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THE BEHAVIOR OF SOLUTIONS OF THE MIXED
BOUNDARY VALUE PROBLEM FOR A LINEAR
SECOND-ORDER ELLIPTIC EQUATION

IN A NEIGHBOURHOOD OF INTERSECTING EDGES

In this paper we deals with the mixed boundary value problem for second-
order elliptic equations in a polyhedral domain. We obtain exact estimates for
solutions of the problem in a neighbourhood of an vertex. A special section is
dedicated to the examples.

Keywords and phrases: second-order elliptic equations, mixed boundary
value problem, nonsmooth domains

MSC (2000): 35J25, 35J55, 35C15, 35Q72
1. Introduction.

Let G C R? be a bounded domain. We consider the problem
with mixed boundary conditions

Lu = a4(2)Ug,e; + ai(2)Ug, +a(z)u = f(z), €, (1.1)
0

8—2:0, z el (1.2)
u(z) =0, r e dG\T. (1.3)

Here and throughout summation from 1 to 3 over repeated indices
is assumed. The problem with boundary conditions (1.2)—(1.3), also
known as the Zaremba problem. The main purpose of this paper is to
analyze the behavior of solutions, in the case when the boundary of G
contain singular points having the type of the vertex of a polyhedron.
The assumptions on the coefficients of the equation are essential
for obtaining sharp estimates of the modulus of a solution. Elliptic
boundary problems in nonsmooth domains have been studied in many
works. In particular, the exact solution estimates for boundary value
problems in domains with angular and conical points at the boundary
were obtained in [1]. Mixed boundary problem with conormal deri-
vative was studied in [6] and in [7]. There the authors have obtained
Schauder and weighted LP estimates of solutions for equations with
constant coefficients in polyhedral domains. The vast bibliography of
elliptic boundary problems in nonsmooth domains was compiled by
authors of [1].
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2. Basic symbols, definitions and assumptions.

Let us introduce the following notations: x = (x1, 9, x3): an
element of R?; (r,w) = (r,w;,wy): spherical coordinates in R?, defined
by: 1 = rcoswy sinwy, Ty = rSinw; sinwg, T3 = 7 COSwo; 1: exterior
unit normal vector on JG; 5g : Kronecker’s delta; the quasi-distance

5 1/2 5 1/2
function r.(z) := (Z (z; —1—55’5)2) DUy = <Z ui) DUy 1=
i=1

1=1

B,j=1
{w: wy € [0, 1], wy € [0, @3]}, where w; € (0,27), wsy € (0,7). Our
domain G coincides in some neighbourhood of the boundary point
O; (point of origin) with the domain {(r,w): w € Q}. 0G = U T,
I’y coincides in some neighbourhood of O; with the set {(r, w) w e
00, wy = 0}, I'y with the set {(r,w): w € 0, w; = w;} and '3
with the set {(r,w): € 0Q wy = wy}. ¢; are edges of boundary,

- - - - - - 3
(p:=T11NTg, by :=T9NI3, £ :=1T5N0s, £ := U ¢;. Edges {; intersect

1/2
< > uxzx . On the unit sphere S? we consider the domain Q =

at the vertices O := ﬁ ¢; of the polyhedron. We suppose that O =

{01, 05} and analyze the behavior in a neighbourhood of O;. I'; are
smooth surfaces everywhere except at O. We introduce the notation
G :={r € G:0 < a < r < b}y We denote the following spaces.
C*(@): the Banach space of functions having all the derivatives of
order at most k (k € N) continuous in G; C§(G): the set of functions
in C*(G) with compact support in G; LP(G): the space of functions
whose absolute value raised to the p-th power (p > 1) has a finite
Lebesgue integral; W*»(G): Sobolev space, is defined to be the subset
of LP(G) such that function and its weak derivatives up to some order
k (k € N) have a finite L? norm, for given p > 1; Wi?(G): is the
closure of C§°(G) with respect to the norm ||-||yx.p(c|; WrP(@): the
space of functions that belong to W*?(G"), for all G’ C G; Vi, (G):
weighted Sobolev space, is defined as the closure of Cg°(G \ O;) with
respect to the norm

a/2

ullvz, ) = lIr*teall 26 + 72 g | 2y + |72 2| 2o

where o € R.
Definition 2.1. A (strong) solution of the problem (1.1)-(1.3) in
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domain G is a function u € W22(G \ ©) N C°(G), which satisfies the

loc

equations (1.1) for almost z € G, boundary condition (1.2) in the
sense of traces and the boundary condition (1.3) for all z € I'y U T's.

