УДК 531.55

©2020. Б.И. Коносевич, Ю.Б. Коносевич, Г.В. Мозалевская

АНАЛИТИЧЕСКИЕ СВОЙСТВА АЭРОДИНАМИЧЕСКИХ СИЛ И МОМЕНТОВ, ДЕЙСТВУЮЩИХ НА АРТИЛЛЕРИЙСКИЙ СНАРЯД В ПОЛЕТЕ

Показано, что аналитическая структура аэродинамических сил и моментов для артиллерийского снаряда определяется осевой геометрической симметрией снаряда и изотропностью атмосферы. На основе свойств симметрии установлены свойства четности аэродинамических сил и моментов по пространственному углу атаки, используемые для построения системы дифференциальных уравнений движения снаряда, линеаризованной при малых углах атаки по переменным углового движения его оси симметрии. С помощью этих свойств при учете периодичности аэродинамических сил и моментов по углу атаки для них получены приближенные формулы в виде отрезков рядов Фурье.

Ключевые слова: артиллерийский снаряд, аэродинамические силы и моменты, пространственный угол атаки.

1. Системы координат и основные переменные. Рассматривается движение осесимметричного быстровращающегося артиллерийского снаряда в поле силы тяжести при отсутствии ветра под действием принятой в баллистике системы аэродинамических сил и моментов. Это движение изучается на отрезке $[t_0, t_1]$ времени t, где t_0 – момент времени, когда на снаряд перестают действовать пороховые газы, t_1 – момент его падения на землю. Через x, y, zобозначаются координаты центра масс снаряда C в правой *стартовой* системе декартовых координат Oxyz, начало которой совпадает с центром масс снаряда в момент выстрела t_0 , ось Ox направлена горизонтально в сторону стрельбы, а ось Oy — вертикально вверх. Компонентами вектора v скорости центра масс являются его модуль v и углы θ, ψ , которые вводятся вместе с *полускоростнюй* системой координат $Cx_0y_0z_0$, как показано на рис. 1 a. Далее предполагается, что $v \neq 0$ на промежутке времени $[t_0, t_1]$.

Поясним рисунок рис. 1 *а*. На нем через Cxyz обозначена система координат, которая получается путем параллельного переноса стартовой системы координат Oxyz в начало C. Полускоростная система координат $Cx_0y_0z_0$ получается из системы координат Cxyz двумя поворотами на углы θ, ψ . По общему правилу, угол поворота системы координат и угловая скорость этого поворота должны считаться положительными, когда данный поворот виден происходящим против часовой стрелки, если смотреть с положительного переноса здесь удобнее считать положительным поворот на угол ψ , который происходит против часовой стрелки, если смотреть с направления оси $-Cy_0$. При таком определении угол ψ будет положительным на траектории полета снаряда, выпущенного из орудия с обычным правым ходом нарезов. Положительные повороты на углы θ, ψ изображены на рис. 1 *а* дуговыми стрелками, они происходят против часовой стрелки, если смотреть с направлений осей

Cz и $-Cy_0$. Вместе с тем, согласно указанному правилу, проекции векторов угловых скоростей этих поворотов на оси Cz и Cy_0 равны $\dot{\theta}$ и $-\dot{\psi}$, как это показано на рис. 1 *а.* Условимся обозначать единичные векторы координатных осей Cx, Cx_0 и т. д. через x, x_0 и т. д. Тогда вектор угловой скорости полускоростной системы координат $Cx_0y_0z_0$ относительно системы координат Cxyzвыражается формулой $\omega_0 = \dot{\theta}z - \dot{\psi}y_0$.

Рис. 1. Углы θ, ψ и системы координат $Cxyz, Cx_0y_0z_0$ (a); углы ν, δ и системы координат $Cx'y'z', Cx''y''z'', Cx_1y_1z_1$ (b).

Направление оси симметрии снаряда по отношению к осям подвижной полускоростной системы координат $Cx_0y_0z_0$ задается с помощью переменных типа углов Эйлера — пространственным углом атаки δ и углом ν поворота плоскости угла атаки (рис. 1 b). Эти углы следующим образом вводятся вместе с поточной (скоростной) системой координат Cx'y'z' и системой координат Cx''y'z'', связанной с пространственным углом атаки.

Пусть ось Cx' имеет направление вектора v, а ось Cx'' направлена вдоль оси симметрии к головной части снаряда. Представим единичный вектор оси симметрии x'' в виде $x'' = \gamma + n$, где вектор γ коллинеарен x', а вектор nортогонален x'. Тогда $x'' \cdot x' = \gamma \cdot x'$, поэтому $\gamma = x'(\gamma \cdot x') = x'(x' \cdot x'')$, и, следовательно, $n = x'' - \gamma = x'' - x'(x' \cdot x'')$. С учетом известной формулы $a \times (b \times c) = b(a \cdot c) - c(a \cdot b)$ последнее равенство записывается в виде $n = x' \times (x'' \times x')$.

Вводим орт y' системы координат Cx'y'z' по формуле y' = n/n и тем самым полностью определяем эту систему координат. Через ν, δ обозначаем углы между y_0 и y', x' и x''. Система координат Cx''y''z'' получается из системы координат Cx'y'z' путем ее поворота на угол δ вокруг оси Cz' (рис. 1 b).

Здесь определение угла δ совпадает с определением эйлерова угла нутации, наиболее часто используемым в аналитической механике [1], а определение угла прецессии ν отличается от него. Согласно рис. 1 *b*, угол ν — это угол между вектором y_0 и вектором y', который имеет направление проекции *n* единичного вектора оси симметрии x'' на плоскость, ортогональную вектору x' = v/v. Что касается эйлерова угла прецессии ν_e , то в принятых здесь обозначениях это угол между вектором y_0 и вектором $x' \times x''$, определяющим положительное направление на линии узлов (линии пересечения плоскости Cy_0z_0 с плоскостью, ортогональной вектору x'' и проходящей через точку C). Таким образом, эйлеров угол прецессии равен $\nu_e = \nu + \pi/2$.

