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Growth and representation of analytic and
harmonic functions in the unit disc

[HOR CHYZHYKOV
(Presented by M. M. Sheremeta)

Abstract. Let u(z) be harmonic in {|z| < 1}, &« > 0, 0 < v < 1. Let
B(r,u) = max{u(z) : |z| < r}, w(d, ) be the modulus of continuity of a
function ¢ defined on [0, 27]. We prove that u(z) has the form

27
u(re'®) = o [ Palrio— 1) au(e)
0
where ¢ € BV[0,27], and w(d,9) = O(3”) (6 | 0), if and only if
B(r,u) = O((1 =)™, v 1 1 and supgeoy Ji" Jua(re'®)| dp <

+o00. Here uq is a-fractional integral of u(re'?), Pu(r,t) = T'(1 +
Q)R(W —1).
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1. Introduction and main results

1.1. Analytic functions in the unit disc

Let D = {z € C: |z| < 1}. Denote by A(D) the class of analytic
functions in D. For f € A(D) let Mgr, f) = max{|f(z)] : |z| = r} be
the maximum modulus, T'(r, f) = 5= [;" log™ | f(re?)|df, 0 < r < 1, the
Nevanlinna characteristic, z* = max{z, 0}.

Usually, the orders of the growth of analytic functions in D are defined
as

. log™ log™ M (r, f) . log™ T'(r, f)
= lim su , = limsup ———=.
puf] el s g pr(f] 1S el — 1)
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It is well known that

pr(f] < pmlf] < pr(f] + 1, (1.1)

and all cases are possible. This is in contrast to entire functions where
the corresponding orders are equal. We cite a couple of results concerning
(1.1).

Given a > 1, p satisfying p < o < p+1, C. N. Linden [1] constructed
an analytic function in D\ {1} of the form of so-called Naftalevich-Tsuji
product

1<_|aﬂ| p+1
HE(lfanz )’ Z(l [an )" < 00,

n

with the property prlg] = p, pamlg] = . Here
E(w,p) = (1 —w)exp{w + w?/2+ -+ wP[p}, p€ Ly,

is the Weierstrass primary factor, a, are the zeros of g(z).

Another approach is used in a paper by M. Sheremeta [2]|, where, in
particular, given o > 0 a class of analytic functions f represented by gap
series (with Hadamard’s gaps) is extracted such that

1
/ MITOT(r, f) dr < +oo < / )T og M(r, f) dr < +oc.
0

Prof. O. Skaskiv posed the following problem

Problem 1.1. Given 0 < p < a < p+ 1, describe the class of analytic
function in D such that pr(f] = p, pu[f] = .

In order to solve Problem 1.1 one needs a parametric representation
of functions analytic in D and of finite order of the growth. Such rep-
resentation was obtained [3| in 1960th by M. M. Djrbashian using the
Riemann-Liouville fractional integral.

For a > 0 consider two subclasses of A(D)

21 T

+
Ay i sup /(/(r —t)* Llog | f(te™)] dt) dp < 400,
0<r<1O 9

27 T
A% . sup /(/(T — 1) Llog™ | f(te™)| dt) dyp < +o0.

0<r<1
0 0
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Obviously, A}, C A,. Note that f € A%, means fol T(t, f)(1—t)>tdt <
400, i.e. f belongs to the convergence class of order a.

Throughout this paper by (1 — w)®, w € D, a € R, we mean the
branch of the power function such that (1 — w)a}wzo = 1.

Theorem A. The class A, coincides with the class of functions repre-
sented in the form

27
f(2) = Cx2*By(2) exp{/ (1—@%}

0
= C\2*Bo(2) exp{ga(2)}, (1.2)

where ¢ € BV[0,27], (2) is the zero sequence of f(z) such that ), (1 —
|2e[)2T < 400; Ba(2) = Hk(l — i) exp{—Wq(z,2r)} is a Djrbashian
product

- Fla+k+1)
Wal(z,() = 2}; T(a+ DO(L+A)
1 <
» ((w [ - (2) [a- x)awk‘ldg”)'
< ’

In this paper we confine by the case when f(z) has no zeros and of
finite order of the growth. Then f(z) = Cyexp{ga(z)}, for some a > 0.