In the following we assume that the coefficients a;;(z), a;(z) and
a(x) satisfy the following conditions.
Assumption 2.2. The uniform ellipticity condition

V|€)? < ay(x)6€ < plé)?,  VEER® 2 €@,

with some v, > 0.
Assumption 2.3. a;;(0) = /.

Assumption 2.4. a;; € C°(G), a; € LP(G) and a € LP/?(G), where
p > 3.

Assumption 2.5. There exists a monotonically increasing nonnega-
tive function A such that

n 1/2
(Z |aij () — az'j(y)l2> < Al —yl),

= 3 1/2
r (Z af(x)> +r?|a(z)] < A(r),

for z, y € G.

3. Some auxiliary assertions.

We denote by G := {z: wy € [0,27], wy € [0, 0]} }, wo € (0, 7).
Obviously, there exists an wp, such that G C G. It is easy to see
(see lemma 1.11 [1], lemma 1.4.1 |2]) that r.(z) has the following
properties.

Lemma 3.1. There exists an h > 0 such that

@) >her, @) >hee

for all v € G, where h = 1 if wy € (0,7/2] and h = sin(wy) if
wo € (7/2,m).
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We consider the problem of the eigenvalues for the Laplace-Beltrami
operator A, on the unit sphere.

Ayv+Jv =0, w € Q, (3.1)
ov

- = 2
Do 0, w1 =0, (3 )
v(wy, ws) = v(wy,0) = v(wy, wy) = 0. (3.3)

According to the variational principle of eigenvalues we have the
Wirtinger inequality (see 2.3.1, 2.4.6 [1], 2.2.1 [2]).

Theorem 3.2. (the Wirtinger inequality). The following inequality
is valid for all v € W2(Q), that satisfies (3.2)-(5.3) in the sense of

traces
/2( Jo < - LI N S TR W P
v ~ Y Owq sin®wy \ Ows ’
Q Q

where Yy is the smallest positive eigenvalue of the problem (3.1)-

Let us define the value

A

I VAR VA (3.4)
_ 5 , ,

where vy is the smallest positive eigenvalue of the problem (3.1)—
(3.3). Next theorem follows from the Wirtinger inequality (see 2.5.2—
2.5.9, corollary 2.29 [1], 2.3.2-2.3.9, corollary 2.3.6 [2]).

Theorem 3.3. Letv € W22(G2) satisfy the boundary value condition

(1.2)-(1.8) in the sense of traces. Then following estimates are held

1
/ra_41)2dx < N+ /r“‘zvfcdx, aeR (3.5)

Ge Ge
/7’“—41)2dx < H(\ «) /ro‘_zvidx, a<l, (3.6)
G G

where HO\ o) = (1 —a)?/4+ XA +1))"", e €0,d] i

2—a
1
/ e < <%> A1) / e de,  a€R, (37)
Gd Go
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where h is a number from the lemma 0.0, also, if V(p) :== [ r~to2dx <
Go
oo, then

4. Integral estimates.

At first, we will obtain a local integral estimate in the neighbour-
hood of an edge.
Lemma 4.1. Let u(z) be a solution of (1.1)-(1.3). Suppose that

hrﬂo A(r) = 0 and that f € L*(G). Then there are d > 0 and constant

¢ > 0 depends only on v, u, a, A, maé(A(|at|) and G, such that
xe

sl zoegn < e (el + ullsy + 1z, ) - (41

Proof. Let us introduce the function v(z) = u(z)n(z), where n(z) €
C%(G2%) is a cutoff function such that: n(z) = 1 if r(x) € [d,2d],
0<nx)<1lifr(x) e (d/2,d) U (2d,3d) and n(x ) = 0 when r(z) €
[0,d/2] U[3d,00). Then the function v satisfies the equation

i (2)V;0; + @i(2)vy, + a(z)v = fi(z), (4.2)

where fi = fn 4+ aij(2uq, Mo, + Wig,a,) + aiun,,. Since a;;(0) = 67, we
have

Av = fi(w) = (a(2) = a5 (0))V2,0; — ai(2)ve; — alz)v = fo(x). (4.3)