Обычно предполагается, что эйлеров угол прецессии изменяется в пределах от 0 до 2π . Тогда и относительно угла ν следует предполагать, что $0 \leq \nu \leq 2\pi$. Далее, согласно определению угла между векторами, принятому в векторной алгебре, угол δ между векторами x' и x'' не превосходит π , и тогда следует предполагать, что $0 \leq \delta \leq \pi$, что согласуется со стандартизованным определением пространственного угла атаки [2]

Для записи уравнений вращательного движения снаряда в виде нормальной системы дифференциальных уравнений используется полусвязанная система координат $Cx_1y_1z_1$, у которой первая ось Cx_1 совпадает с осью симметрии снаряда, а две другие оси не участвуют в быстром вращении снаряда вокруг его оси симметрии. Полусвязанную систему координат можно получить из полускоростной системы координат $Cx_0y_0z_0$ поворотами на два угла (например, так, как из системы Cxyz была получена система $Cx_0y_0z_0$). В данной работе в качестве $Cx_1y_1z_1$ выбрана система координат, которая получается из Cx''y''z'' поворотом на угол $-\nu$ вокруг оси симметрии Cx'' (рис. 1 b). Неизменно связанная со снарядом система координат $Cx_2y_2z_2$ получается из $Cx_1 = Cx''$ на некоторый угол ϕ . Сумма углов $-\nu$ и ϕ равна эйлерову углу собственного вращения. Обычно предполагается, что угол собственного вращения лежит в промежутке от 0 до 2π .

С учетом того, что три из шести определенных выше систем координат не имеют стандартизованных обозначений [2], для всех этих систем координат приняты обозначения, удобные для последующего изложения.

Матрицы перехода между введенными системами коодинат даны в таблицах 1–7. На примере табл. 1 рассмотрим способ получения всех таблиц 1–7. В результате поворота системы координат Cxyz на угол θ вокруг оси Cz получаем промежуточную систему координат Cx^*y_0z . При этом имеем (рис. 2 *a*)

$$\boldsymbol{x}^* = \cos\theta \, \boldsymbol{x} + \sin\theta \, \boldsymbol{y}, \quad \boldsymbol{y}_0 = -\sin\theta \, \boldsymbol{x} + \cos\theta \, \boldsymbol{y}. \tag{1}$$

После поворота системы координат Cx^*y_0z на угол ψ относительно оси $-Cy_0$ она переходит в систему координат $Cx_0y_0z_0$, и при этом (рис. 2 *b*)

$$\boldsymbol{x}_0 = \cos\psi\,\boldsymbol{x}^* + \sin\psi\,\boldsymbol{z}, \quad \boldsymbol{z}_0 = -\sin\psi\,\boldsymbol{x}^* + \cos\psi\,\boldsymbol{z}. \tag{2}$$

Подставив в (2) выражение x^* из (1), получаем разложения единичных векторов системы координат $Cx_0y_0z_0$ по единичным векторам системы координат Cxyz:

Поскольку эти системы координат ортогональные, коэффициенты разложе-

						Табл. 1.		Табл. 2.		абл. 2.
		x		y		z		$oldsymbol{x}_0$	$oldsymbol{y}_0$	$oldsymbol{z}_0$
$oldsymbol{x}_0$	($\cos\theta\cos$	ψ s	$\sin\theta\cos\theta$	ψ	$\sin\psi$	x'	1	0	0
$oldsymbol{y}_0$		$-\sin\theta$		$\cos \theta$		0	$oldsymbol{y}'$	0	$\cos u$	$\sin u$
$oldsymbol{z}_0$	-	$-\cos\theta\sin\theta$	n ψ –	$\sin\theta\sin$	n ψ	$\cos\psi$	z'	0 –	$-\sin u$	$\cos \nu$
Табл. 3. Табл. 4.										
		x'	$oldsymbol{y}'$	z'		$oldsymbol{x}_0$		$oldsymbol{y}_0$	z	0
x'	"	$\cos \delta$	$\sin \delta$	0	$x''_{}$	$\cos \delta$	\sin	$\delta \cos \nu$	$\sin \delta$	$\sin u$
y'	"	$-\sin\delta$	$\cos \delta$	0	$y''_{"}$	$-\sin\delta$	cos	$\delta \cos \nu$	$\cos \delta$	$\sin u$
z'	0 0 1		1	z''	z'' = 0		$-\sin\nu$		$_{\rm S} u$	
Табл. 5.							Табл. 6.			
		x''	y''	z''			$oldsymbol{x}_1$	$oldsymbol{y}_1$	$oldsymbol{z}_1$	
	x	$\begin{array}{c c} x'' \\ \hline c_1 & 1 \end{array}$	y " 0	$\frac{z''}{0}$		$oldsymbol{x}_2$	$egin{array}{c} x_1 \ 1 \end{array}$	$\frac{\boldsymbol{y}_1}{0}$	$\begin{array}{c} oldsymbol{z}_1 \\ 0 \end{array}$	
	$egin{array}{c} x \\ y \end{array}$	$egin{array}{c c c c c c c c c c c c c c c c c c c $	$\frac{y''}{0}$	$\frac{z''}{0} - \sin \nu$,	$egin{array}{c} oldsymbol{x}_2 \ oldsymbol{y}_2 \end{array}$	$egin{array}{c} {x_1} \\ 1 \\ 0 \\ \hat{a} \end{array}$	$\begin{array}{c} y_1 \\ 0 \\ \cos \phi \end{array}$	$egin{array}{c} z_1 \\ 0 \\ \sin a \end{array}$	ϕ
	$egin{array}{c} x \\ y \\ z \end{array}$	$egin{array}{c c} x'' \ c_1 & 1 \ c_1 & 0 \ c_1 & 0 \end{array}$	$\begin{array}{c} \boldsymbol{y}'' \\ \boldsymbol{0} \\ \cos \nu \\ \sin \nu \end{array}$	$\frac{z''}{0} \\ -\sin\nu \\ \cos\nu$,	$egin{array}{c} oldsymbol{x}_2\ oldsymbol{y}_2\ oldsymbol{z}_2\end{array} \end{array}$	$egin{array}{c} {x_1} \\ 1 \\ 0 \\ 0 \end{array}$	$\begin{array}{c} \boldsymbol{y}_1 \\ \boldsymbol{0} \\ \cos \phi \\ -\sin \phi \end{array}$	z_1 0 sin z_2	$\phi \phi \phi$
	$\begin{array}{c} x\\ y\\ z\end{array}$	$egin{array}{c c} x'' \\ x'_1 & 1 \\ y_1 & 0 \\ x_1 & 0 \end{array}$	$\frac{y''}{0}$ $\frac{0}{\sin\nu}$	$\frac{z''}{0} - \sin \iota \cos \nu$	/	$egin{array}{c} oldsymbol{x}_2 \ oldsymbol{y}_2 \ oldsymbol{z}_2 \ oldsymbol{z}_2 \end{array}$	$egin{array}{c} {x_1} \\ 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} oldsymbol{y}_1 \ 0 \ \cos \phi \ -\sin \phi \end{array}$	z_1 0 $\sin \phi$ \cos Tab	φ φ 1. 7.
	$\begin{bmatrix} x\\ y\\ z \end{bmatrix}$	$\begin{array}{c c} x'' \\ x'' \\ x_1 & 1 \\ y_1 & 0 \\ x_1 & 0 \\ \end{array}$	$\frac{y''}{0}$ $\cos \nu$ $\sin \nu$	$\frac{z''}{0} \\ -\sin\nu \\ \cos\nu$	<u>,</u> <u>y</u> 0	$egin{array}{c} x_2 \ y_2 \ z_2 \end{array}$	$egin{array}{c} {m x}_1 \ 1 \ 0 \ 0 \ \end{array}$	$\frac{y_1}{0}$ $\cos \phi$ $-\sin \phi$		φ φ 1. 7.
a	$egin{array}{c} x \\ y \\ z \end{array}$	$\begin{array}{c c} x'' \\ x'_{1} & 1 \\ y_{1} & 0 \\ y_{1} & 0 \\ \hline x_{0} \\ \hline cos$	$\frac{y''}{0} \\ \cos \nu \\ \sin \nu$	$\frac{z''}{0} - \sin \nu$ $\cos \nu$ si	$\frac{y_0}{\sin \delta \cos \theta}$	$egin{array}{c} x_2 \ y_2 \ z_2 \end{array}$	$egin{array}{cccc} x_1 & & & \\ 1 & 0 & & \\ 0 & & & \\ & & & \\ \end{array}$	$\frac{y_1}{0} \\ \cos \phi \\ -\sin \phi$	$ \frac{z_1}{0} \\ \sin \phi \\ \cos \sigma \\ Ta \delta \sigma \\ \frac{Ta \delta \sigma}{\sin \nu} $	φ φ 1. 7.
a y	$egin{array}{c} x \\ y \\ z \\ z \\ z \\ r_1 \\ r_1 \end{array}$	$\begin{array}{c c} x'' \\ x'' \\ 1 \\ 1 \\ 0 \\ 1 \\ 0 \\ \hline \\ x_0 \\ \hline \\ \cos \\ -\sin \delta \end{array}$	$\frac{y''}{0} \\ \cos \nu \\ \sin \nu \\ \delta \\ \cos \nu$	$\frac{z''}{0} - \sin \nu$ $\cos \nu$ $\sin \nu$	$\frac{y_0}{\ln \delta \operatorname{cc}}$	$\begin{array}{c} x_2 \\ y_2 \\ z_2 \end{array}$	$\begin{array}{c} x_1 \\ 1 \\ 0 \\ 0 \end{array}$	$\frac{y_1}{0}$ $\cos \phi$ $-\sin \phi$ $\frac{z}{\sin \delta}$ $\cos \delta - 1)$	$\frac{z_1}{0}$ sin 0 sin 0 Ta6 Ta6 Co sin ν cos ν s	ϕ ϕ τ . 7.
a 3 2	$\begin{bmatrix} x \\ y \\ z \end{bmatrix}$	$\begin{array}{c c} x'' \\ x'' \\ \hline x_1 & 1 \\ y_1 & 0 \\ \hline y_1 & 0 \\ \hline x_0 \\ \hline cos \\ -\sin \delta \\ -\sin \delta \end{array}$	$\frac{y''}{0} \\ \cos \nu \\ \sin \nu$	$\frac{z''}{0} - \sin \nu \cos \nu$ $\sin \nu \cos \delta - (\cos $	$\frac{y_0}{\ln \delta \cot (-1) \cot ($	$\begin{array}{c} x_2 \\ y_2 \\ z_2 \end{array}$	$\begin{array}{c} x_1 \\ 1 \\ 0 \\ 0 \end{array}$	$\frac{y_1}{0} \\ \cos \phi \\ -\sin \phi \\ \frac{z}{\sin \delta} \\ \cos \delta - 1) \\ \cos \delta - 1$	$\frac{z_1}{0}$ $\sin \omega$ $\cos \frac{Ta \delta \sigma}{\sin \nu}$ $\cos \nu s$ $\cos \nu s$	$\phi \phi$ ϕ μ τ . 7. ψ τ τ τ τ