Radial and non-tangential limits of g(z) were investigated in
many papers, e.g. D. J. Hallenbeck, T. H. MacGregor [4, 5], and
M. M. Sheremeta [6], even for complex-valued functions ¢ of bounded
variation. It turns out that g, (z) admits above estimates in terms of the
modulus of continuity for 1. We cite a typical result [6].

Let S(6,7) be the closed Stolz angle having vertex e and open-
ing v, i.e. S(0,7) = {z € D : |arg(e? — 2)| < v/2}. A function g
defined in D is said to have a nontangential limit at e? provided that
lim,_ i .eg(0,) 9(2) exists for every v € [0, 7).

0

Theorem B. Let « > —1, 0 € [0,27n], v» € BV|[0,2x], and w be a
nonnegative, increasing continuous, semi-additive function on [0, +00),

and w(0) = 0. If

1
/t_o‘_Qw(t) dt = oo, [(t) =p(O)| = o(w(lt —6]),  t—6,
0
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and go is given by (1.2) then

1
w@l) [ e

[1—ze— |
has the nontangential limit zero at €.

Since lower estimates for |go(z)| are known only in particular cases
(see [7], Theorem D and Remark 1.3 below), it is interesting to obtain
results which give lower estimates for |g,(2)| in the general situation.

The main purpose of this paper is to describe the growth of |g,(z)]
in terms of the modulus of continuity for ¥ and find counterparts for
harmonic functions in D.

Problem 1.1 is not solved, but Theorem 3.3 and the corollary describe
large classes of analytic functions f with the property pr[f] = p, pum[f] =
a, 0 <p<a<p+1. Theorem 3.2 yields asymptotic formulas for g, in
Stolz angles when v is not continuous.

1.2. Representation and the growth of harmonic functions

We need some definitions. Let Up(d) = {x € [0,27] : |z — 6] < 4},
d > 0. For ¢: [0,27] — R define the moduli of continuity w(d,6;1) =
Sup{6(2) — $(y)]| : 2, € U(8)}, (5 ) = Subpeiozm 0(5.0; ).

Following [8] we say that ¢ € A if w(d; f) = O(87) (6 | 0).

The fractional integral of order o > 0 for h: (0,1) — R is defined by
the formulas [3]

T

1

D™ %h(r) = (o) /(r —2)* 1 h(z) da,
0

DPh(r) = h(r),  D*h(r) = S (D~ CIh(r)}), ac (p- L), peN.

Let H(D) be the class of harmonic functions in D. We put u, (re?¥) =
r~*D~%(re'?), where the fractional integral is taken on the variable r.
We define B(r,u) = max{u(z) : |z| < r} for a subharmonic function u
in D.

Let

Su(z) =D(1 + a)( - 1), Po(r,t) = RSa(rel).

Remark 1.1. Note that Sp(z) is the Schwartz kernel, Py(r,t) is the
Poisson kernel; P, (r,t) = D*(r*Py(r,t)).
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Our starting point is the following two theorems

Theorem C (M. Djrbashian). Let w € H(D), o > —1. Then

27

u(re’®) = / Pulr. o — 6)di(9), (1.3)

0
where 1 € BV0, 2], if and only if

2
sup /|ua(7“ei‘p)d<p < 400.
0<r<1O

Remark 1.2. Actually, for & = 0 it is the classical result of Nevanlinna
on representation of log | F'(z)| when F' belongs to the Nevanlinna class N.

Theorem D (Hardy-Littlewood). Let u € H(D), 0 <~y < 1. Then

2w

u(re'?) = /Po(r,cp — t)u(t) dt (1.4)
0

for some function v € A, if and only if

B<r, S—Z) —0((1—rY, r1lL

Remark 1.3. Theorem D was originally proved [9] for analytic function
(cf. Theorem 1.2).

Applying methods of proofs of Theorems B and C, we prove the fol-
lowing theorem which describes the growth of functions of form (1.3).

Theorem 1.1. Let u € H(D), a > 0, 0 <y < 1. Then u(z) has form
(1.3) where ¢ is of bounded variation on [0,27], and 1 € A, if and only
if

B(r,u) =0((1—r) 77, r11

and

21
sup [ fua(re'®) dp < +cx.
o<r<1
0

Note that Theorem D corresponds to the case when 1 is absolutely
continuous, but in Theorem 1.1 the general situation is considered.