For the equation (4.3) we use (7.19) [5] (f2 € ‘@%(Gg%)), applying it
for the domains G‘Z’l% with edges on the boundary

| |/U3U$| |L2(G3‘}2) < | |AU| |L2(G3‘}2) .
Using the assumption (0.0) we obtain

e (el + ol + Wil )
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Now, let d > 0 chosen according to the inequality ¢, - A%(3d) < 1,
then from properties of the cutoff function we obtain (4.1).

Theorem 4.2. Let u(x) be a solution of (1.1)-(1.3) and X be defined
by (3.4). Suppose that lirﬂoA(T) =0, f € V2, (G), where a € (1 —
2X,2|. Then u € V3, (G§) and

lullvz ety < ¢ (Ilullvgap) + luellvy, o + I llug epy) - (44)
where ¢ > 0 depends only on v, |, a, A, max A(lz]) i G.
xre

Proof. Let us introduce the function v(z) = u(z)n(z), where n(z) €
C?*(G?%) is a cutoff function such that: n(z) = 1 if r(z) € [0,d],
0<n(x)<lifr(z) € (d,2d) and n(x) = 0 when r(z) € [2d, 00).
Case I: 1 < a < 2. We multiply both parts of the (4.3) by r*2v(z)
and integrate over the domain G2?. Twice integrating by parts we
obtain the analog of (4.3.6) [1] (see also (4.2.6) [2])

92 _ a—3
50‘_2/21@0[95—{— /r“‘zvfcdx—l— %/UQCZQ@L

or 2
Qe Gz e
+ 2= a)2(a ), / r*4idr =
. Ge (4.5)
== / r* P, cos (i, z;)do+
Flﬁﬁng
T / r* (= fiw) + (a5(2) = a35(0)) v, + as(@)0s, + alz)v)d.

G2

where do area element of I';. Since x; cos(7, x;) = x5 cos(il, x2) =
—19 = 0, Vo € Ty N 0G24, therefore

/ r*~ Pz, cos(ii, z;)do = 0. (4.6)
Fmang

Let us estimate in the above equation the integrals over €).. We
consider the set G2 and we have Q. C 9G*. Now we use the
inequality (6.23) [4]

[ 1wla0. < e [ ul+ undyds (4.7)

2
G2e
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Setting w = U% we find (see (4.3.8) [1], (4.2.8) [2])
r
ov

U_

/ 5 dQ. < ¢ / (r*v2, + v2 + 17 %0%) da. (4.8)
-

Q. G2e

€

Twice using (3.5) we obtain
[ (02 +r~20%da)de <cz [ vide <
G2 G2

<dege? [ r202de < ee? [ v de <cp [ r?olde,
Gz Gz G2

ov

therefore from (4.8) we get
/l)_

/ dQ. < cg / r*? dz.
or

Q. gz

Applying the local integral estimate (4.1) we obtain

/

€

ov

— 1 dQ, <
U@r -

< cg / 12 Vppdr < ¢ / (vl +0° + fi)dx <

x 6%,

< cge? @ / (v + 0?4 fRdx <

3
Gs?Z

< cge?™® / (v +v* + fi)dx.

G2l
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Let us apply again (4.7), in analogy to (4.9) we have

/1)2an <

Qe

< ¢ /(1)2 + |v||v])dx < e1o /(rvi +r t?)dr <

2 2
G2¢ G2¢

(4.10)
< e / 302 dr < cppe® ™ / (v + 0?4 fR)dx <

Gz &,

S 01263_a / Ta(’U:% + U2 + ff)dl’

G2l

Writing the inequality (4.1) for the p € (0,d) and taking into account
that p ~ r in G2p we obtain

/ rov? dr < ci3 / (v + v+ f)dax

2 3
G G¥,

We replace p by 27¥d. Summing up this inequalities for k = 0,1, ...,
logy(d/e)] + 1, we get

