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Abstract. We construct diffusion processes associated with nonlinear
parabolic equations and study their behavior as the viscosity (diffusion)
coefficients go to zero. It allows to construct regularizations for solutions
to hyperbolic equations and systems and study their vnishing viscosity
limits.
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1. Introduction

The vanishing viscosity method (v.v.m) is a very popular approach
to construct the solution to the Cauchy problem for nonlinear hyperbolic
equations and systems. This method was proved to be especially effective
for the investigation of the solution to the Cauchy problem for the Burgers
equation

ut + uux =
ε2

2
uxx, u(0, x) = u0(x), x ∈ R1 (1.1)

and systems associated with it. In this case one can give the explicit
formula for the solution to (1.1)

u(t, x) = −ε2φx(t, x)

φ(t, x)
, t ≥ 0, x ∈ R1 (1.2)

where φ is the solution to the Cauchy problem for the heat equation

φt =
ε2

2
φxx, φ(0, x) = φ0(x)

Received 12.11.2003
The financial support by DFG Project 436 RUS 113/593 and by Grant RFBR Scientific
School NS- 2258.2003. 1 is gratefully acknowledged.

ISSN 1810 – 3200. c© Iнститут прикладної математики i механiки НАН України



2 Vanishing Viscosity Method...

and use it for further investigation and in particular for studying the
vanishing viscosity limit as ε→ 0. The transformation (1.2) discovered by
Hopf [11] is called the Cole-Hopf transformation. It was and intensively
used by many authors (see references in [14]).

Another direction to use the vanishing viscosity method (v.v.m) to
study solutions of the Cauchy problem for nonlinear hyperbolic equations
and systems (started by Gelfand [10]) is based on the investigation of a
special Cauchy problem. It allows to consider rather general equations
and systems and construct some special solutions for them (simple or
plane waves or self-similar solutions). This approach is based on the
possibility to reduce this special Cauchy problem for a nonlinear parabolic
equation or system to a boundary problem for an ordinary second order
differential equation or system. Namely, it works for example if one
considers the Cauchy problem

uε
t + divF (uε) =

ε2

2
∆uε

with special initial data

uε(0, x) = u0(x) =

{
u−, if (x,h)<0,

u+, if (x,h)>0
(1.3)

(called the Riemann problem) for some h ∈ Rd and looks for a plane

wave solution uε(t, x) = v( (x,h)−σt
ε ). In this case the function v(ζ) where

ζ = (x,h)−σt
ε solves the boundary problem

[−σ +DvF (v)]vζ =
1

2
vζζ (1.4)

v(−∞) = u−, v(∞) = u+, lim
z→±∞

vz = 0

where the constant σ should be defined. Integrating (1.4) we get

vζ = F (v) − σv + C

for some constant vector C and

lim
ε→0

uε(t, x) =

{
u−, if (x, h) − σt < 0,

u+, if (x, h) − σt > 0,

keping in mind boundary conditions. Finally, we derive
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F (u−) − F (u+) = σ[u− − u+]

to define σ.

In this paper we suggest an alternative interpretation of the v.v.m
based on the probabilistic interpretation of the solution to the Cauchy
problem for parabolic equations and systems. It allows to study a Cauchy
problem with rather general initial data for nonlinear parabolic equations
and systems and to obtain more information about the vanishing viscosity
limit of its solution. This approach allows to consider various diffusion
perturbations for systems of conservation laws and balance laws which
correspond to physical nature of these systems.

A probabilistic approach to the Cauchy problem for a class of linear
parabolic systems having diagonal higher order terms (the corresponding
coefficient matrix is proportional to the unity matrix) and non-diagonal
lower order terms was developed by Yu. Dalecky [7], [8] and D. Stroock
[13]. The approach was based on the notion of a multiplicative operator
functional of a diffusion process. The investigation of nonlinear scalar
parabolic equations with the help of solutions to stochastic differential
equations was suggested by H. McKean [12] and M. Freidlin [9] and
extended to nonlinear systems by Yu. Dalecky and Ya. Belopolskaya
[2]–[4].

Note that the probabilistic interpretation of v.v.m. perfectly works if
one considers a quasilinear parabolic equation. But the situation drasti-
cally changes if one considers a system of such equations.