ний (3) равны скалярным произведениям соответствующих единичных векторов, т. е. они равны косинусам углов между ними. Формулам (3) соответствует табл. 1. Элементы строк этой этой таблицы являются коэффициентами разложений (3) единичных векторов $\boldsymbol{x}_0, \boldsymbol{y}_0, \boldsymbol{z}_0$ по $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$, а элементы столбцов являются коэффициентами разложений единичных векторов $\boldsymbol{x}, \boldsymbol{y}, \boldsymbol{z}$ по $\boldsymbol{x}_0, \boldsymbol{y}_0, \boldsymbol{z}_0$.

Проекции вектора ω угловой скорости снаряда на оси полусвязанной системы кординат $Cx_1y_1z_1$ обозначим через p, q, r, через Ω обозначим составляющую вектора ω , ортогональную оси симметрии:

$$\boldsymbol{\omega} = p\boldsymbol{x}_1 + q\boldsymbol{y}_1 + r\boldsymbol{z}_1, \qquad \boldsymbol{\Omega} = q\boldsymbol{y}_1 + r\boldsymbol{z}_1. \tag{4}$$

Неизменно связанная со снарядом система координат $Cx_2y_2z_2$ получается из полусвязанной системы координат $Cx_1y_1z_1$ поворотом на угол ϕ вокруг оси симметрии Cx_1 . Поэтому угловая скорость $\boldsymbol{\omega}$ системы координат $Cx_2y_2z_2$ выражается через угловую скорость $\boldsymbol{\omega}_1$ системы координат $Cx_1y_1z_1$ по формуле $\boldsymbol{\omega} = \boldsymbol{\omega}_1 + \dot{\phi} \boldsymbol{x}_1$.

В дальнейшем вместо углов ν, δ направление оси симметрии будем определять также с помощью проекций γ, α, β единичного вектора оси симметрии x''

Рис. 2. Переход от системы координат Схуг к системе координат $Cx_{0}y_{0}z_{0}$: а) поворот на угол θ , b) поворот на угол ψ .

на оси полускоростной системы кординат $Cx_0y_0z_0$. Тогда $\mathbf{x}'' = \gamma \mathbf{x}_0 + \alpha \mathbf{y}_0 + \beta \mathbf{x}_0$, и из разложения вектора \mathbf{x}'' по $\mathbf{x}_0, \mathbf{y}_0, \mathbf{z}_0$ (первая строка табл. 4) следует, что эти проекции выражаются через углы ν, δ по формулам

$$\gamma = \cos \delta, \quad \alpha = \sin \delta \cos \nu, \quad \beta = \sin \delta \sin \nu.$$
 (5)

При этом

$$\alpha^2 + \beta^2 + \gamma^2 = 1, \quad \alpha^2 + \beta^2 = \sin^2 \delta. \tag{6}$$

Величины α, β совпадают с проекциями n_y, n_z поперечной составляющей \boldsymbol{n} вектора \boldsymbol{x}'' на оси Cy_0, Cz_0 .

