{T \in \mathcal{T}_n} \|f - T\|_p$$

Мы будем оценивать величину $E_n^{(m)}(f)_p$ для функций f из класса

$$H_{1,p}^{\alpha} := \{ f \in L : \sup_{n \ge 1} n^{\alpha} E_{n-2}(f)_p \le 1 \},$$

где $E_{-1}(f)_p := ||f||_p$.

1. Основные результаты.

Теорема 1. Пусть 0 и <math>2m < n. Тогда

(i) $ecnu \ \alpha > \frac{1}{p}$, mo

$$\sup_{f \in H_{1,p}^{\alpha}} E_n^{(m)}(f)_p \asymp \left(\frac{m}{n}\right)^{\frac{1}{p}-1};$$

(ii) ecnu $\frac{1}{p}-1 \leq \alpha \leq \frac{1}{p}$, mo

$$C_1\left(\frac{m}{n}\right)^{\frac{1}{p}-1} \le \sup_{f \in H_{1,p}^{\alpha}} E_n^{(m)}(f)_p \le C_2\left(\frac{m}{n}\right)^{\frac{1}{p}-1} \begin{cases} \ln(m+1), & npu \ \alpha = \frac{1}{p}; \\ m^{\frac{1}{p}-\alpha}, & npu \ \alpha \in [\frac{1}{p}-1, \frac{1}{p}); \end{cases}$$

(iii) ecnu $0 < \alpha < \frac{1}{p} - 1$ u $m < 2n^{1-p-\alpha p}$, mo

$$\sup_{f \in H_{1,p}^{\alpha}} E_n^{(m)}(f)_p \asymp \frac{1}{n^{\alpha}},$$

 $ede \simeq -dey$ стороннее неравенство с положительными константами, зависящими только от p и α , а C_1 и C_2 – положительные константы, зависящие от p и α .

2. Вспомогательные результаты.

Лемма 1. Пусть $f \in L_p$, $0 , <math>m, n \in \mathbb{N}$ и 2m < n. Тогда

$$E_{2n}^{(m)}(f)_p \le C \left\{ E_n(f)_p + \left(\frac{m}{n}\right)^{\frac{1}{p}-1} \left\| \sum_{|k| < m} |\widetilde{f}_{k,n}| \right\|_p \right\},$$

 $\epsilon \partial e\ C$ – константа, зависящая только от p.

Доказательство. Определим ядро типа Валле-Пуссена

$$V_n(x) := \sum_{k=-2n}^{2n} g\left(\frac{k}{n}\right) e^{ikx},$$

где функция $g \in C^{\infty}(\mathbb{R})$, g(x) = 1 при $|x| \le 1$ и g(x) = 0 при $|x| \ge 2$. Известно (см., например, [5]), что

$$C_1 n^{1 - \frac{1}{p}} \le ||V_n||_p \le C_2 n^{1 - \frac{1}{p}},$$
 (1)

где C_1 и C_2 – положительные константы, не зависящие от n.

Для $k \in (-m,m) \cap \mathbb{Z}$ положим

$$K_{k,n}(x) := e^{ikx} V_{\left[\frac{n-k}{m}\right]}(mx),$$

где [x] – целая часть числа x.

Очевидно, что

$$\operatorname{spec} K_{k,n} \subset ((-2n,2n) \setminus (-m,m)) \cup \{k\}. \tag{2}$$

Далее нам понадобится семейство линейных полиномиальных операторов

$$W_n(f;x,t) := \frac{1}{4n+1} \sum_{j=0}^{4n} f(x_{j,n}+t) V_n(x-x_{j,n}-t),$$

введенных К.В. Руновским (см., например, [9]). Известно (см. [9], [10, Гл. 4]), что для любой функции $f \in L_p$, 0 ,

$$\int_{\mathbb{T}} \|f - W_n(f; \cdot, t)\|_p^p dt \le C E_n(f)_p^p, \quad n \in \mathbb{N},$$
(3)

где C – константа, зависящая только от p.