/ r*v? dr < ciy / r(vZ 4+ v + fi)dz. (4.11)

2d 2d
Gz GE/4

Applying assumption (0.0) together with the Holder and the Cauchy
inequality

T?_ZU ((aw( ) — 5])2796196; + ai(z
< c15.A(r) (ro‘ 27’2212 + 7

€

vx+axv)<
2

a— 2U2+Ta 2,,,, 2’U) (412)
e f; < 57’?_27’_202 + c167* 3,

for all 0 > 0, € > 0. Let ¢ = 0. From (4.5), (4.6) and (4.9)-(4.12)
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follows that

2 — -1
/r“vixdx—l— /ra_zvidﬁ—l— ( a)2(a ) /7’“—41)2d$ <
G2d G2d G2d

< ¢7 / (.A(Qd) (ra—%ﬁ + 7’“—41)2) + 57““‘4212) dr+

G2

+c18 / Ta(Ui + ’02 + flz)dl’,

2d
Gs/4

for all 0 > 0 and 0 < € < d. Furthermore, if (2 — a)(a— 1) = 0, then
we apply the inequality(3.5). Now, let § > 0, d > 0 are small enough.
Then we obtain

/(r‘lviw + 727202 4 r* ) dr < cp / r®(v2 4+ v? + f)dw,

Gz 7%,

where the constants c;9 do not depend on e. Letting ¢ — +0 we
obtain the assertion of our theorem in the case I.
Case II: 1 — 2\ < a < 1, @ > 0. From the inequality (4.1) we have

[Porertide<en [ Poro e+ e
e o,

Since 7. <r+¢ < 2r./h in G, we obtain

/ rzr?_zvfmd:c < coq / 7"27"?_2(1)9% +v* 4 f)dz.

G s,
Let p = 27%d. Summing up this inequalities for &k = 0,1,..., we
finally obtain
/ 2202 dr < ey / r2re72(v? 4 0® + fl)dr. (4.13)
G2 G2

Multiplying both sides of (4.3) by r®?v(x) and integrating by parts
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twice we obtain (compare with case I)

2 — 1—
/r?_zvidx: ( ) @) /r?_4vzdx+

2
G2 G2
2—a a—4, 20 3 —
t— r& e (x; + €67) cos(m, x;)do+
Flﬁﬁng
+ / e u(=fi(@) + (ag(2) — ai(0)vaya, + ai(z)vs, + a(z)v)dz,

2d
GO

where do area element of I';. The second integral on the right is equal
to zero (see (4.6)). Therefore from (4.12) for € = ¢ we get

/ r¢22dr < (2- a)2(1 —a) / reidr+
G2 G2
+co3 / (re=2 (6r 20 + A(2d) (r*v2, + v2 + 177%0%)) + r f7) da.

2d
GO

Since by case I u € V75(GE) and f1 € V3, (GY) (a
from the right side is finite. Therefore from (3.6), (3
have

> 0) the integral
.7) and (4.13) we

C(\ ) /r?_zvgdxg

2d
GO

< ey / (re=? ((A@2d) + 8)vl + r*(v2 + 0> + f)) + 7 f7) du,

2d
GO

where C(\, ) = 1 — (2 — a)(1 — @)H (X, ) > 0. Choosing § > 0
and d > 0 small enough and passing to the limits as ¢ — 0, by the
Fatou Theorem we obtain the assertion, if we recall (3.6) and (4.13).
Case III: 1 —2) < a < 1, a < 0. We take any o € [max(—2, «a),0].
Then we have u, ug, fi € Vi, 12(G). Now, we can repeat verbatim
the proof of case II. We get u € V2, (Gd) and (4.4). Repeating the
stated process k times we obtain u € V22ak (G2, where ay, = a1 —2.
Obviously, we can find such an integer k that a1 < o < ay. Finally,
repeating the proof of case II once again, we obtain the assertion.

