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GENERALIZED SOLUTIONS OF NONLINEAR INTEGRAL-FUNCTIONAL
EQUATIONS

The method of construction of the generalized solutions with a point carrier in singular part is proposed for
nonlinear Volterra integral-functional equations

/K s) + az(as) + g(s'a(s), s))ds = f(t)

with sufficiently smooth kernel and function f; a and a are constants, and 0 < |a| < 1. The solution is
constructed as a sum of singular and regular components. The special system of linear algebraic equations
is used for construction of the singular component. The regular part is constructed by method of successive
approximations combined with method of undetermined coefficients. The theorems of existence and uni-
queness of the generalized solutions are proved.

Keywords and phrases: Volterra integral equation, distribution, generalized function theory.

MSC (2000): 45D05, 35D05, 34K45

1. Introduction.

We consider the nonlinear integral equation

/K (1, 5)(2(s) + az(as) + g(sz(s), s))ds = f(2), (1)
where kernel K, g and f are analytical functions in neighborhood of zero and
=Y Ky s O((t + s, Ky #£0,i=0,1,...,n,n <.

We construct the generalized solution with point support (impulse, or Dirac functions) [1]
singular component as follows

z(t) = cod(t) + 0 (1) + ..+ 6 (t) + ult), (2)

where §(t) is Dirac function, u(t) is regular function. The generalized solutions of linear
Volterra integral equations of the first kind were studied in papers [2]-|6]. This paper genera-
lizes the basic results discussed in papers [2]-[6]. The reader may see the monographs [8] - [10]
for the state-of-the-art theory of the Volterra integral equations. We presume that theory
of Volterra integral-functional equations has not been addressed yet. In first and second
sections we consider the equation (1) without functional change of argument (i.e. a = 0).
The general case a # 0 will be addressed in section three. Problems presented in first and
second sections have been studied by N. A. Sidorov and D. N. Sidorov. Results presented in
section three has been studied by N. A. Sidorov and A. V. Trufanov.

2. Singular component determination in case a = 0.

This work is partly supported by NATO under the grant No. RIG981276

96



Generalized solutions of nonlinear integral-functional equations

Let space of all infinitely differentiable finite functions with support in the neighborhood
(—p, p) be denoted by D, ,. Let space of linear continuous functionals determined on
D, be denoted by szp’p). Let the subspace of its elements (2) with nth singularity

- The solution (2) we construct in the class
D;l(—p,p) and this solution is supposed to satisfy the equation (1) in terms of the Sobolev-
Schwartz distributions [1]. It is to be noted that for n < Vz € D], the multiplication
t'a(t) = tlu(t) is a regular function. This condition allows us to solve the problem of nonlinear
operations with generalized functions for equations (1) for I > n.
In space D' when i,5 = 0,1,...,n, k > n the following statements are correct

order and with support in zero be D;l(

0 when i # j
(—=1)741t+=7 for i = j,

t*710 x 516V (5) = {

where O is the Heaviside function. Then
t 00 k o0
[0S RE S d(s) o ad ) (s))ds = (1P K e
o k=n i=0 j=0 k=n
Let us note that

‘ JOK(t,s)
Z(—l) s

Hence the element z € D;L (

= (—1)7 K
s=0 ]:0 k=n

_,p can be the solution of the equation (1) if the regular

component in (2) satisfies the equation

/K (t, 5)(u(s) + g(su(s), 5))ds = r(t, co, ., ), (3)

where . .
YK (t,0
o) = £ - Yo (-1p 2R, )
: s
7=0
Now we have to determine the parameters cq,...,c, from the system of linear algebraic
equations _
ri(0,¢0,...,e0) =0, i=0,...,n (4)
with subdiagonal matrix with components K, K7, ..., K] placed on the diagonal.

If these numbers are not zeros then the parameters ¢,,..,co can be consistently and
uniquely determined. If some of the diagonal elements are zeros and vector {f(0), f'(0),...,
f(0)} meets the solvability conditions then part of parameters can remain arbitrary in
the right hand side of the equation (3).