Для производных $\dot{\gamma}, \dot{\alpha}, \dot{\beta}$ из формул (5) следуют выражения

$$\dot{\gamma} = -\dot{\delta}\sin\delta, \ \dot{\alpha} = \dot{\delta}\cos\delta\cos\nu - \dot{\nu}\sin\delta\sin\nu, \ \dot{\beta} = \dot{\delta}\cos\delta\sin\nu + \dot{\nu}\sin\delta\cos\nu.$$

Как было отмечено выше, относительно переменных типа углов Эйлера часто предполагают, что они изменяются в фиксированных диапазонах. Для введенных нами переменных ν, δ, ϕ это означает выполнение условий $0 \le \nu \le 2\pi, 0 \le \delta \le \pi, 0 \le \phi \le 2\pi$. Если строго следовать такому определению, то углы ν, δ, ϕ могут оказаться разрывными функциями времени, что приведет к ненужному усложнению задачи. Например, если требовать выполнения условия $0 \le \nu \le 2\pi$, то нельзя задавать угол ν в виде линейной по t функции $\nu = \omega t$ ($\omega > 0$), а вместо нее следует рассматривать кусочнолинейную функцию с пилообразным графиком, имеющую разрывы в моменты времени, когда $\omega t = 2\pi k$ ($k = 0, \pm 1, \pm 2, \ldots$).

Далее, при условии $0 \le \delta \le \pi$, наложенном на угол атаки δ , он не может принимать отрицательные значения. В таком случае нельзя говорить о свойствах четности или нечетности аэродинамических сил и моментов по углу δ , но именно эти свойства определяют структуру разложений аэродинамических сил и моментов по степеням δ .

С учетом этого будем предполагать, что углы ν, δ, ϕ могут принимать любые действительные значения.

Если вместо формулы y' = n/n определить единичный вектор y' по формуле y' = -n/n и воспроизвести для этого случая построение рис. 1 b), то

направления осей y', z', y'', z'' изменятся на противоположные, а система координат $Cx_1y_1z_1$ останется неизменной. Неизменными останутся также проекции n_y, n_z вектора \boldsymbol{n} на оси Cy_0, Cz_0 , а соответствующие углы ν, δ с точностью до $2\pi k$ ($k = 0, \pm 1, \pm 2, \ldots$) будут равны $\nu_* = \nu + \pi$, $\delta_* = -\delta$. Легко проверить, что формулы (5) и табл. 2–5, 7 не изменяются при замене ν, δ на $\nu + \pi, -\delta$, т. е. формулы (5) и табл. 2-5, 7 справедливы для обоих способов выбора \boldsymbol{y}' при $\boldsymbol{n} \neq 0$. При такой замене формулы (5) определяют прежние значения переменных γ, α, β , и эти формулы остаются справедливыми при sin $\delta = 0$, т. е. в случае $\boldsymbol{n} = 0$.

2. Аэродинамические силы и моменты. Главный вектор R аэродинамических сил, действующих на снаряд, задается своими составляющими R_x, R_y, R_z по осям поточной системы координат Cx'y'z':

$$\boldsymbol{R} = \boldsymbol{R}_x + \boldsymbol{R}_y + \boldsymbol{R}_z, \quad \boldsymbol{R}_x = R_x \boldsymbol{x}', \ \boldsymbol{R}_y = R_y \boldsymbol{y}', \ \boldsymbol{R}_z = R_z \boldsymbol{z}'. \tag{7}$$

Здесь \mathbf{R}_x — сила лобового сопротивления ($R_x \leq 0$), \mathbf{R}_y — подъемная сила, \mathbf{R}_z — сила Магнуса (боковая сила). Главный момент относительно центра масс аэродинамических сил, действующих на снаряд, представляется в виде суммы $\mathbf{M}_C = \mathbf{M} + \mathbf{M}_D$, где момент \mathbf{M}_D сил сопротивления вращению в свою очередь равен сумме

$$M_D = M_{D1} + M_{D2}, \qquad M_{D1} = M_p p x_1, \ M_{D2} = M_\Omega \Omega$$
 (8)

осевого и поперечного демпфирующих моментов M_{D1}, M_{D2} , а составляющими аэродинамического момента M по осям системы координат Cx''y''z''являются момент Магнуса M_y и опрокидывающий момент M_z :

$$\boldsymbol{M} = \boldsymbol{M}_{y} + \boldsymbol{M}_{z}, \qquad \boldsymbol{M}_{y} = M_{y}\boldsymbol{y}'', \quad \boldsymbol{M}_{z} = M_{z}\boldsymbol{z}''.$$
 (9)

Часто силой лобового сопротивления, подъемной силой и силой Магнуса называют не векторные, а скалярные величины R_x, R_y, R_z , тогда как моментом Магнуса и опрокидывающим моментом называют величины M_y, M_z .

При изучении более общих по сравнению с рассматриваемой здесь задач динамики полета снаряда векторы R, M, M_D могут зависеть от всего набора основных переменных $x, y, z, v, \theta, \psi, p, q, r, \nu, \delta, \phi$. Для изучаемой здесь задачи они не зависят от x, z и ϕ вследствие неизменности свойств атмосферы в любой горизонтальной плоскости и осевой аэродинамической симметрии снаряда.

Картина стационарного обтекания осесимметричного снаряда воздушным потоком, рассматриваемая в системах координат Cx'y'z', Cx''y''z'', не изменяется, если трехгранник, образованный векторами v, ω, x'' , произвольным образом повернуть как твердое тело вместе с этими системами координат. То есть картина стационарного обтекания не изменяется после произвольных изменений углов θ, ψ, ν , если остаются неизменными $y, v, p'', q'', r'', \delta$, где p'', q'', r'' — проекции вектора ω на оси Cx''y''z''. Поэтому компоненты R_x, R_y, R_z вектора \mathbf{R} в осях Cx'y'z' и компоненты $M_y, M_z, M_pp'', M_\Omega q'', M_\Omega r''$ векторов M, M_D в осях Cx''y''z'' не зависят от углов θ, ψ, ν , вследствие чего и M_p, M_Ω также не зависят от этих углов.