Similar to that as we deduce Theorem 1.1 from the proposition below,
one can deduce the following generalization of Theorem D.
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Theorem 1.2. Letu € H(D),0 <~y <1, a >0. Then

2m
u(re'?) = /Pa(T, © —tu(t)dt
0
for some function v € A, if and only if

0
B(r, %) —Oo((1—r) Y, r11.
It is not difficult to prove a counterpart of the last theorem for analytic

functions.

Remark 1.4. Similar to [6], one can prove that if u(z) is represented by
(1.3), then

2w

u(re?) = O( / w(r, o3 ) ClT), r11, re? € S(p,7), 0 <7 <7

Ta+2
1—r

Problem 1.2. Obtain necessary and sufficient conditions for local growth

of u e H(D).

2. Proof of Theorem 1.1

2.1. The case a =0

First, it is suitable to prove an important particular case of Theo-
rem 1.1 in spirit of Theorem D.

Proposition 2.1. Let w € H(D), 0 <~ < 1. Then u(z) has the form

2w

u(rei®) = / Po(r, ¢ — t) duj(t) (2.1)

0

where 1 is of bounded variation on [0,27], and 1 € A, if and only if
B(r,u)=0((1—=r)7h), r11

and

27
sup /\u(rew)\dgo < +00.
0<r<10
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In the sequel, the symbol C' with indices stands for some positive
constants.

Proof of Proposition 2.1. First, we consider the case v = 1. Note that
the class Ay consists of functions that are integrals of bounded functions.
Thus it is sufficient to apply Theorem (6.3) [8, Ch.IV], which states that
(1.4) holds if and only if B(r,u) is bounded as r T 1.

Consider the case v € (0,1).

Necessity. The proof of necessity is standard (cf. [11, Ch.8.2], [6]).

The following estimates of Py(r,t) are well known

2 ) 2

e o fH<m (2:2)

L

~
[\3“_.

We extend 1 on R by the formula 1 (t+27) —1(t) = ¥ (27) —1(0). Since
Py(r,t) is a periodic and even function in ¢, we have

T+
u(re’®) = / Por,0 — )d((0) — ()
.
N T+p 5
= (O~ wlE)Rlr0 - o) - / o (Rolr, 6-0))(W(O) () 0
T 4p77r+g0

= ()~ O)AG ) — [ S (BTl + ) — vl

—Tr

Hence, using (2.2), we obtain

Ju(re'))|

S%"F( / + / )‘aPorT‘wllew)

|7|<1—r 1—r<|7|<m

0(1)+2/ (|T’¢¢)d+ / :—zw(lr,w;so)df

(1—r)?
IT|<1—7r 1—r<|7|<m
0(1)+4% 972 / W&h
1—r<r<m
< (212 + 4) (“”’ W) g o(1), r11 (23)

1—r<r<m
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Here, we have used increasing of the modulus of continuity. Since ¢ € A,
w(T, ;) = O(77) as 7 | 0. Thus, (2.3) yields

B(r,u) < Cy(y)(1 =) 711

Sufficiency. Let u(re’¥) be harmonic for r < 1, and fo% lu(re’?)| dp <
Cs.

Remark 2.1. By Theorem C, we have (2.1), where ¢ € BV[0, 2], and
one can take 1 such that at any point 6 of continuity of v for some
sequence (r,) ([3], [10, p. 57]).

0

Y(0) = lim1 u(rpet®) de. (2.4)
™l s
Let F(z) be an analytic function in D; such that RF(z) = u(z). By
the theorem of Zygmund [8, Th. (2.30), Ch. VII] B(r,u) = O((1—r)""1)
implies M (r, F) =O((1 —r)" 1) asr T 1.
Define the analytlc function ®(z fo ¢)d(, z € D. For any fixed
p€[0,2r] and 0 <7’ <" <1, we have

/F(pei‘p)ew dp
T/

,r,//

§C4/( )~ 1dp<cf;l(1—7°)1w.

/

[(EI) — B (re)] =

r

Therefore, by Cauchy’s criterion, there exists lim,j; ®(re?¥) = ®(e™¥)

uniformly in ¢. Consequently, ®(¢) dof ®(e™?) is a continuous function
on [0, 27].