REMARK. If f@(0) = 0, K = 0,5 = 0,1,...,k — 1, K" # 0 for i = k,..,n, then if
¢y = ... = ¢, = 0, it is possible to uniquely define the parameters cg,...,cx_1 from the
system (4).

3. Regular component determination in case a = 0.
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Lets a = 0 in equation (1). To determine the regular function u(t) we put a = 0
in equation (1). Then we need to solve this equation with known ¢y, ..., ¢, by method of
successive approximations along with method of undetermined coefficients.

For sake of clarity we make the following notation

(u,t) /K (t,s)(u(s) + g(s'u(s), s))ds — r(t,c) = 0. (5)

We assume the homogeneous equation
/Zm Figin(s)ds = 0 (6)

has the trivial solution only. This is the case if Z " “}rj #0j=1,2,.... Then for any

positive integer N there will be coefficients u; Wthh meet the following condition
1D (ug + urt + ... +uyt™ 1) = O(Jt|" ™). (7)

Let the homogeneous equation (6) has the trivial solution only. Hence

t n
/Z K" 4"'s"ds # 0
o i=0

for 7 =0,1,2,... and the coefficients u; can be uniquely determined by method of undeter-
mined coefficients. We make the notation

u’(t) = ug + urt + ... +uyt” (8)

Now we can substitute the function

u(t) = u’(t) + tNo(t) (9)

into the equation (5). We have to group and exclude terms with powers t',i = n,n+1,..., n+
N, by taking into account equalities (4) and the polynomial u°(¢) structure. The result should
be differentiated wrt ¢. We use the successive approximations method to find function v from
the equivalent integral equation

v = F(uv,1). (10)

Here
Fo,1) = W{—/Kg(t, §)
u’(t)

+sVu(s) + g(s'u’(s) + sTNu(s), s))ds + (¢, c)} - (11)

98



Generalized solutions of nonlinear integral-functional equations

Let us suppose that
Y Kri=a#0. (12)
i=0

For large enough N we can demonstrate that operator F'satisfies the conditions of contraction
mapping principle on the sphere ||z|| < r of the space C|_, . Indeed

|9(s' (u®(s) + sV vi(s), 5) — g(s'(u’(s) + sV va(s)), s)| < |s|TVCy oy — vy
V1, vy from the sphere S(0,7) C C_, . The kernel K meets the condition
| K (t, s)| < Co(|t] + [s))"

hence

¢

1

N /Ké(t, 5)sNds
0

In above mentioned estimations the constant ¢ exists and satisfies the following condition

02271—1
< .
- N+1

(13)

|F(v1,t) — F(vg, t)| <

gl — ]
vy — vall.
N1t
We can fix ¢ < 1 and choose N > £ —1. Then operator F' in neighborhood |[v|| < 7 in space
Cl—p,n Will be contracting with aspect ratio q.
Due to the estimation (7) |F(0,t)] = O(|t|) the following statement is correct and

rﬂ%x |F(0,t)] < (1 —q)r for p € (0, p]. Consequently, the contraction operator F' maps the
t<p

neighborhood ||v|| < r in space C[_; ;) into itself. Taking into account previous statements
we can formulate the following theorem.

THEOREM 1. Let the following conditions are fulfilled

[>n,a=0,

n

1
ZK:Z;Z -#O:j:LQa"-a
i=0 Z+]

K'  #0,i=0,1,...,n,

=0

Then equation (1) for a = 0 has the unique solution (2), (9) in space of functions D) (—p, p),
where constants cy,...,c, are determined from equations (4), coefficients uq,...,uy are
calculated by the method of undetermined coefficients from equation (5). Continuous function
v(t) is built by the method of successive approzimations from equation (10).

REMARKS.

1. In analytical case the regular component is analytical function in the neighborhood
of zero. The Taylor’s coefficients of this function can be determined by the method of
undetermined coefficients from equation (5).
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2. Analyticity of K, g, f in theorem 1 can be replaced by sufficient smoothness of these
functions.

3. If f®(0)=0,i=0,1,...,n, then in solution (2) all ¢; = 0. This is corresponds to the
conventional Volterra integral equation.