Таким образом, величины R_x, R_y, R_z и M_y, M_z, M_p, M_Ω могут здесь зависеть только от $y, v, p'', q'', r'', \delta$ или, что эквивалентно, от y, v, p, q, r, δ . Обычно $R_x, R_y, M_z, M_p, M_\Omega$ принимают зависящими от y, v, δ , а R_z, M_y , в соответствии с механизмом возникновения силы и момента Магнуса, зависят еще и от p:

$$R_{x}, R_{y}, M_{z}, M_{p}, M_{\Omega} = R_{x}, R_{y}, M_{z}, M_{p}, M_{\Omega}(y, v, \delta), R_{z}, M_{y} = R_{z}, M_{y}(y, v, p, \delta).$$
(10)

Для учета нестационарности обтекания снаряда воздушным потоком при быстрых колебаниях его оси симметрии аэродинамические силы и моменты иногда предполагают зависящими также от $\dot{\alpha}, \dot{\beta}, q, r$.

При построении приближенных форм уравнений движения снаряда аэродинамические силы и моменты аппроксимируются конечными разложениями по степеням δ или sin δ . Структура этих разложений зависит от того, являются ли соответствующие функции четными или нечетными по δ . При стандартизованном определении [2] пространственного угла атаки δ всегда $\delta \in [0, \pi]$, и поэтому понятия четности или нечетности аэродинамических сил и моментов по δ оказываются некорректными. С другой стороны, если предполагать, что угол δ может принимать значения любого знака, то указанные свойства четности представляются достаточно ясными из физических соображений, связанных с осевой симметрией снаряда (см., напр., [3, гл. 8]. Поэтому целесообразно вывести их математически.

Для этого предполагаем, что угол δ может принимать любые действительные значения. Тогда функции (10) — 2π -периодические по δ . Далее, как показывают табл. 1 и 2, единичные векторы системы координат Cx'y'z' являются однозначными функциями углов θ, ψ, ν , а из табл. 4 и 5 следует, что единичные векторы систем координат Cx''y''z'' и $Cx_1y_1z_1$ являются однозначными функциями углов $\theta, \psi, \nu, \delta$:

$$\begin{aligned} & \boldsymbol{x}' = \boldsymbol{x}'(\theta, \psi), \qquad \boldsymbol{y}' = \boldsymbol{y}'(\theta, \psi, \nu), \qquad \boldsymbol{z}' = \boldsymbol{z}'(\theta, \psi, \nu), \\ & \boldsymbol{x}'' = \boldsymbol{x}''(\theta, \psi, \nu, \delta), \quad \boldsymbol{y}'' = \boldsymbol{y}''(\theta, \psi, \nu, \delta), \quad \boldsymbol{z}'' = \boldsymbol{z}''(\theta, \psi, \nu), \\ & \boldsymbol{x}_1 = \boldsymbol{x}_1(\theta, \psi, \nu, \delta), \quad \boldsymbol{y}_1 = \boldsymbol{y}_1(\theta, \psi, \nu, \delta), \quad \boldsymbol{z}_1 = \boldsymbol{z}_1(\theta, \psi, \nu, \delta). \end{aligned}$$

Поэтому, согласно формулам (7)–(10) и определению (4) величины Ω , имеем

$$\begin{aligned}
 R(y, v, \theta, \psi, p, \nu, \delta) &= R_x(y, v, \delta) x'(\theta, \psi) + R_y(y, v, \delta) y'(\theta, \psi, \nu) + \\
 + R_z(y, v, p, \delta) z'(\theta, \psi, \nu), \\
 M(y, v, \theta, \psi, p, \nu, \delta) &= M_y(y, v, p, \delta) y''(\theta, \psi, \nu, \delta) + \\
 + M_z(y, v, \delta) z''(\theta, \psi, \nu), \\
 M_D(y, v, \theta, \psi, p, q, r, \nu, \delta) &= M_p(y, v, \delta) p x_1(\theta, \psi, \nu, \delta) + \\
 + M_\Omega(y, v, \delta) [q y_1(\theta, \psi, \nu, \delta) + r z_1(\theta, \psi, \nu, \delta)].
 \end{aligned}$$
(11)

В этих формулах проекции p,q,r вектора $\omega(t)$ на оси системы координат $Cx_1y_1z_1$ зависят от углов $\theta, \psi, \nu, \delta$, определяющих ориентацию этих осей, так как

$$p = \boldsymbol{\omega}(t) \cdot \boldsymbol{x}_1(\theta, \psi, \nu, \delta), \quad q = \boldsymbol{\omega}(t) \cdot \boldsymbol{y}_1(\theta, \psi, \nu, \delta), \quad r = \boldsymbol{\omega}(t) \cdot \boldsymbol{z}_1(\theta, \psi, \nu, \delta).$$
(12)

Таким образом, $p, q, r = p, q, r(t, \theta, \psi, \nu, \delta)$.

Из разложений векторов $y', z', x'', y'', z'', x_1, y_1, z_1$ по x_0, y_0, z_0 (табл. 2, 4, 7) следует, что при замене ν, δ на $\nu + \pi, -\delta$ векторы x'', x_1, y_1, z_1 не изменяются, а векторы y', z', y'', z'' меняют знак:

$$\boldsymbol{x}'', \boldsymbol{x}_{1}, \boldsymbol{y}_{1}, \boldsymbol{z}_{1}(\theta, \psi, \nu, \delta) = \boldsymbol{x}'', \boldsymbol{x}_{1}, \boldsymbol{y}_{1}, \boldsymbol{z}_{1}(\theta, \psi, \nu + \pi, -\delta),$$
(13)
$$\boldsymbol{y}', \boldsymbol{z}', \boldsymbol{y}'', \boldsymbol{z}''(\theta, \psi, \nu, \delta) = -\boldsymbol{y}', -\boldsymbol{z}', -\boldsymbol{y}'', -\boldsymbol{z}''(\theta, \psi, \nu + \pi, -\delta).$$

Вместе с x_1, y_1, z_1 не изменяются и проекции (12) вектора $\omega(t)$ на оси полусвязанной системы координат $Cx_1y_1z_1$, т. е. справедливы равенства

$$p, q, r = p^*, q^*, r^*, \tag{14}$$

где

$$p^*, q^*, r^* = p, q, r(t, \theta, \psi, \nu + \pi, -\delta).$$
 (15)

Векторы $\mathbf{R}, \mathbf{M}, \mathbf{M}_D$ при фиксированных y, v, ω определяются только единичным вектором оси симметрии \mathbf{x}'' , который не изменяется при замене ν, δ на $\nu + \pi, -\delta$, согласно первому из четырех соотношений, определенных формулой (13). Поэтому справедливы равенства

$$\begin{split} \boldsymbol{R}(y,v,\theta,\psi,p,\nu,\delta) &= \boldsymbol{R}(y,v,\theta,\psi,p_*,\nu+\pi,-\delta),\\ \boldsymbol{M}(y,v,\theta,\psi,p,\nu,\delta) &= \boldsymbol{M}(y,v,\theta,\psi,p_*,\nu+\pi,-\delta),\\ \boldsymbol{M}_D(y,v,\theta,\psi,p,q,r,\nu,\delta) &= \boldsymbol{M}_D(y,v,\theta,\psi,p_*,q_*,r_*,\nu+\pi,-\delta), \end{split}$$

где $p_*, q_*, r_* = p, q, r(t, \theta, \psi, \nu + \pi, -\delta)$ согласно определению (15).

