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For the system of N. Kowalewski equations describ-
ing the motion of a heavy rigid body with a fixed point
in the case of 

 

B

 

 

 

≠ 

 

C

 

, 

 

x

 

0

 

 

 

≠

 

 0

 

, and 

 

y

 

0

 

 = 

 

z

 

0

 

 = 0, all 24 fam-
ilies of power-logarithmic expansions (in powers of 

 

p

 

)
of its solutions were obtained earlier, of which 10 fam-
ilies have 

 

p

 

 → 

 

0

 

 (tails) and 14 families have 

 

p

 

 → ∞

 

(heads). To find finite expansions, we check which of
the tail–head pairs give a finite expansion, and which do
not. In this way, we obtain all the finite solutions to the
N. Kowalewski equations, including all seven previ-
ously known solutions and five new ones. All the new
solutions are complex. We prove that no other solutions
exist that are finite sums of rational powers of 

 

p

 

 with
complex coefficients.

1. In the study of the Euler–Poisson equations
describing the motion of a heavy rigid body around a
fixed point, success is traditionally associated with the
determination of integrable and nonintegrable cases
and particular solutions. New possibilities of this study
are provided by power geometry [1]. To this day, it has
been systematically applied to the system of N. Kow-
alewski equations
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 are dependent variables. According to [2], the Euler–
Poisson equations with 

 

B

 

 

 

≠ 

 

C

 

, 

 

x

 

0

 

 

 

≠

 

 0,

 

 and 

 

y

 

0

 

 = 

 

z

 

0
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Deceased.

f 1 = σ''τ σ'τ'
2

-------- a1 a2σ a3 pτ' a4τ a5 p2+ + + + + + 0,=

f 2 = στ'' σ'τ'
2

-------- b1 b2 pσ' b3σ b4τ b5 p2+ + + + + + 0,=

def

def

=def d
dp
------

 

reduced to system (1). For N. Kowalewski equations (1),
there are two integrable cases (of S. Kovalevskaya and
Chaplygin) and nine families of particular solutions (of
Steklov [3], Goryachev [4], Chaplygin [5], Kowalewski
[2], Appelrott [6], Gorr [7, 8], and Dokshevich and
Konosevich-Pozdnyakovich). In nonintegrable cases,
all the known particular solutions are finite sums of
rational powers of variables of three types: (a) 

 

p

 

, (b)

 

p

 

 + const, and (c) 

 

p

 

2

 

 + const.
Now there is a possibility of finding all solutions of

these kinds. Specifically, 22 families of power-logarith-
mic (in powers of 

 

p

 

) expansions of solutions to the
N. Kowalewski system were found in [9–12]. Recently,
we have found two more such families and proved that
no other solutions exist (see [13]). Altogether, N. Kow-
alewski equations (1) have 24 families of such expan-
sions of solutions, of which 10 families have 

 

p

 

 → 

 

0

 

(tails) and 14 families have 

 

p

 

 → ∞

 

 (heads). To find
finite expansions of solutions of type (a), we verified
which of the tail–head pairs are compatible (i.e., give a
finite expansion) and which are not. In this way, we
obtained all the particular solutions of type (a), includ-
ing all seven previously known solutions [2–8] and five
new ones.

2. The families of expansions of solutions to the
N. Kowalewski equations are indexed in the same man-
ner as in [10, 12], except that these families are denoted
by 

 

�

 

 rather than 

 

�

 

. In fact, we use only power expan-
sions with rational power exponents, because expan-
sions with complex or real irrational power exponents
and with logarithms cannot be truncated. We consider
those complex solutions to the N. Kowalewski equa-
tions that are associated with complex solutions to the
Euler–Poisson equations. System (1) has two first inte-
grals:

 

(2)

f 3 σ'τ στ'– c1 c2 p c3 pσ c4 pτ c5 p3+ + + + + 0,= =def

f 4 d1 σ'( )2τ σ τ'( )2 d2 d3σ d4τ d5σ2+ + + + +=

+ d6 pσ'τ d7 pστ' d8στ d9τ2 d10 p2+ + + +

def

+ d11 p2σ d12 p2τ d13 p4+ + 0.=
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In (1) and (2), the coefficients ai, bi, ci, and di are ratio-
nal functions of the parameters

where h and l are the values of the energy and moment
integrals for the Euler–Poisson equations. Here, x and y
are real and satisfy the inequalities

which define a set D; z and λ ∈ �; ξ ∈ �; and ξ ≠ 0. Sys-
tems (1) and (2) have the symmetry

(3)

Problem. Find all solutions σ(p) and τ(p) to sys-
tem (1) that are finite sums of rational powers of p:

(4)

where αk and βl are rational; σk, τl ∈ � are constants;
and σ0, σm, τ0, τn ≠ 0.