4. If in the conditions of theorem 1 some of the elements K", ¢ = 0,...,n are zeros and
the system (4) is solvable, then solution (2),(9) will depend on k arbitrary parameters,
where k = n + 1 — r, r is rank of the matrix of linear system (4). Theorem 1 can be

extended.

THEOREM 2. Lets in conditions of theorem 1Y K . =0 and

1=0
DK (t,s) :
—— = =0, :=0,1,...,p—1,
I | 5=t ¢ p
PK(t,s) oy
TE::& = O(t ): p<n.

Then results of theorem 1 remain correct.

To proof this theorem we have to take into account that on the basis of Taylor’s formula
in the conditions of Theorem 2 the kernel can be presented as follows K (¢, s) = (t—s)?Q(t, s),
where |Q(t,t)| = O(|t|™P). In order to determine function v we need to differentiate equation
(3) (p+ 1)—times we should put

v -t —t P (¢ 8) (u(s) + sV (s
F(v.1) Kgpxt,t)w{ O/Kt (t,5)(W2(s) + 5™o(s)+

+g(s'(u°(s) + sV u(s)), s)ds + (¢, c)} ~ “:](f) .
EXAMPLE:
/(t2 ts — 25 (2(s) + 522 (5))ds = 1+ + 12 + 5. (14)

Let conditions of the theorem 2 are fulfilled for n = 2,1 =5/2,p = 1. In class D’ the solution
x(t) = 6(t) — 6W(t) — 10D(t) + Zity R ”21;% exists. The solution’s singular components is
determined in conformity to equalities (4). For regular component we have the following

equation
t

/(t2 +ts — 257) (u(s) + su*(s))ds = t*. (15)
0
Equation (15) has analytical solution

= Lt 1+ 15245
u = .
245
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Taylor’s coefficients of this solution for ¢ = 0 are calculated based on the remark 1 from
equation (15) in terms of undetermined coefficients method. It is to be noted that apart
from this solution the following function satisfies equation (15)

—1—\/1+1524/5

w(t) = 215

The point ¢ = 0 is a pole of fifth order for this equation.

4. Solution of Volterra integral-functional equation with func-
tionally changed argument (a # 0).

Let us apply the following conditions in equation (1) a # 0, 0 < |a| < 1. We can split
the equation (1) into the system of two equations

t
[ K (. shw(s)ds = f(1) (16)
0
2(t) + az(at) + g(ta(t), £) = w(t). (17)
Below we will suppose that functions k, g, f are analytical in the neighborhood of zero. It

is to be noted that the results of this paragraph will remain correct in case of sufficiently
smooth functions k, g, f.

LEMMA 1. Let the kernel K (t,s) meets the conditions of theorem 1 (or theorem 2), f(t) is
analytical function in neighborhood of zero. Then function

w(t) = cod(t) + ...+ cad™(t) + p(t),

satisfies equation (16), where constants cq, ..., ¢, are determined from the system (4), func-
tion p(t) is unique regqular solution of equation

t
~ DTK(t,0
[ Kooy = s - S -1y O,
0 j=0
To proof this lemma it is enough to use the proof of the theorem 1 in case g(t'z(t),t) = 0.
THEOREM 3. Let the conditions of lemma 1 are fulfilled. In addition let the following inequali-
ties are fulfilled for 0 < |a| < 1

L+ 2 #0, i=0,1,2,...,n, (18)
l1+aad #0, j=0,1,2,... (19)

Then equation (1) has the generalized solution

Co Cn
x(t) = S(t) + A 8™ () + u(t), (20)
L+ L+ S
where constants ¢y, . .., c, can be uniquely determined from the system (4), reqular function

u(t) is analytical in the neighborhood of zero.
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Proof. Due to the lemma 1 the desired generalized solution satisfies the nonlinear functional
equation
z(t) + ax(ot) + g(t'z(t),t) = cod(t) + ... 4+ 6™ () + p(t). (21)

The right hand side of the equation (21) has regular and singular components. We will
construct the solution in following form

z(t) = eod(t) + ... + e, 0™ (1) 4 u(t). (22)

