ABOUT BOUNDED PROPERTIES OF SMOOTH SOLUTIONS
OF SOME DIFFERENTIAL-OPERATOR EQUATIONS
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1. Fractional differentiation and integration in space D/Jr
Recall that symbol D = D(R) denotes the set of all finite unlimited differentiable on
R functions. Convergence in D is defined as below: sequence {p,,n > 1} C D is called

the converged sequence to function ¢ € D (maps as follows: ¢, — ¢ when n — oo in
D) if:

a) exists such R > 0, that supp v, C (—R,R), Vn €N;

b) gp%k) = ¢©*) when n — oo on R,Vk € Z,.

Totality of all linear continuous functionals on D with weak convergence is mapped
with symbol D’ = D’(R). Elements D’ are named the generalized functions. Totality of

generalized functions from D', which are equal zero on the half-axis (—o0, 0), is mapped
by D'+. It is known from [1] that D/Jr creates associative and commutative algebra on

folding operation, and 0 x f = fxd = f,Vf € D/+. The é-function of Dirac is the one in
this algebra.

Let the generalized function f, from D/Jr depend from parameter o, —0o0 < o < +00,
and be denoted by formula

falt) = 0()t* 1 /T(a), a>0,

falt) = fS0(1), a <o,

where m is the smallest from natural numbers and m+a > 0, € is the Heaviside function.
The following assertions are valid:

1) V{e, B} CR: fo x fg = fats;
2) Let I(a)f = f * fa,Vf € D’.. Then
a)VfeD,: I0)f=f;
b)VfeD, VneN: I(-n)f=f";
)VfeD, VneN: (I(n)f)™ =f;
d)VfeD, V{a,B}CR: I(@)I(B)f=1I(a+p)f.

2. Spaces of based and generalized functions
Let H = Ly(R),

m

® = lim ind®,, P,={p|l¢= chhk(a@),ck e C},

m— 00
k=0



where , ,
hi(z) = (2FEN V2 (1) kg V4™ 2(e /20 ke 7,

are Hermite functions which create the ortonormous basis in H. It is evident that &
lies densily in H. In space ® the differentiation operation is defined and continuous.

Let symbol ® map the space of all antilinear continuous functionals on ® with weak
convergence. Elements of ®' also are named the generalized functions. Each element f
from space @’ is unlimited differentiable and

<fM o>=(-1)"< fion>, Voe®, VneN

(here < f,- > maps the action of functional f on the based element).

oo
Series Y cphy, where ¢, =< f,hy >k € Zy,f € @', is named Fourier-Hermite
k=0
series of generalized function f. For any generalized function f her Fourier-Hermite
o0

series converges in ®’. Otherwise, any series of type Y. cxhy converges in ®’ to some
k=0
function f € ®’ and this series is Fourier-Hermite series for f [2]. Then, &’ can be
oo

interpreted as the space of formal series of type > cphy.
k=0
[.M.Gelfand and G.E.Shylov described in [3] the collection of spa- ces, which are called
the spaces of type S. These spaces consist of unlimitly differentiable functions, which
are defined on R and satisfy some decreasing conditions on the infinity and conditions
of increasing of derivatives. Denote some of them.
For arbitrary «, 6 > 0 let

SAR) =8P :={p e C®°[R)|3c, B,A,>0 Y{k,m}CZ,

VeeR: |2Fo™(z)] < cAFB™ kR m™AY.

Spaces S? are nontrivial for a + 3 > 1 and create dense sets in Ly(R). If 0 < 8 < 1

and a > 1 — 3 then S? consists only of functions ¢ : R — C which let analytical
continuation into whole complex plane and for which

e + iy)| < cexp{—ale[/* + by}, cab> 0.

Note, that spaces S? create topological algebras on simple operations of multipli-
cation and folding. In S? the operations of shear of argument and differentiation are
defined and continuous. This operations translate S? into itself [3].

Space of all antilinear continuous functionals on S? with weak convergence is mapped

by symbol (S2)'. Elements (S?)" are called Gevrey ultradistributions of order 3.
For abovementioned spaces the following continuous and dense implications are valid:

dcCSPCLyR)C(SPY cd, a+p>1.

3. About smooth solutions of parabolic equations with increasing coeffi-
cients



Consider in space ®’ operator A with such action:

O 3> cphy=f o Af = 2k + 1) crhy € ¥,
k=0 k=0

where v > 0 is the fixed parameter. It is evident, that operator A is linear and continuous
in ®’. The following assertion is valid.

Theorem 1. Let A be the contraction of operator A on Ly(R). Then A is nonnegative
selfadjoint operator in Lo(R) with dense range of definition D(A) and ® C D(A).

Corollary 1. Spectrum of operator A is clear discrete with unique limited point
on infinity. Hermite functions {hg,k € Z1} are eigenfunctios for operator A. These
functions have eigenvalues p = (2k + 1),k € Zy. Fach eigenvalue py, is prime.

Remark 1. If v = 1 then operator A converges with operator which is created in
Lo(R) by the differential expression —d?/dz? + x2, that is in this case A is harmonic
oscilliator (see [2]).