Положим

$$T_{n,m}(f;x,t) := W_n(f;x,t) - \sum_{k=-m+1}^{m-1} g\left(\frac{k}{n}\right) \widetilde{f}_{k,n}(t) K_{k,n}(x).$$

Поскольку $\widehat{K}_{k,n}(k)=1$ при $k\in (-m,m)\cap \mathbb{Z},$ из (2) получим, что $\mathrm{spec}T_{n,m}\subset (-2n,2n)\setminus (-m,m).$

Далее, используя неравенства (3) и (1), находим

$$2\pi E_{2n}^{(m)}(f)_{p}^{p} \leq \int_{\mathbb{T}} \|f - T_{n,m}(f;\cdot,t)\|_{p}^{p} dt \leq$$

$$\leq \int_{\mathbb{T}} \|f - W_{n}(f;\cdot,t)\|_{p}^{p} dt + \int_{\mathbb{T}} \left\| \sum_{|k| < m} g\left(\frac{k}{n}\right) \widetilde{f}_{k,n}(t) K_{k,n}(\cdot) \right\|_{p}^{p} dt \leq$$

$$\leq C \left\{ E_{n}(f)_{p}^{p} + \left\| V_{\left[\frac{n-m}{m}\right]} \right\|_{p}^{p} \left\| \sum_{|k| < m} |\widetilde{f}_{k,n}| \right\|_{p}^{p} \right\} \leq$$

$$\leq C \left\{ E_{n}(f)_{p}^{p} + \left(\frac{m}{n}\right)^{1-p} \left\| \sum_{|k| < m} |\widetilde{f}_{k,n}| \right\|_{p}^{p} \right\}.$$

Лемма доказана. □

Следствие 1. Пусть $f \in L$, $m, n \in \mathbb{N}$ и 2m < n. Тогда

$$E_{2n}^{(m)}(f)_p \le C \bigg\{ E_n(f)_p + m^{\frac{1}{p}} n^{1-\frac{1}{p}} E_n(f)_1 + \left(\frac{m}{n}\right)^{\frac{1}{p}-1} \sum_{|k| < m} |\widehat{f}(k)| \bigg\},\,$$

 $\epsilon \partial e\ C$ – константа, зависящая только от p.

Доказательство. Следствие 1 вытекает из леммы 1 и утверждения (i), приведенной ниже леммы 2. \square

Лемма 2. Для каждого $n \in \mathbb{N}$ справедливы следующие утверждения:

(i) $ecnu f \in L$, mo

$$\|\widetilde{f}_{k,n}\|_{1} \le |\widehat{f}(k)| + CE_{n}(f)_{1}, \qquad k = -n, \dots, n,$$
 (4)

 $rde\ C\ -\ aбсолютная\ положительная\ константа;$

(ii) ecnu
$$0$$

$$\|\widetilde{f}_{k,n}\|_1 \le \frac{C}{(|k|+1)^{\alpha+1-\frac{1}{p}}}, \qquad k = -n, \dots, n,$$

 $z \partial e \ C$ – константа, зависящая только от $\alpha \ u \ p$.

Доказательство. Пусть

$$T_{2n-1}(x) = \frac{1}{2\pi} \int_{\mathbb{T}} f(x-t)V_n(t)dt,$$

где V_n – ядро типа Валле-Пуссена, определенное в доказательстве леммы 1. Известно, что $||f - T_{2n-1}||_1 \le CE_n(f)_1$, где константа C не зависит от f и n.

Из равенства

$$\widetilde{f}_{k,n}(t) = \frac{1}{4n+1} \sum_{j=0}^{4n} \left\{ f(x_{j,n}+t) - T_{2n-1}(x_{j,n}+t) \right\} e^{-ik(x_{j,n}+t)} + \widehat{f}(k)$$

находим

$$\|\widetilde{f}_{k,n}\|_1 \le \|f - T_{2n-1}\|_1 + |\widehat{f}(k)| \le CE_n(f)_1 + |\widehat{f}(k)|.$$

Докажем утверждение (ii). Для каждой интегрируемой функции f справедливо следующее соотношение между величинами наилучшего приближения данной функции:

$$E_n(f)_1 \le C \left\{ (n+1)^{\frac{1}{p}-1} E_n(f)_p + \sum_{k=n+1}^{\infty} k^{\frac{1}{p}-2} E_k(f)_p \right\}, \quad n \in \mathbb{N},$$
 (5)

где C – константа, зависящая только от p (см. [11]).