Разложим левые части этих равенств по единичным векторам систем координат $Cx'y'z', Cx''y''z'', Cx_1y_1z_1(\theta, \psi, \nu, \delta)$, а их правые части разложим по единичным векторам систем координат $Cx'y'z', Cx''y''z'', Cx_1y_1z_1(\theta, \psi, \nu + \pi, -\delta)$. Воспользовавшись для этого формулами (11), получаем

$$R_{x}(y,v,\delta)\boldsymbol{x}'(\theta,\psi) + R_{y}(y,v,\delta)\boldsymbol{y}'(\theta,\psi,\nu) + R_{z}(y,v,p,\delta)\boldsymbol{z}'(\theta,\psi,\nu) = R_{x}(y,v,-\delta)\boldsymbol{x}'(\theta,\psi) + R_{y}(y,v,-\delta)\boldsymbol{y}'(\theta,\psi,\nu+\pi) + R_{z}(y,v,p_{*},-\delta)\boldsymbol{z}'(\theta,\psi,\nu+\pi),$$

$$M_{y}(y,v,p,\delta)\boldsymbol{y}''(\theta,\psi,\nu,\delta) + M_{z}(y,v,\delta)\boldsymbol{z}''(\theta,\psi,\nu) =$$

= $M_{y}(y,v,p_{*},-\delta)\boldsymbol{y}''(\theta,\psi,\nu+\pi,-\delta) + M_{z}(y,v,-\delta)\boldsymbol{z}''(\theta,\psi,\nu+\pi),$ (16)

$$\begin{split} M_p(y,v,\delta)p\boldsymbol{x}_1(\theta,\psi,\nu,\delta) + M_\Omega(y,v,\delta)[q\boldsymbol{y}_1(\theta,\psi,\nu,\delta) + r\boldsymbol{z}_1(\theta,\psi,\nu,\delta)] &= \\ = M_p(y,v,-\delta)p_*\boldsymbol{x}_1(\theta,\psi,\nu+\pi,-\delta) + M_\Omega(y,v,-\delta)[q_*\boldsymbol{y}_1(\theta,\psi,\nu+\pi,-\delta) + \\ + r_*\boldsymbol{z}_1(\theta,\psi,\nu+\pi,-\delta)]. \end{split}$$

Вместе с x_1, y_1, z_1 при замене ν, δ на $\nu + \pi, -\delta$ не изменятся и p, q, r, τ . е. $p, q, r = p_*, q_*, r_*$. Поэтому из (16) с учетом (13)–(14) получаем

$$R_{x}, M_{p}, M_{\Omega}(y, v, \delta) = R_{x}, M_{p}, M_{\Omega}(y, v, -\delta), R_{y}, R_{z}, M_{y}, M_{z}(y, v, p, \delta) = -R_{y}, R_{z}, M_{y}, M_{z}(y, v, p, -\delta).$$

Итак, установлено следующее свойство.

Утверждение 1. В формулах (7) - (9), определяющих аэродинамические силы и моменты, величины $R_x, M_p, M_\Omega(y, v, \delta)$ являются четными, а величины $R_y, M_z(y, v, \delta)$ и $R_z, M_y(y, v, p, \delta)$ — нечетными 2π -периодическими функциями пространственного угла атаки δ .

3. Приближенные формулы для аэродинамических сил и моментов. Утверждение 1 позволяет вывести ряд дополнительных аналитических свойств аэродинамических сил и моментов.

В баллистике зависимости аэродинамических сил и моментов от переменных y, v, p, δ для конкретных типов снарядов определяются приближенно с помощью экспериментов. При малых по модулю значениях пространственного угла атаки δ нечетные и четные по δ аэродинамические силы и моменты аппроксимируются конечными разложениями по нечетным и четным степеням δ . Поскольку эти силы и моменты являются 2π -периодическими функциями угла δ , то для исследования динамики полета снаряда при большом изменении угла δ удобно аппроксимировать зависимости аэродинамических сил и моментов от этого угла с помощью конечных отрезков рядов Фурье по соs $n\delta$, sin $n\delta$ (n = 0, 1, 2, ...) с коэффициентами, непрерывными по y, v, p.

Утверждение 2. Предположим, что аэродинамические силы и моменты (10) с необходимой точностью аппроксимируются в виде конечных отрезков рядов Фурье по $\cos n\delta$, $\sin n\delta$ (n = 0, 1, 2, ...) с коэффициентами, непрерывными по y, v, p. Тогда

а) нечетные по δ функции R_u, R_z, M_u, M_z выражаются в виде

$$\begin{aligned} R_y(y,v,\delta) &= R_{y1}(y,v,\delta)\sin\delta, \qquad R_z(y,v,p,\delta) = R_{z1}(y,v,p,\delta)\sin\delta, \\ M_y(y,v,p,\delta) &= M_{y1}(y,v,p,\delta)\sin\delta, \qquad M_z(y,v,\delta) = M_{z1}(y,v,\delta)\sin\delta, \end{aligned}$$

где непрерывные функции $R_{y1}, M_{z1}(y, v, \delta)$ и $R_{z1}, M_{y1}(y, v, p, \delta)$ являются четными 2π -периодическими по δ , и поэтому они представляются конечными разложениями по $\cos n\delta$ (n = 0, 1, ...);

б) четные по б функции $R_x, M_p, M_\Omega, R_{y1}, R_{z1}, M_{y1}, M_{z1}$ можно рассматривать как функции

$$R_x, M_p, M_\Omega, R_{y1}, M_{z1}(y, v, \gamma), \quad R_{z1}, M_{y1}(y, v, p, \gamma),$$

зависящие от угла атаки δ посредством переменной $\gamma = \cos \delta$, они являются полиномами по этой переменной;

в) четные по б функции $R_x, M_p, M_\Omega, R_{y1}, R_{z1}, M_{y1}, M_{z1}$ с сохранением принятой точности аппроксимируются также полиномами по $\alpha^2 + \beta^2$, коэффициенты этих полиномов определяются по-разному в зависимости от знака $\gamma = \cos \delta$.