Let us prove that ® € A,. Let h € (0,1), 20 = €%, z; = (1 — h)e™,
2o = (1 — h)ePth) | 3 = eileth),

Then by Cauchy’s theorem

D(z3) — /F dz~|—/ F(z)dz
[0,23] [20,0]
([ o+ [+ ] Jren

[z0,21] 21 [22,23]
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For sufficiently small h > 0, we have

1
Cy Cy
F < [ g =y
/ (2)dz / a=n— dr S h
[z0,21] -

1

Similarly, |f[22723] F(2)dz| < %h'y. It is obvious that |sz12 F(z)dz| <
Cah?. )

Therefore, |® (¥ 7)) — ()| < 04(% +1)h7, s0 ® € A,

For R € (0,1) define

iRet

0 0 .
Ar(6) = /F(Rew)da:/M
0

0

0
®(Re?)  ®(R) 1 —
- ) _ ~ [ ®(Re")e " do.
iRe? iR R/ (Re™)e™™ do
0
Since ®(z) is continuous in {z : |z| < 1}, ®(Re)=P(e”) as R T 1.
0
Consequently, as R T 1

[}
AR(0) = —B(e®)ie + id(1) + / B(7)e~ 17 do = A(0) € C[0, 2x].
0

Since ® € A, we have A € A,. On the other hand, u(re?) = fo% Py(r,
@ —t)di(t), where, by (2.4) and the definition of A
0
Y(0) =1lim | RF(re'®)do = \(6).

rTl
0

Thus, ¢ € A,. O

2.2. The case a >0

Necessity. Let u has form (1.3), where ¢ € BV[0,27] N A,. This

implies
2

o (rei®) = / Po(r, ¢ — 0) dip(6). (2.5)

0

By the proposition we have sup,..; fozw\ua(rewﬂ dyp <400 and B(r, uq) =
O(1—r)Hasrtl



I. CHYZHYKOV 41

We use the following formula [3, Chap. IX, (2.9)]

2w

, 1 .
u(re'¥) = o /Pa(r/p, © — O)ua(pe®) db, 0<r<p<Ll
0

Taking p = (1 + 7)/2 and using the estimate B(r,u,) = O((1 — )7~ 1)
(r11), we obtain

(L—p)~ L
[u(re'?)| = O |1 p=0)[1+a

=0 7“>”‘1<p—r>‘“)=0(<1—r>7—1—a), P

The necessity is proved.

Sufficiency. Let fozﬂ [t (1e*?)| dp < 400 uniformly for all r € (0,1).
Then by Theorem C we have (2.5), where ¢ € BV[0, 27].

We need the following elementary lemma.

Lemma 2.1. Let (Vx € [0,1)) f € L[0,z), and 0 <n < (3, and |f(x)| =
O((1—x)PB) asx 1. Then |D™"f(z)|=0((1 —2)" %) as z 1 1.

Proof. Using the definition of the fractional integral and standard esti-
mates we obtain

:o( [ oa-grara-ot | (itt)ﬁ)

0 z—2(1—x)
=0((1—-2)""), =1l

The lemma, is proved. O

Since B(r,u) = O((1 —r)Y717%) as r T 1, by the lemma B(r,u,) =
O((1 —r)771) as r 1 1. Therefore, by Proposition 2.1, ¢ € A,,.
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3. Further results for analytic functions

There is an analogue of Theorem C for analytic functions proved by
M. Djrbashian [3]|. The following theorem can be proved as the proposi-
tion and Theorem 1.1 were proved.

Theorem 3.1. Let f(z) be an analytic function in D, a > 0, 0 <y < 1.
Then f(z) has the form

2

f(ret®) = / Salry o — £) di(t) + 1S (0) (3.1)

0

where 1 is of bounded variation on [0,27], and ¢ € A, if and only if
B(r,|fl) =01 =777, 711

and

0<r<1

2w
sup [ [RE(re)] dp < oo,
0
where fo(re®t) = r=*D=f(re't).

Theorem 1.1 does not cover the case when ¢ € Ay, in particular,
when 1 is not continuous. Here, following [6] we are able to prove a
more precise result. It looks to be known, but I have not found it in a
literature.