By real solutions, we mean those solutions to
N. Kowalewski equations (1) that are associated with
real solutions to the Euler–Poisson equations; i.e., λ,
z ∈ � and (y – 1)σ, (y – 1)τ ≥ 0. A finite solution (4) is
treated as known if it has been published somewhere or
if it can be obtained from a published solution by sym-
metry mapping (3) or by taking into account another
root of the algebraic equation defining a specific param-
eter value. A solution that lies on the boundary of the
(generating) family of solutions (i.e., lying in its clo-
sure) is not treated as independent.

3. To solve the problem, we used all 23 families
�1 – �21, �23, and �24 of power expansions

(5)

of solutions to system (1). In (5), the power exponents
α, β, and s belong to �; the coefficients σ0, τ0, σα + s, and
τβ + s belong to � and σ0, τ0 ≠ 0. The families �1–�21

were found in [9–12]; and �23 and �24, in [13]. It was
also proved in [13] that other expansions do not exist.
Together with the family �j, this list also contains its

symmetric family  (according to (3)). Usually,  ≠

�j, but �3 = , �4 = , and �19 = .

Ten families (�1–�8, �23, and �24) have p → 0.
They are called tails. Thirteen families (�9–�21) have
p → ∞. They are called heads. Each finite expansion (4)
has one tail and one head. Therefore, for each pair of

x
A
C
----, y

B
C
----, z

h
C
----, λ l

C
----, ξ

x0

C
-----,= = = = =

def def def def def

x y+ 1, x y– 1, y– x– 1,–≥ ≥ ≥
y 0, y 1,≠≠

p σ τ x y z λ ξ, , , , , , ,( ) p τ σ x
y
-- 1

y
--- z

y
-- λ

y
--- ξ

y
--, , , , ,–,–,⎝ ⎠

⎛ ⎞ .→

σ σk p
αk, τ

k 0=

m

∑ τl p
βl,

l 0=

n

∑= =

σ σ0 pα σα s+ pα s+ ,∑+=

τ τ0 pβ τβ s+ pβ s+ , s K∈∑+=

� j � j

�3 �4 �19

families, i.e., for a tail �i and a head �j, we have to
study the intersection

(6)

If it is nonempty, then it gives a finite expansion (4). If
it is empty, there is no expansion (4) with the given tail
and head. This approach allows us to find all finite
expansions (4).

Intersections (6) are analyzed as follows. For each
family �m of expansions (5), there are known

the set K(m)  K of values of s, i.e., the sets 

and  of power exponents α + s and β + s;

the set M(m) of admissible values of x, y, z, λ, and ξ;
arbitrary coefficients among σα + s and τβ + s.
For each family �m, any finite number of coeffi-

cients σα + s and τβ + s in its expansion (5) can be calcu-
lated as rational functions of the parameters. They are
sometimes very complicated.

The conditions

are necessary for the existence of a nonempty intersec-
tion (6).

The following step is to check, for each pair α(i) + s(i) =
α(j) + s(j), the equality  = ; and, simi-

larly, for τβ + s.

4. In this way, we have obtained 30 families of finite
solutions of form (4). Altogether, there are 16 basic
families of solutions, which are denoted by �1–�16,
and another 14 symmetric families (according to (3)),

because �7 and �13 are symmetric to itself: �7 = 

and �13 = . The following solutions are new:

�i � j, i 1 2 … 8 23 24; j 9 10 … 21., , ,∈, , , , ,∈∩

α m( ) α, β m( ) β;= =
def def

=def Kσ
m( )

Kτ
m( )

α i( ) α j( ), β i( ) β j( ),≤≤

Kσ
i( ) Kσ

j( )∩ , Kτ
i( ) Kτ

j( ) , M i( ) M j( ) ≠∩≠∩≠

σ
α i( )

s
i( )+

σ
σ j( )

s
j( )+

�7

�13

�1: x y 2, z 0, λ 0,≠= = =

σ ξλ
8

------ p 1– ξ
2λ
------ p

p2

2
-----, τ–+ 2 p2;–= =

�2: y 1
x
2
---, z λ=+ 0,= =

σ 2ξ2 p 2–

x 1+( ) x 1–( )2
------------------------------------

1 x–( ) p2

2
----------------------, τ+–

p2

2
-----;–= =

�3: x y 2, z λ 0,= = = =

σ 2ξ2 p 2–

3
----------------–

p2

2
-----, τ–

p2

2
-----;–= =
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�5: x y, λ z 0, σ σ0 p2/3 σ2 p2,+= = = =