Consider equation

Dlu(t,z) + (1)~ DI qoy(t ) = 0, (t,2) € (0,00) x R = Q, (1)

where § € [-3,0),a > 0 are fixed numbers, [3] is whole party and {#} is fractional
party of number [, Dtﬁ = I(p) is operator of fractional differentiation which acts on
variable t in space D;_, A“ is degree of operator A and

D(A%) = {p € La(R)| ) _(2k +1)*|ex(p)|* < o0,

Ck(gp) = (907 hk), ke Z+}

The solution of equation (1) we called the function uw which sastisfies the equations:
1) u(,z) € D/Jr N C~1B1((0,00)) for all z € R;

2) u(t, ) € D(A®) C Ly(R) for all ¢t > 0;u(t,-) =0 for t < 0;

3) u satisfies equation (1).

If 8 € [-3,—1), we assume that u satisfies also the condition:

4) for arbitrary fixed interval [0, +00) C (0,+00) constant ¢ = ¢(d) > 0 exists such
that

sup | DI u(t, )| Lo < e
te[d,+00)

Theorem 2. Function u is the solution of equation (1) if and only if it can be
represented in following type

oo

= (0(t) exp{—t(2k + 1)/ TV} xc fray (1)) erhi (@), (2)

k=0

t e R\{0}, zé€R,



where

f = chhk S (S::;))/u
k=0

w=1/2,ifv/(—[f) =v>1 andw =1/(27), if 0 <y < 1. And u(t, ) € S¥ for all
t>0.

Remark 2. From theorem 2 follows that when ¢t > 0 formula (2) describes all
unlimited differentiable on z solutions of equation (1).

Corollary 2. Bounded value D;{B}u(t, -) when t — +0 exists in space (S%)', that is

Dt{ﬁ}u(t, )= f= chhk, t— 40, in (S2).
k=0

Then, (S¥)" is (in some sence) "maximal” space in which bounded values of function

Dfﬁ }u(t, -) exist for ¢ — +0. Using the representation of function as formal Fourier-
Hermite series we can establish necessary and unique conditions for which the bounded

values D,;{B }u(t, -) when t — +0 exist in narrow (intermediate) spaces. These spaces are
situated between Lo(R) and (S)’. The following assertion are valid.

Theorem 3. In order for bounded value of function Dfﬁ}u(t, -) when t — +0 to

belong to space (Sg)' (B>1/2,ify>1; 8>1/(27), if 0 <~ < 1L;y =va/(—[0])), it
18 necessary and enough that

Vu>0 Fe=c(u)>0: /|Dfﬁ}u(t,m)|2dw < cett
R

q=1/(2v8-1),

for small values t > 0.
Denote, that abovementioned spaces link one to another by following chain:

Ly(R) C (85) C (S2) c @',
Remark 3. If parameter  has one of values of set {—1,—2, —3} then {8} = 0 and

D;{ﬁ} = DY = E (E is identity operator), DY u(t,-) = I(B)u(t,-) = OPu(t,-)/0t?,p = —f3
(see item 1). Then we obtain the equation

OPu/OtP + (1P A =0, (t,2) €Q, pe{1,2,3}. (3)

fogpy=fo=f =60 =9

(see item 1), then
0(t) exp{—t(2k + 1)} * f_yp () = O(t) exp{—t(2k + 1)7} *x 6(t) =

= Q(t) eXp{—t(Ql{? + 1)7}7 Y= VOé/p7 b= _[6]7 pE {17273}'



That is why the solutions of these equations are represented in following form (when
t>0)

u(t,z) =Y exp{—t(2k + 1) }erh(x) =
k=0

=< f, K¢z ~() > t>0,2€R,

where

Kiq(y) = D exp{—t(2k + 1)} h(2)he(y),  t>0,{z,y} CR.
k=0
Denote that in case 7 = 1 the cernel K ;1 can be written explicitly [4]:

Ki21(y) = (2msh(2t)) 712 exp{sh™1(2t)zy — 0.5cth(2t)(z? + y?)}.
Remark 4. If v =1, = m, m € N then (as known from [2]),

A" u(t, ) = (—0% /02 + )™ u(t, z) =

= > aP(ult,x)/0x?),

0<p+q<2m

where ¢!, are constant coefficients for which following estimations are valid:

e | < 10Mmmm—(pta)/2

Thus we define equation (3) as the equation of parabolic type with increasing coeffi-
cients.

Corollary 2 from theorem 3 lets us establish Cauchy problem for equation (1) as
described below. For (1) we define initial condition

DIt u(t, =0 = f. ()

where f € (S9)’. The solution of Cauchy problem (1), (4) is the solution of equation
(1) which satisfies the initial condition (4) in sence Dt{ﬁ}u(t, ) — f, t— 40, in space
(S¢)". The following asssertion is valid.

Theorem 4. Cauchy problem (1),(4) is correctly solved problem in space of initial
data (S¢)'. It’s solution described by formula (2); u(t,-) € S for all t > 0.
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