Corollary 4.3. Let u(z) be a solution of (1.1)—(1.3). Suppose that
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lim A(r) =0 and f € L*(G2%). Then

r——+0

lullyzyy < e (el + 1 zeny) - (414)

Proof. Let us fix d > 0, such that the inequality (4.4) would be
fulfilled. We take p € (0,d/2) and ¢ € (0,1). Let us introduce the
cutoff function n € C?(GE?), such that n(z) = 1 if r(x) € [0,¢p),
0 < nx) < 1if r(zx) € (sp,¢'p), n(x) = 0 when r(z) € [¢'p, 0),
[nel < 4/((1 = <)e), [Maal < 16/((1 = <)%¢?), where ¢" = (1 +¢)/2.
Now, if v = nu we apply the estimate (4.4) to the solution v of the
(4.2) with a =0

tzallzzipy < 1 (11l + 1ttell oy + 1l o)) =
= 1 (1l ooy + 1l oy

11 (2Ue, ey + UNaa,) + QUM + f77||L2 G ) <

1
< ¢ ||f||L2(GBIP)+W||UI+T u||L2G<p)+

1
+m||u||m(g3'p)) ,

Rewriting this inequality in the form

sup (1 = ¢)? 0|l 2 a5y <
0<¢<1

2 _ , ) =
Pl + 310, (1= ol e+ 500 il )
=3 (P2||f||L2(Gg)+
+2 sup (1—d¢)p||lug doy +2 sup ||u . <
s (=l 2, s ol
ﬂmmmwamaﬂmmmmm+wmwmﬁﬁs
0<¢<1 0<s<1
from the interpolation inequality (see (7.61), example 7.19 [3])

< (Pl lzseny + sup (1= 9 (<01 = sz +
S

+e (1= o) p ullr2eyy) + sup ||U||L2(Ggp)) :
0<¢<1
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Hence, choosing € > 0 sufficiently small, we can write

Ce

|[tzal| 25y < A=22 (||fHL2(Gg) + ||U||L2(G5P)) :

Taking ¢ = 1/2 and using (3.5), we arrive to the sought estimate
(4.14).
Theorem 4.4. Let u(x) be a strong solution of problem (1.1)—(1.3)

and assumptions (2.2)—(0.0) are satisfied with A(r) Dini continuous

at zero. Suppose, in addition f € V7, (G) and there exist real numbers

s >0, ks > 0 such that ks = sup p~°|[ f[|vg, (). Then there are d > 0
p>0 ’

and a constant ¢ > 0 depends only on v, u, A(d), s, A, G and on the
d

quantity [ ¢ 1A(t)dt such that Vp € (0, d)
0

P, s> A,

lullvz, g < e (Ilullz2@) + 1f1lvg, 00 + ks ) -3 A 1*2(1/p), 5= A,
o, s < A\

(4.15)

Proof. We consider the equation (4.3) with n = 1 (v = u). Let us
now multiply both parts of the (4.3) by r~'u and integrate over GJ;
twice having applied the formula of integration by parts. As a result
we have

[ (s +5) 0= [ e =
Q G
= [t ((ai(0) = 035(0))n,e, + ai(2)uy, +alw)u)) da.
Go

Let U(p) := [ r~'uZdz. From the assumption (0.0), estimates (3.6),
Go
(3.8) and the Cauchy inequality we obtain for V6 > 0

Ulp) < &V'(p) +ciAlp f ru? dr+

+C2A(/)>U(p> %U( ) 25||f”v0 (G
If we take into account (4.4) and condition on the function f, we get

Ulp) < 51U (p) + cs A(p)U(2p)+ w1
4.16
+ca(A(p) + 0)U(p) + cs5k2p*, V6 >0, p € (0,d).
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Moreover, because of (4.14) in virtue of the obvious embedding
Vo(GY) V34 (GE), we have the initial condition U(d) = Uy < oo.
The estimate (4.15) follow from (4.16), in the same way as (4.3.43)
[1] from (4.3.47) [1] (see also (4.2.43) and (4.2.47) [2]).