τ τ0 p2/3;=

τ0
3 81yξ2

y 2+
--------------,

σ0

τ0
----- y 2+

3y2
------------, σ2–

1 y–
y

-----------;= = =

�15: x
8
5
---, y

9
5
---, z λ 0,= = = =

σ 125
288
---------ξ2 p 2– 1

18
------ p2, τ–

1
2
--- p2–

88

625ξ2
-------------- p6;–= =

�16: x
14
9
------, y

16
9
------, z

11τ1
1–

36
-------------, λ– 0,= = = =

Here, �3 ⊂ �2. All these solutions are complex. The
solutions �1 and �3 belong to the S. Kovalevskaya
integrable case; and �5, to the Chaplygin integrable
case for y = 4.

In [7] Gorr noted the existence of a complex solu-
tion, which can be written in detail as

where σ0 satisfies the equation

σ 11
1152
------------τ1

2– p 2––
11
144
---------τ1

1––
p2

8
-----, τ– p2

2
-----– τ1 p4.–= =

�4: x
1268 44 409–

375
-------------------------------------, y

241 3 409–
250

-------------------------------,= =

z 0, λ 0,= =

σ σ0 p10/3 σ2 p2 σ4 p2/3, τ+ + τ0 p2 τ2 p2/3,+= =

σ0
3ξ2 99 714 082 763 947 063 409 2 016 592 523 367 734 611–

1 305 600 000 000 000
------------------------------------------------------------------------------------------------------------------------------------------ 0,<=

and the other coefficients are given by

σ2
16 459 847 409–

4352
--------------------------------------------,=

σ4
1 211 697 549 59 858 217 409–

189 399 040σ0
-------------------------------------------------------------------------------,=

However, the solution �5 written above was over-
looked in [7].

All the remaining known families of solutions have
real parts. Moreover, �8 lies in the closure of �11, and

τ0
7 409 109–

100
-------------------------------, τ2

2521 409 51 037–
16 000σ0

-----------------------------------------------.= =

Table 1.  Finite expansions with rational power exponents

�1 �3 �4 �5 �7 �23

α1 = 0 α1 = 0 α1 = 2/3 α1 = –1 α1 < 0 α1 ∈ (1, 2)

β1 = 1 β1 = 0 β1 = 2/3 β1 = 2 β1 = 2 β1 ∈ (1, 2)

�9 α2 > 2 β2 = 2 11 [2] 4 [7]

12 [4]

�10 α2 = 2 β2 > 2 8 [2] 15, 16

�11 α2 = 2 β2 = 2/3 5

�12 α2 = 2/3 β2 = 2

�13 α2 = 2 β2 ∈ (1, 2)

�14 α2 ∈ (1, 2) β2 = 2

�15 α2 = 2 β2 ∈ (1, 2) 6 [8]

�16 α2 ∈ (1, 2) β2 = 2

�17 α2 = 2 β2 ∈ (1, 2)

�18 α2 ∈ (1, 2) β2 = 2

�19 α2 = 2 β2 = 2 13 [3] 7 [5] 2

�20 α2 = 2 β2 = 2 10 [6] 14 [6] 1 3

�21 α2 = 2 β2 = 2 9 [14]

11 2[ ] 4 7[ ]
12 4[ ]

5

6 8[ ]

14 6[ ]
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�9 and �10 ⊂ �14. The solutions �9, �10, and �14
belong to the S. Kovalevskaya integrable case; and �6,
to the Chaplygin integrable case.

For finite expansion (4) written as

where α1 ≤ α2 and β1 ≤ β2, the results are presented in
the table. The columns correspond to the basic tails
(without symmetric ones); and the lines, to all the
heads. The intersection of the ith column with the jth
line gives the index k of the family �k = �i ∩ �j. For
known solutions, the references to publications are
given (in square brackets). The blank space in the table
means that the corresponding intersection �i ∩ �j is

empty. The bar over the index k (i.e., ) or over a refer-

ence indicates the symmetric solution  (according
to (3)) or the solution symmetric to that given in the
referred work.

Here is the main result of this paper.

Theorem. The system of Eqs. (1) has only those
exact solutions of type (4) that are indicated in the
table.

A detailed presentation of this work can be found in
[15].
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