In general due to the structure of the probabilistic representation of
the solution to the Cauchy problem of the nonlinear parabolic system,
the first order non-diagonal terms should degenerate together with the
second order terms. An attempt to preserve first order non-diagonal
terms leads to consideration of a singular stochastic equation and seems
to be hopeless. Recently it was discovered in [5] that there exists a class of
parabolic systems that allows to construct the probabilistic counterpart
of the vanishing viscosity method.

For the simplicity we restrict ourselves with the investigation of the
Cauchy problem for nonlinear parabolic and hyperbolic systems with one
dimensional spatial variable though in general the method does not re-
quire this restriction. The multidimensional systems will be considered
elsewhere.

Note that the probabilistic approach of [2] is quite different from the
approach by Kruzkov based on the introduction of additional space vari-
able while studying the Cauchy problem for the scalar equation ut +
F (ux) = 0.
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2. Nonlinear Parabolic Equations and

Diffusion Processes

We recall the construction of diffusion processes and multiplicative
functionals of these processes associated with nonlinear parabolic equa-
tions and systems. More details can be found in [2], [3].

Consider the Cauchy problem for a scalar nonlinear parabolic equa-
tion

∂f

∂t
+ (a(x, f),∇)f =

1

2
TrA∗(x, f)f ′′A(x, f), f(0, x) = f0(x). (2.1)

Here a(x, f) ∈ Rd, A(x, f) ∈ L(Rd), x ∈ Rd, f ∈ R1.
In the sequel we use C,K to denote absolute constants (if a constant

depend on a real parameter f we denote it by Kf ). We say that condition
C 2.1 holds if

‖a(x, f)‖2 + σ2(A(x, f))‖ ≤ C[1 + ‖x‖2 +Kf‖f‖p],

‖a(x, f)−a(y, f1)‖2+σ2(A(x, f)−A(y, f1)) ≤ L‖x−y‖2+Cf,f1‖f−f1‖2

where f, f1 ∈ R1, σ2(A) =
∑n

k=1 ‖Aek‖2, {ek}d
k=1 is the orthonormal

basis in Rd and

sup
x

‖f(x)‖2 ≤ K0, sup
x

‖∇f(x)‖2 ≤ K0.

Besides we assume that v0 is a C2 smooth function.
We use below the following notations af (ξ(τ)) = a(ξ(τ), f(t−τ, ξ(τ)))

for 0 ≤ τ ≤ t.
Let w(t) ∈ Rd be a Wiener process defined on a probability space

(Ω,F , P ). For any random variable ξ ∈ Rd we denote by

Eξ =

∫

Ω

ξ(ω)P (dω)

the expectation of ξ. Let Ft ⊂ F be a set of w(t)-adapted σ-subalgebras
then for a function f : Rd → Rd1 Esf(w(t)) = E{f(w(t))|Fs} denotes
the conditional expectation.

To construct the solutions to (2.1) we reduce it to the stochastic
system

dξ = −af (ξ(τ)) dτ +Af (ξ(τ)) dw(τ), ξ(0) = x, (2.2)

f(t, x) = Ef0(ξx(t)). (2.3)
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and construct the solution to it by the successive approximation method.

To this end we consider stochastic equations

dξk(τ) = −afk(ξk(τ)) dτ +Afk(ξk(τ)) dw(τ), ξk(0) = x, (2.4)

where

f0(t, x) = f0(x), fk+1(t, x) = Ef0(ξ
k(t)). (2.5)

To prove the convergence of (ξk(t), fk(t, x)) satisfying (2.4), (2.5) to a
limit (ξ(t), f(t, x)) as k → ∞ we need a number of auxiliary estimates.

Let L be the subspace of the space C0(R
1 × Rd, R1) consisting of

Lipschitz continuous functions f such that

|f(t, x) − f(t, y)|2 ≤ Lf (t)‖x− y‖2, t ∈ [0, T ] x, y ∈ Rd.

Denote by [Kf ]
1
2 = ‖f‖L = supx∈Rd |f(x)| the norm of the element f ∈ L.

Let v(s, x) be a scalar function such that ‖v(s, x)‖2
L ≤ Kv(s) < ∞,

|v(s, x) − v(s, y)|2 ≤ Lv(s)‖x− y‖2, Lv(s),Kv(s) <∞ for s ∈ [0, T ].

Consider the stochastic equation

ξ(t) = x+

t∫

s

av(ξ(τ)) dt+

t∫

0

Av(ξ(τ)) dw. (2.6)

We use the notation ξs,x,v(t) for the solution of this equation if we
are interested in the particular dependence of the process ξ(t) on these
parameters.