The generalized functions 6 (at), i=0,1,...,n appears as result of substitution (22) into
(21). It is to be noted that

w 3L, a>0
/6(at)<,p(t)dt _ ] e _ 0
. = [ dt)p(L, a<o 1

Dirac function’s k-th derivative influences on ¢ as follows

(e ¢] o.¢]

[ i®lat)p(t)dt = [ DD = (=1) [ 30N (D) =
x® (k)
= (0 [ 30 (D = U mr
Consequently,
S) ()
(k)
T = ol

Ifn <1Va(t) € D, then function t'z(t) = t'u(t) is a regular one. Therefore, the equation

eo(1+12)d(t) + ...+ eo(1 + Hig)d™ (1) + u(t) + au(at) =

= ob (1) ...+ ad™(8) + p(t) — g(tu(t), ). (23)

can be obtained as result of substitution of solution (22) into the equation (21). Due to the

conditions (18), the coefficients e;, i =0,1,...,n can be determined uniquely as follows
Ci .
e =—— 1=0,1,....,n.
1+ m

The coefficients substitution into the equation (23) excludes all singular elements. To deter-
mine the regular component u(t) we have nonlinear functional equation

u(t) + au(at) = p(t) — g(t'u(t), ) (24)

considered in papers [14],[15].
Based on the results [14] and conditions (19) the equation (24) has the following formal

w .
solution u(t) = % + > w;t'. The coefficients u;, = 1,2, ... can be calculated by the method
i=1

of undetermined coefficients from equation (24).
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The formal solution u(t) is true solution. We can demonstrate this by following proof in
a similar way as the theorem 1. Function u(¢) can be presented as following series

u(t) = up +urt + ... +unt™ +tNv(t), v(0)=0.

Method of undetermined coefficients can be exploited in order to find the coefficients ug, u, ..,
uy. Let this approach be denoted as u°(2).
To determine function v(t) the following equation should be considered

U(t) — —OéN(M)(Ozt) + p(t)fuo(t)fauo(at)tf]\?(tl(uo(t)thNv(t)),t) = q)(?)(t), t)
Let us notice here that Vu(t) the following estimation is correct
p(t) — u’(t) — au’(at) — g(t'(u’(t) + tNo(t)),t) = o(tY), t =0

due to the structure of u°(t).

We can follow the proof of the contraction of operator (11). It is easy to demonstrate
that mapping ®(v(t),t) is constructing and translates the sphere ||v]| < r into itself due to
the choice of N and radius of zero’s neighborhood |t| < p. Hence v(t) = E_I)I(I)(Uk(t)) where
v (t) = ®(vg—1(t), 1), wvo(t) =0.

It is to be noted that all terms of the sequence {v;} are analytical functions in some
neighborhood of zero and sequence has uniform convergence. Therefore function v(t) will be
analytical in some neighborhood of zero.

Let us demonstrate that theorem 3 can be extended by excluding of the conditions (19).
For sake of clarity lets 3k : aa®* + 1 = 0. The following definition will be used below.

DEFINITION. Continuous function u(¢) has logarithm-polynomial asymptotics of N-th order,

if there are coefficients w;;, £k =0,1...,4, i =0,..., N which satisfies the condition
1 N i
i1..k _
11_{% t—N(u(t) - z;kz%umt In"t) =0
N i ‘
Function u®(t) = Y. > it In* ¢ is named as asymptotic logarithm-polynomial approach of
i=0 k=0

N-th order of function u(t).