Доказательство свойств a) и δ) непосредственно следует из предположения, что нечетные по δ аэродинамические силы и моменты выражаются отрезками рядов Фурье по $\sin n\delta$, а четные по δ аэродинамические силы и моменты выражаются отрезками рядов Фурье по $\cos n\delta$ (n = 0, 1, 2, ...). Воспользуемся формулами 1 и 3 из пп. 1.331 в [4]:

$$\sin n\delta = \sin \delta \{ 2^{n-1} \cos^{n-1} \delta - C_{n-2}^{1} 2^{n-3} \cos^{n-3} \delta + \\ + C_{n-3}^{2} 2^{n-5} \cos^{n-5} \delta - C_{n-4}^{3} 2^{n-7} \cos^{n-7} \delta + \ldots \},$$

$$\cos n\delta = 2^{n-1} \cos^{n} \delta - \frac{n}{1} 2^{n-3} \cos^{n-2} \delta + \\ + \frac{n}{2} C_{n-3}^{1} 2^{n-5} \cos^{n-4} \delta - \frac{n}{3} C_{n-4}^{2} 2^{n-6} \cos^{n-7} \delta + \ldots$$

$$(17)$$

Здесь C_k^s — биномиальные коэффициенты: $C_k^s = k(k-1)\dots(k-s+1)/s!$ при s > 0 и $C_k^s = 1$ при s = 0.

Согласно первой из формул (17), sin $n\delta$ равен произведению sin δ на полином степени n-1 по cos δ . Поэтому для каждой из нечетных по δ функций $R_x, M_p, M_\Omega, R_{y1}, R_{z1}, M_{y1}, M_{z1}$ ее представление в виде конечного отрезка ряда Фурье по sin $n\delta$ преобразуется к ее представлению в виде произведения sin δ на полином по cos δ . Следовательно, выполнено свойство a).

Согласно второй формуле (17), соз $n\delta$ выражается в виде полинома степени n по $\gamma = \cos \delta$. Поэтому представление каждой из четных по δ функций $R_x, M_p, M_\Omega, R_{y1}, R_{z1}, M_{y1}, M_{z1}$ в виде конечного отрезка ряда Фурье по $\cos n\delta$ записывается в виде полинома по $\gamma = \cos \delta$. Это означает, что выполнено свойство δ).

Чтобы установить свойство s), рассмотрим одну из четных по δ функций $R_{y1}, M_{z1}(y, v, \delta)$ или $R_{z1}, M_{y1}(y, v, p, \delta)$. Она зависит от y, v, δ и, возможно, от p. Обозначим ее через $F(y, v, p, \delta)$. Согласно уже установленному свойству δ), эта функция представляется в виде полинома некоторой степени N по соз δ и малого дополнительного члена:

$$F(y, v, p, \delta) = b_0(y, v, p) + b_1(y, v, p) \cos \delta + b_2(y, v, p) \cos^2 \delta + \dots + b_N(y, v, p) \cos^N \delta + f_N(y, v, p, \delta).$$
(18)

Дополнительный член $f_N(y, v, p, \delta)$ при допустимых значениях y, v, p и любых значениях δ удовлетворяет неравенству $|f_N(y, v, p, \delta)| \leq f_{N\max}$, где $f_{N\max} > 0$ — величина, характеризующая погрешность аппроксимации функции $F(y, v, p, \delta)$ отрезком ряда Фурье по $\cos n\delta$ (n = 0, 1, 2, ..., N) и соответствующим полиномом степени N по $\cos \delta$.

Рассмотрим сначала случай, когда число N в формуле (18) нечетное, т. е. N = 2K + 1, где $K \ge 0$ — целое. Тогда, вынося в формуле (18) общий множитель соз δ из суммы членов с нечетными степенями соз δ и полагая затем

$$\begin{aligned} \cos^2 \delta &= 1 - \sin^2 \delta = 1 - (\alpha^2 + \beta^2) \text{ в членах с четными степенями, получаем} \\ F(y, v, p, \delta) &= b_0(y, v, p) + b_2(y, v, p) \cos^2 \delta + \ldots + b_{2K}(y, v, p) \cos^{2K} \delta + \\ &+ \cos \delta [b_1(y, v, p) + b_3(y, v, p) \sin^2 \delta + \ldots + b_{2K+1}(y, v, p) \sin^{2K} \delta] + \\ &+ f_{2K+1}(y, v, p, \delta) = \\ &= c_0(y, v, p) + c_1(y, v, p) (\alpha^2 + \beta^2) + \ldots + c_K(y, v, p) (\alpha^2 + \beta^2)^K + \\ &+ \cos \delta [d_0(y, v, p) + d_1(y, v, p) (\alpha^2 + \beta^2) + \ldots + d_K(y, v, p) (\alpha^2 + \beta^2)^K] + \\ &+ f_{2K+1}(y, v, p, \delta). \end{aligned}$$

Запишем эту формулу в виде

$$F(y, v, p, \delta) = C_K(y, v, p, \alpha^2 + \beta^2) + \cos \delta D_K(y, v, p, \alpha^2 + \beta^2) + f_{2K+1}(y, v, p, \delta),$$
(19)

где

$$C_{K}(y, v, p, \alpha^{2} + \beta^{2}) = c_{0}(y, v, p) + c_{1}(y, v, p)(\alpha^{2} + \beta^{2}) + \dots + \\ + c_{K}(y, v, p)(\alpha^{2} + \beta^{2})^{K},$$
$$D_{K}(y, v, p, \alpha^{2} + \beta^{2}) = d_{0}(y, v, p) + d_{1}(y, v, p)(\alpha^{2} + \beta^{2}) + \dots + \\ + d_{K}(y, v, p)(\alpha^{2} + \beta^{2})^{K}.$$

Из (5), (6) следует, что соз $\delta = \pm \sqrt{1 - \alpha^2 - \beta^2}$. Знак перед радикалом $R(\alpha^2 + \beta^2) = \sqrt{1 - \alpha^2 - \beta^2}$ в правой части этой формулы определяется знаком косинуса в ее левой части. Поскольку $\alpha^2 + \beta^2 = \sin^2 \delta \leq 1$ согласно (5), этот радикал представляется сходящимся бесконечным рядом по степеням $\alpha^2 + \beta^2$ или по формуле Тейлора

$$R(\alpha^{2} + \beta^{2}) = (1 - \alpha^{2} - \beta^{2})^{1/2} = 1 - \frac{1}{2}(\alpha^{2} + \beta^{2}) - \frac{1 \cdot 1}{2 \cdot 4}(\alpha^{2} + \beta^{2})^{2} - \frac{1 \cdot 1 \cdot 3}{2 \cdot 4 \cdot 6}(\alpha^{2} + \beta^{2})^{3} - \frac{1 \cdot 1 \cdot 3 \cdot 5}{2 \cdot 4 \cdot 6 \cdot 8}(\alpha^{2} + \beta^{2})^{4} - \dots$$
(20)
$$\dots - \frac{(2n - 3)!!}{2n!!}(\alpha^{2} + \beta^{2})^{n} + r_{n}(\alpha^{2} + \beta^{2}),$$