5. The estimate of the solution modulus.
Theorem 5.1. Let u(x) be a strong solution of problem (1.1)—-(1.3)

and let the assumptions of theorem 4.4 be satisfied. Then there are
d >0 and a constant ¢ > 0, depends on the same values as constant
c in the theorem 4.4, such that for Vx € G&

r, 5> A,
lu(z)|<c (||U||L2(G) + \\f||v291(g) + /{;s>~ r 1n3/2(1/r), s=2\, (5.1)
re, s <A
Proof. Let us introduce the function
o 5> A\,
U(p) = PP (1p), 5=
o s <A,

for p € (0,d). We make the transformation z = pz’, u(x) = v(pz') =
Y(p)w(z'). By the Sobolev Imbedding theorems (see (7.30) [3])
W#%(G1,) CC°(G}),) and we have

/
sup (2] < erljwllwsaay

1/2
Returning to the variables x, u considering the inequality (4.15), we
have for Vp € (0,d)

sup ¢ (p)u(@)] < et~ ()| lullvg, (@

P
Gp/ 2

) S cs(|[ullze I fllvg, ) Fs)

Putting now r = 2p/3, we obtain finally the desired estimate.
6. Remarks and examples.
Remark 6.1. The solution of (1.1)-(1.3) can be taken as a function

from W22(G \ £) N C°(G). Then from [8] we obtain W2>*(G \ O) N
eltel)
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Remark 6.2. The number ) that is defined by (3.4) cannot in general

be expressed as explicit functions of w; and w,. There are a few
examples (see below), where A can be calculated directly. They shows
that the exponent A in (5.1) cannot be increased.

Example 6.3. Let Q = {w: wy € [0, w1], wy € [0, w2]}, where @y =

T €08 sy

5
— Wy = o is domain on the unit sphere S?. Then ¥y =
1 — 3 cos? wy 2
4(v 4+ 2)(y + 3) is the smallest positive eigenvalue of the eigenvalue

problem (3.1)—(3.3) (v = QL) and A = v+ 2. Let us consider the
w1
function
u(z) = 7+ cos yw; sin” wy(cos? wy — cos® wy)
in G={(rw):0<r<oo,we Q}. It is the solution of (1.1)—(1.3)
for Laplacian.
Example 6.4. Let Q = {w: wy € [0,w1], we = 7/2}, where w; €

(0,27). Then ¥y = 4(y + 1)(y + 2) is the smallest positive eigenvalue
of the eigenvalue problem (3.1)-(3.3) (y = QL) and A =y + 1. Let
wh

us consider the function
— Tl inY
u(x) = r’ cosywi sin” wy cos wy

in domain G = {(r,w): 0 < r < oo, w € Q}. It is the solution of
(1.1)—(1.3) for Laplacian.

Example 6.5. Let v and domain G be defined as in the example 6.4
and let
w(z) = 7 In(1/7) cos yw, sin” wy cos wy.

The function u satisfies in the domain G¢ following equations

i (T)Uga; =

» 2v+3 2v+1 o xz;
= (¢ = N e, =0, (6.1
(’ Y(y+1)In(1/r) <2v+3 oo ))u - &1)

— —a(Du. = — (27 4+ 3)z; u
Au = —a;(@)uy, = r2((y+1)In(1/r)—1) (62)
B o 27 +3
Au = —a(x)u = TGS ln(l/r)u’ (6.3)

Au = f(z) := —(27 + 3)r""! cos yw; sin” ws cos ws. (6.4)
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If d < e©®+70/0°+7) then the equation (6.1) is uniformly elliptic with

o 6y +7 4y + 8
ellipticity constants v=1— , =1+ .
-+ QIn(l/d) " 3G+ DIn(i7d)
gl _
Furthermore, A(r . If d < e7!, then for the
(r) y(y + 1)6111(1/97‘)
equation (6.2) we have A(r) = > IZ(—;/T’) and for the equation (6.3) we
have A(r) = 2v+3 In all these cases fT_IA(T)dT = +o00, that is
~ In(1/r)’ 0 -

the leading coefficients of the (6.1) and the lower order coefficients of
(6.2), (6.3) are continuous but not Dini continuous at zero. From the
explicit form of the solution u(x) we have |u(x)| < cr?’™17¢ = erA==,
for all ¢ > 0, * € GZ. Thus the assumptions about the coefficients
are essential. In the case of (6.4) all assumptions on the coefficients
are satisfied, but ||f ]]V291(Gg) < ¢p® with s = A. This verifies the
importance of conditions of our theorems.
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