THEOREM 4. Let the conditions of lemma 1 are fulfilled. Lets ao* +1 =10 and 0 < |a| < 1
in (1) Then equation (1) has solution (22) with following regular component

k—1 N 1
u(t) = upt + tF(wlnt + )+ Y Y ulnd t+ oY), (25)
i=0 i=k+1 j=0

where ¢ = uyy is free parameter. Coefficients u;; of asymptotic u°(t) are determined by the
method of undetermined coefficients in following sequence ugg; Uii, U1g; Uao, Uy, U0 - - -
—_——— N ——

Proof. We can follow the theorem 3 proof here. The solutions of equation (1) can be presented
as (20), where the regular part of solution u(#) satisfies the equation (24). Because aa* = —1
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then the equation (24) possibly has no analytical solutions. Therefore we can look for the
solution in more wide class of functions which can be presented as (25). We consider vectors

: :_»(ui_z;a Uji—1, o auiU)Ta
Gi(ubul,. .. u=1) =
= (_giz’(uoﬂa Uy, U0y - - - ;Uz'flo), <oy Di — giO(UUO: Uy1, U0y - - - Uiflo))Ta

where p; are coefficients of Teylor decomposition of function p(t) and g;;(weo, u11, 10, - - -
u;_10) are known functions.

Substitution of series (25) into the equation (24) for ' determination gives the matrix
equation

At = Gy(ud, b, .. ui ), (26)
where
(1+aa?), 0, 0, 0, 0
ac’InaC;t,  (1+ad’), 0, 0, 0
A; = || ac’In*aCi™?, aa’InaCl—f, (1+aa’), 0, 0
: (1+ aat) 0
ac In* aC?, . ac’InaCy, (1+ aat)

is matrix of dimension (i + 1) x (i + 1).

The first equation of the sequence of systems can be presented as (1 + a)ugy = f(0). If
1+a=0and f(0) # 0 then operator equation (16) has no solutions to be presented as (25).
Therefore further (1 + aa®) =0 for k € N.

For i = 0, k — 1 the matrices A; will be reversible,

Gi(u® ut, .. u=t) = (0,...,0,p; — gio(Uoo, U1, Utg, - - - Uiflo))T
and systems (26) have the solutions u’ = (0, . .., 0, ui)7.
If 7 = k then Rank Ay = k, matrix Ay is singular, and first k& elements are equal to zero
in vector G. Hence u¥ = (0, ...,0,ug,c)”, where c is arbitrary parameter.
If i > k then matrix A; is reversible and vector GG; depends on ¢ and u°, u!, ... ui1.

Thus functional equation (17) has logarithmic-polynomial asymptotic

k-1 N i
u’(t) = Zuigti + t*(upy Int + ¢) + Z t Z u;jIn’ ¢,
=0 i=k+1 =0

where c is free constant. Exactly as in case of the theorem 3 we can demonstrate that function
u(t) = u’(t) + tNo(t), v(0)=0,

satisfies the certain equation with construction operator for v(¢). This is the reason why this

function can be uniquely determined.

EXAMPLE: To demonstrate this technique let us consider the equation

/et_s(x(s) + az(as) + s?2%(s))ds = 2 + 1, (28)

0
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a, « are constants, 0 < || < 1. We can represent the equation (28) as the system of equations

Uftetsw(s)ds = f(t)
z(t) + az(at) + ?2%(t) = w(t).

On the basis of theorem 1 we have w(t) = 20(t) + (1 — ¢).
Lets consider the functional equation

z(t) 4+ ax(at) + 222(t) = 26(t) + (1 — ).

If ao’ + 1 # 0 then on the basis of theorem 3 the equation (28) has the following unique

solution
2 1 t

)= ———6(t)+ —
=(t) 1+a/|al *) l+a 1+4ax
Let ace +1 = 0 then due to the theorem 4 the following one-parameter family of the
generalized functions will be the solution of equation (28)

+ o(t).

2 1 tint
=—— 60(t) +
1+a/|al *)

x(t)

— t t
1+a aOzlna+C +o(t),

here c is free parameter.
Conclusion.

In general case the equation (1) has a few bifurcating solutions. Such solutions can
be constructed based on the results of this work in combination with known methods of
bifurcation theory [13].

Results of the theorems 1-4 combined with results presented in papers [4], [11] can be
generalized on the systems and integral-operator equations (1), where kernel K is linear,
and ¢ is nonlinear mapping in Banach space. These results can be used in development of
theory and application of differential-operator equations with Fredholm operator in main
part [11], [12] in problems of nonlinear dynamics and identification [7], [8] and in other
problems formulated in terms of the Volterra integral equations of the first kind.
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