которая записывается в виде

$$R(\alpha^{2} + \beta^{2}) = R_{n}(\alpha^{2} + \beta^{2}) + r_{n}(\alpha^{2} + \beta^{2}), \qquad (21)$$

где $R_n(\alpha^2 + \beta^2)$ — полином степени *n* по $\alpha^2 + \beta^2$, и $r_n(\alpha^2 + \beta^2) \rightarrow 0$ при $n \rightarrow \infty$ (см. [5, п. 407]). Здесь m!! — произведение натуральных чисел, не

превосходящих числа *m* и одной с ним четности. Для дополнительного члена формулы (21) справедлива оценка ([5, п. 312, с. 132])

$$|r_n(\alpha^2 + \beta^2)| \le \frac{M_{n+1}}{(n+1)!} (\alpha^2 + \beta^2)^{n+1}, \quad M_{n+1} = \max_{0 \le \alpha^2 + \beta^2 \le 1} |R^{(n+1)}(\alpha^2 + \beta^2)|,$$
(22)

где $R^{(n+1)}(\alpha^2 + \beta^2)$ — производная порядка n + 1 функции $R(\alpha^2 + \beta^2)$ по $\alpha^2 + \beta^2$. В результате получаем для $\cos \delta$ выражение

 $\cos \delta = \pm R_n (\alpha^2 + \beta^2) \pm r_n (\alpha^2 + \beta^2),$

в котором знак в правой части равен знаку $\cos \delta$.

Подставив это выражение в (19), получаем

$$F(y, v, p, \delta) = C_K(y, v, p, \alpha^2 + \beta^2) \pm \\ \pm [R_n(\alpha^2 + \beta^2) + r_n(\alpha^2 + \beta^2)] D_K(y, v, p, \alpha^2 + \beta^2) + \\ + f_{2K+1}(y, v, p, \delta) = \\ = F_{K+n}(y, v, p, \alpha^2 + \beta^2) \pm r_n(\alpha^2 + \beta^2) D_K(y, v, p, \alpha^2 + \beta^2) + \\ + f_{2K+1}(y, v, p, \delta).$$

Здесь $F_{K+n}(y, v, p, \alpha^2 + \beta^2)$ — полином степени K + n относительно $\alpha^2 + \beta^2$. Таким образом, погрешность аппроксимации функции $F(y, v, p, \delta)$ полиномом $F_{K+n}(y, v, p, \alpha^2 + \beta^2)$ по $\alpha^2 + \beta^2$ равна

$$f_{K,n}(y,v,p,\delta) = \pm r_n(\alpha^2 + \beta^2) D_K(y,v,p,\alpha^2 + \beta^2) + f_{2K+1}(y,v,p,\delta).$$

Для того, чтобы эта погрешность имела такой же порядок, как и погрешность $f_{2K+1}(y, v, p, \delta)$ исходной аппроксимации (18) этой функции отрезком ряда Фурье, достаточно, чтобы выполнялось неравенство

$$|r_n(\alpha^2 + \beta^2)D_K(y, v, p, \alpha^2 + \beta^2)| \le |f_{2K+1}(y, v, p, \delta)|.$$
(23)

Поскольку $r_n(\alpha^2 + \beta^2) \to 0$ при $n \to \infty$, а функции D_K и f_{2K+1} ограничены по модулю, оно выполняется для всех рассматриваемых значений переменных y, v, p, δ , если для аппроксимации радикала $R(\alpha^2 + \beta^2) = \sqrt{1 - \alpha^2 - \beta^2}$ используется достаточно большое число n членов в формуле Тейлора (20).

Из оценки (22) дополнительного члена в этой формуле следует также, что $r_n(\alpha^2 + \beta^2) \to 0$ при любом фиксированном $n \ge 0$, когда $\alpha^2 + \beta^2 \to 0$. Поэтому при любом фиксированном $n \ge 0$ неравенство (23) выполняется при достаточно малых $\alpha^2 + \beta^2$ для всех y, v, p.

Итак, свойство e установлено в случае, когда N = 2K + 1 $(K \ge 0)$ — нечетное. В случае, когда N = 2K $(K \ge 0)$ — четное, вывод свойства e проводится так же, как и при нечетном N.

Таким образом, утверждение 2 доказано полностью.

- 1. Лурье А.И. Аналитическая механика. М.: Наука, 1961. 824 с.
- 2. Микеладзе В.Г., Титов В.М. Основные геометрические и аэродинамические характеристики самолетов и ракет. 2-е изд. М.: Машиностроение, 1990. 144 с.
- 3. *Дэвис Л., Фолин Дж., Блитцер Л.* Внешняя баллистика ракет. М.: Воениздат, 1961. 520 с.
- 4. Градитейн И.С., Рыжик И.М. Таблицы интегралов, сумм, рядов и произведений. 5-е изд. – М.: Наука, 1971. – 1108 с.
- 5. *Фихтенгольц Г.М.* Курс дифференциального и интегрального исчисления. Т. 2. 4-е изд. М.: Физматгиз, 1959. 808 с.

B.I. Konosevich, Yu.B. Konosevich, G.V. Mozalevskaya

Analitical properties of aerodanamic forces and moments acting on an artillery shell in the flight

Analitical properties of aerodanamic forces and moments are deduced for an artillery shell from the properties of its geometric symmetry and the atmosphere isotropism. On the basis of the symmetry properties of the shell, parity properties are established for aerodanamic forces and moments with respect to the total angle of attack. They are being used for constructing equations or motion of the shell, which are linearized in the variables of angular motion of the symmetry axis of the shell at small values of the total angle of attack. By use of these properties with account of aerodanamic forces and moments periodicity in the total angle of attack, approximate formulas are obtained for aerodanamic forces and moments in the form of segments of Fourier series.

Keywords: artillery shell, aerodanamical forces and moments, total angle of attack.

 $\varGamma Y$ "Ин-т прикл. математики и механики", Донецкkonos.donetsk@yandex.ru

Получено 15.09.20