Поскольку функция $f \in H_{1,p}^{\alpha}$, из неравенства (5) получим, что $E_n(f)_1 \leq C n^{\frac{1}{p}-1-\alpha}$. Заметим еще, что $|\widehat{f}(\pm k)| \leq E_{k-1}(f)_1$, $k \in \mathbb{N}$. Применив полученные оценки к неравенству (4), получим утверждение (ii). \square

Лемма 3. Пусть 0 и <math>m < n. Тогда

$$\inf_{T\in\mathcal{T}_{m,n}}\|1+T\|_p\asymp \left(\frac{m}{n}\right)^{\frac{1}{p}-1},$$

 $ede \simeq -deycmoponnee неравенство с положительными константами, зависящими только от <math>p$.

Доказательство. Оценка сверху следует из леммы 1.

Оценка снизу. Докажем, что

$$\inf_{T \in \mathcal{T}_{m,mn}} \|1 + T\|_p \ge C n^{1 - \frac{1}{p}},\tag{6}$$

где C – константа, не зависящая от m и n.

Прежде всего заметим, что неравенство (6) достаточно доказать для полинома вида

$$T_{N,x}(t) = 1 + \sum_{k=m}^{N} x_{k-m+1} \cos kt,$$

где $N=mn,\ x=(x_1,\ldots,x_{N-m+1})\in\mathbb{R}^{N-m+1}$. Действительно, из неравенства $|\xi-z|\geq |\xi-Rez|,\ \xi\in\mathbb{R},\ z\in\mathbb{C}$ следует, что нижняя грань в (6) достигается для

вещественного полинома. Кроме того, для любой периодической функции f справедливо неравенство $||f||_p \ge \frac{1}{2} ||f(\cdot) + f(-\cdot)||_p$, из которого видно, что приближающий полином в неравенстве (6) можно взять четным.

Далее, из неравенства Марцинкевича-Зигмунда следует, что

$$||T_{N,x}||_p^p \ge \frac{C}{N} \sum_{j=0}^N \left| T_{N,x} \left(\frac{2\pi j}{2N+1} \right) \right|^p,$$

где C – константа, зависящая только от p (см. [13]).

Введем в рассмотрение функцию

$$F(x) = F(x_1, \dots, x_{N-m+1}) := \sum_{j=0}^{N} \left| T_{N,x} \left(\frac{2\pi j}{2N+1} \right) \right|^p.$$
 (7)

Пусть $x^* = (x_1^*, \dots, x_{N-m+1}^*) \in \mathbb{R}^{N-m+1}$ – точка, в которой функция F принимает свое наименьшее значение. Заметим, что $F(x^*) > 0$. Действительно,

$$\sum_{j=0}^{N} \left| T_{N,x^*} \left(\frac{2\pi j}{2N+1} \right) \right|^p \ge N^{\frac{p}{2}} \| T_{N,x^*} \|_2^p > 0.$$

Последнее соотношение следует из неравенства Марцинкевича-Зигмунда в пространстве L_2 .

Покажем, что существует последовательность целых чисел $\gamma_j \in [0,N]$ такая, что

$$T_{N,x^*}\left(\frac{2\pi\gamma_j}{2N+1}\right) = 0, \quad j = 1,\dots, N-m+1.$$
 (8)

Для этого рассмотрим функцию $F_1(x_1):=F(x_1;x_2,\ldots,x_{n-m+1})$, где переменные x_2,\ldots,x_{N-m+1} фиксированы. В тех точках $t\in\mathbb{R}$, в которых существует $F_1''(t)$, имеем $F_1''(t)<0$. Таким образом, функция F_1 достигает своего минимума только в тех точках, в которых не существует $F_1'(t)$, т.е. в точках, в которых хотя бы одно из слагаемых в сумме в (7) равно нулю. Следовательно, $\min_x F(x)=\min_{x_{N-m+1}}\ldots\min_{x_2} F(\lambda_1(x_2,\ldots,x_{N-m+1}),x_2,\ldots,x_{N-m+1})$, где λ_1 — некоторая линейная функция.

Повторяя последовательно по каждой переменной приведенные выше рассуждения, нетрудно убедиться в справедливости системы (8).