Theorem 3.2. Let f(z) have the form

21

() = /(1 ety dp(t),  zeD

0

where o > 0, ¢ € BV[0,2r]. If {tx} is the set of the discontinuity points
of ¥ with jumps {hy}, then

f(z)=%7 2= e, zeS(ty,T), TE[0,m),  (3.2)
and
f(z)= o(1) z—el 2 e S(t,7), t & {tx}, T€[0,m). (3.3)

(1 — ze—it)o’
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Proof. Since v € BV[0, 2], the set {t;} is at most countable. Without

loss of generality we can assume that v is continuous from the right.

Then hy = (ty) — ¥ (tx — 0). It is sufficient to prove (3.2) for k = 1.
We may assume that t; € (0,27). Let

0 0<t<t
Hl(t) _ ) <t <1y,
hy, t <t<2r.
We extend 1 on R by the formula ¢(t + 27) — ¥ (t) = ¥(27) — 1(0) as

well as H;. The function g(t) = e ¥ (t) — Hi(t) is continuous at the points
t=t1+ 27k, k € Z, so w(d,t1,9) = o(l) as § | 0. We have

21
f(z)= /(1 —ze” ") dg(t) + = :el_itl)a. (3.4)
0

Let w1 (8) = max{\/w(d,t1,9),6%2}. Tt is easy to see that w; () satisfies
the hypotheses of Theorem B on w(d). Applying Theorem B to the
integral from (3.4) we obtain (3.2) from (3.4).

Relatlonshlp (3.3) follows directly from Theorem B if we choose

§) = max{+/w(6,t,1),5%/2}. O

For ¢ € BV0,2n] we define T[] to be sup~ satisfying ¢» € A,. In
particular, w(6,1) € Arpy)—c \ Arjy]4e-

Theorem 3.3. Let F(z) be analytic in D,

27
log |F(rei)| = / P, — t) dib(2),
0

where ¢ € BV[0,2n], 7[¢] =7 € [0,1). Then py[F] = a+1—7, pp[F] <
a. If, in addition, 1) is not absolutely continuous, then pr[F] = «.

Corollary 3.1. Suppose that the conditions of Theorem 3.3 hold, and
7=0. Then py[F] = pr[F]+1=a+1.

Proof of Theorem 3.3. First, let 7 € (0,1). By Theorem 1.1

sup/ lue (re’?)| dp < 400.
r<l

Since w(9,v) € Ar—c\Arye, 0 < & <min{r,1—7}, applying Theorem 1.1
again, we have

log M(r,F) = B(r,log |F|) = O((1 — 7‘)7_“_1_5),
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log M(r,F) #O((1 —r)7*71%%), r 11,

ie. pylFl=a+1—-1.
Further,

2

2w +
10.0)= 5 [ (% [ Patr —t)dw)) ¢

0

2 21
1

34—// Py (r,p —t)dy(t) dp
0 0
27 2T

<5 | 00 [ e

~ Ar \1—7"619]0‘“
0

_fola=n), a0
N O(logl_r>, a=0, r1l,

ie. pr[f] < a.
In order to complete the proof of Theorem 3.3 we need the following

result of F. A. Shamoian [12], which compares the classes A, and A%.

Theorem E ([12, Theorem 3]). The function

F(2) —exp{ /s e~y dy( )}eA;

if and only if: 1) 1 is absolutely continuous;

21 27
y [ [rOr-20 00,
0 0

As we noted above F' € A} if and only if T'(r, F') belongs to the con-
vergence class of order «. Therefore, if ¢ is not absolutely continuous, F’
has the growth at least of the divergence class of order a, i.e. pp[F] > a.

If 7 = 0, then similarly one can deduce that pr[f] < «a. Since

w((s;d}) ¢ A, e >0,
log M(r, f) #O((1—r)~*71*¢), 711,

i.e. py[F] > a+ 1. Using the inequality pp[F] < pr[F] + 1, we obtain
pm|F| = pr[F]+ 1= a+1, i.e. the statement of the corollary. O



I. CHYZHYKOV 45

Remark 3.1. The condition 7 < 1 in Theorem 3.3 is essential. In fact,
by the Cauchy theorem on residues

2 20
T _9r, neN, zeD.
(1 —e—i0z)n
0
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