Из системы (8) следует, что

$$\min_{x} \|T_{N,x}\|_{p}^{p} \ge \frac{C}{N} \sum_{j=1}^{m} \left| T_{N,x^{*}} \left(\frac{2\pi\xi_{j}}{2N+1} \right) \right|^{p}, \tag{9}$$

где $\xi_j \in [0,N] \cap \mathbb{Z}_+$ и $\xi_{\nu} \neq \xi_{\mu}$ при $\nu \neq \mu$.

Введем следующие обозначения: $\eta_j=\frac{2\pi\xi_j}{2N+1},\ y_j=T_{N,x^*}(\eta_j),$ где $j=1,\ldots,m.$ Используя равенства

$$\widehat{T}_{N,x^*}(\nu) = \frac{1}{2N+1} \sum_{j=1}^m y_j e^{-i\nu\eta_j}, \quad |\nu| \le N$$

и условие $T_{N,x^*} \in \mathcal{T}_{m,N}$, получим систему

$$\sum_{j=1}^{m} y_j e^{i\nu\eta_j} = \begin{cases} 2N+1, & \text{если } \nu = 0; \\ 0, & \text{если } \nu = 1, \dots, m-1. \end{cases}$$
 (10)

Решение системы (10) имеет следующий вид

$$y_j = (-1)^{j-1} (2N+1) \frac{e^{i \sum_{\nu=1, \nu \neq j}^{m-1} \eta_{\nu}}}{\prod_{\nu=1, \nu \neq j}^{m} (e^{i\eta_{\nu}} - e^{i\eta_{j}})}, \quad j = 1, \dots, m.$$
(11)

Далее, из (9) и (11) находим

$$\inf_{T \in \mathcal{T}_{m,N}} \|1 + T\|_{p} \ge C \left(\frac{1}{N^{1-p}} \sum_{j=1}^{m} \prod_{\nu=1, \nu \neq j}^{m} |e^{i\eta_{\nu}} - e^{i\eta_{j}}|^{-p} \right)^{\frac{1}{p}} =$$

$$= C \frac{m}{n^{\frac{1}{p}-1}} \left(\sum_{j=1}^{m} \prod_{\nu=1, \nu \neq j}^{m} |e^{i\eta_{\nu}} - e^{i\eta_{j}}|^{-p} \frac{1}{m} \right)^{\frac{1}{p}} \ge$$

$$\ge C \frac{m}{n^{\frac{1}{p}-1}} \left(\prod_{j=1}^{m} \prod_{\nu=1, \nu \neq j}^{m} |e^{i\eta_{\nu}} - e^{i\eta_{j}}| \right)^{-\frac{1}{m}} =$$

$$= C \frac{m}{n^{\frac{1}{p}-1}} \left(\prod_{\nu>j} |e^{i\eta_{\nu}} - e^{i\eta_{j}}| \right)^{-\frac{2}{m}} .$$
(12)

Заметим, что величина $\Delta_m = \prod_{\nu>j} |e^{i\eta_\nu} - e^{i\eta_j}|$ равна модулю определителя Вандермонда матрицы $\{e^{ik\eta_j}\},\ k=0,\ldots,m-1,\ j=1,\ldots,m$. Используя неравенство Адамара, получим, что $\Delta_m \leq m^{\frac{m}{2}}$. Таким образом, из неравенства (12) и оценки сверху величины Δ_m вытекает неравенство (6).

Лемма доказана. 🗆

Далее нам понадобится понятие модуля гладкости. Определим для функции $f \in L_p$ ее модуль гладкости порядка r и шага h стандартным образом

$$\omega_r(f,h)_p := \sup_{0 < \delta \le h} \left(\int_{\mathbb{T}} \left| \sum_{\nu=0}^r (-1)^{\nu} {r \choose \nu} f(x+\nu\delta) \right|^p dx \right)^{\frac{1}{p}}.$$

Лемма 4. ([12]) Пусть $f \in L_p$, $0 , <math>u \ r \in \mathbb{N}$. Для того, чтобы

$$\omega_r\left(f,\frac{1}{n}\right)_p \asymp E_n(f)_p \quad npu \ scex \quad n \in \mathbb{N},$$

необходимо и достаточно, чтобы для некоторого $k > r - 1 + \frac{1}{p}$

$$\omega_r(f,h)_p \simeq \omega_k(f,h)_p$$
 npu scex $h > 0$,

 $ede \asymp - deycmoponhee$ неравенство с положительными константами, не зависящими от n u h.

Лемма 5. Пусть $0 и <math>0 < \alpha < \frac{1}{p}$. Тогда существует функция $f_{\alpha} \in H_{1,p}^{\alpha}$ такая, что

$$E_n(f_\alpha)_p \asymp \frac{1}{n^\alpha} \quad npu \ acex \quad n \in \mathbb{N},$$

 $ede \simeq -deycmopoннee$ неравенство с положительными константами, не зависящими от n.

Доказательство. Положим

$$f_{\alpha}(x) = \gamma_{\alpha} \sum_{k=1}^{\infty} \frac{\chi_k(x)}{k^{\alpha}},$$

где

$$\chi_k(x) = \begin{cases} 1, & 0 \le x < \frac{1}{k}; \\ 0, & \frac{1}{k} \le x < 2\pi, \end{cases}$$

при $x \in [0, 2\pi)$, а для других x функцию χ_k определяем периодично с периодом 2π . Константа $\gamma_{\alpha} > 0$.

Очевидно, что функция $f_{\alpha} \in L$. Оценивая сверху и снизу модуль гладкости функции f_{α} , нетрудно убедиться в том, что для каждого $r \in \mathbb{N}$ выполняется соотношение $\omega_r(f_{\alpha}, \delta)_p \times \delta^{\alpha}$, $\delta > 0$. Таким образом, из леммы 4 получим, что $E_n(f_{\alpha})_p \times n^{-\alpha}$, $n \in \mathbb{N}$. Остается только выбрать константу γ_{α} так, чтобы $f_{\alpha} \in H_{1,p}^{\alpha}$. \square

- **3.** Доказательство теоремы **1.** Оценки сверху в утверждениях теоремы 1 следуют из леммы 1, а снизу соответствующие оценки можно получить из леммы 3 и леммы 5.
- 1. Бернитейн С.Н. Экстремальные свойства полиномов // М. Л., ОНТИ. 1937. С.28-31.
- 2. *Тайков Л.В.* Один круг экстремальных задач для тригонометрических полиномов // Успехи мат. наук. 1965. **20**, №3. C.205-211.
- 3. Талалян А.А. Представление функций классов $L_p[0,1],\ 0 ортогональными рядами // Acta Math. Academ. Sci. Hungar. 1970. 21, №1-2. С.1-9.$
- 4. Shapiro J.H. Subspaces of $L_p(G)$ spanned by characters: 0 // Isr. J. Math. 1978. 29, N°2-3. C.248-264.
- 5. Иванов В.И., Юдин В.А. О тригонометрической системе в L_p , 0 // Мат. заметки 1980. 28, №6. С.859-868.
- 6. Aleksandrov A.B. Essays on non locally convex Hardy classes // Lecture Notes in Math. 1981. 864. Springer-Verlag. C.1-89.

- 7. *Иванов В.И.* Представление измеримых функций кратными тригонометрическими рядами // Тр. МИАН СССР 1983. 164. С.100-123.
- 8. Коломойцев Ю.С. Полнота тригонометрической системы в классах $\varphi(L)$ // Мат. заметки 2007. 81, №5. С.707-712.
- 9. Руновский К.В. О семействе линейных полиномиальных операторов в пространствах L_p , 0 < p < 1 // Матем. сб. − 1993. − **184**, №2. − C.145-160.
- 10. Trigub R.M., Belinsky E.S. Fourier Analysis and Approximation of Functions. Kluwer. 2004.
- Стороженко Э.А. Теоремы вложения и наилучшие приближения // Матем. сб. 1975. 97, №2. – С.230-241.
- 12. Коломойцев Ю.С. О модулях гладкости и мультипликаторах Фурье в L_p , 0 // Укр. мат. журн. <math>-2007. -59, №9. -C.1221-1238.
- 13. Runovskii K.V., Schmeisser H.J. On Marcinkiewicz-Zygmund type inequalities for irregular knots in L_p spaces, 0 // Math. Nachr. 1998. –**189**, №1. C.209-220.

 U н-т прикл. математики и механики HAH Украины, Донецк kolomus1@mail.ru

Получено 12.05.08