Lemma 2.1. Assume that C 2.1 holds. Then the solution ξx,v(t) of
(2.6) satisfies the following estimates

E‖ξ(t)‖2 ≤
[
‖x‖2 +

t∫

0

Kp
v (τ) dτ

]
eCt,

E‖ξx,v(t) − ξy,v(t)‖2 ≤ ‖x− y‖2e
∫ t

s [L+Lv(τ)]dτ . (2.7)

E‖ξx,v(t) − ξx,v(t)‖2 ≤
t∫

s

[v(τ) − v1(τ)‖L dτe
∫ t

s Lv(τ)dτ . (2.8)

In addition for f(t− s, x) = Ef0(ξs,x(t)) the estimates

‖f(t− s)‖L ≤ K0
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and

|f(t− s, x)− f(t− s, y)|2 ≤ Lf (t− s)‖x− y‖2exp

[
L(t− s)+

t∫

s

Lf (τ) dτ

]

(2.9)
hold.

The proof of these estimates is standard and based on the properties
of stochastic integrals (see [3]).

Let Lf (t) andKf (t) be minimal constants such that ‖f(t, x)−f(t, y)‖2

≤ Lf (t)‖x− y‖2 and ‖f(t)‖2
L ≤ Kf (t) hold.

Lemma 2.2. Let C 2.1 hold. Then there exists an interval [0, T ] and
functions α(t), β(t) bounded over this interval and such that

‖f(t)‖2
L ≤ α(t), |f(t, x) − f(t, y)|2 ≤ β(t)‖x− y‖2. (2.10)

if ‖v(t)‖2
L ≤ α(t) and |v(t, x) − v(t, y)|2 ≤ β(t)‖x− y‖2.

Proof. Under C 2.1 we can choose α(t) = K0. To prove the second
estimate in (2.10) we notice that

Lf (t− s) ≤ K1
0e
∫ t

s [L+Lf (τ)]dτ (2.11)

results from (2.9).
We choose for β the solution to the equation

β(t− s) = K1
0 exp

[
L(t− s) +

t∫

s

β(τ) dτ

]
. (2.12)

and notice that β solves the Cauchy problem

dβ(t− s)

ds
= [L+ β(t− s)]β(t− s), β(0) = K1

0

and admits the explicit representation

β(t− s) =
K1

0Le
L(t−s)

L+K1
0 −K1

0e
L(t−s)

. (2.13)

Hence for t, s ∈ [0, T ], t ≤ s with T satisfying the estimate

T <
1

L
ln
L+K1

0

K1
0

(2.14)

the function β is bounded and meets the demands of the lemma.
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Coming back to the system (2.5) we can prove the following statement.

Theorem 2.1. Assume that C 2.1 holds. Then the functions fk(t)
determined by (2.5) uniformly converge as k → ∞ to a limiting function
f(t) for all t ∈ [0, T ] with T satisfying (2.13).

Proof. By Lemma 2.2 we know that the mapping Φ(s, x, v)=Eu0(ξs,x(t))
acts in the space L. Let

κk(t−s, x) = |fk+1(t−s, x)−fk(t−s, x)| and ζk(t−s) = sup
x
κk(t−s, x).

By the estimates of Lemma 2.2 we have

κk(t− s, x) ≤ L2
f0

t∫

s

‖fk(t− τ) − fk−1(t− τ)‖ dτeLf (t−s)

and hence

ζk(t− s) ≤ δk

t∫

s

. . .

t2∫

s

‖f1(t− τ1) − f0‖2 dτ1 . . . dτk

holds with δ = K0L
2
f0

exp[Lf (t− s)].

Since fk are uniformly bounded and

‖f1(t− s, ·) − f0(·)‖L ≤ const <∞,

we get

‖fk(t, ·) − fk−1(t, ·)‖L ≤ Nk

k!
const

where N = δ(t − s). It results that for each t ∈ [0, T ] the family fk(t, ·)
uniformly converges to a limiting function f(t, ·). In addition it is easy
to check that f(t, x) is Lipschitz continuous in x. In fact by Lemma 2.2
for each t ∈ [0, T ] we have

|fk(t, x) − fk(t, y)| ≤ β(t)‖x− y‖

where β(t) is determined by (2.12) and the estimate is uniform in k.
To prove that the above constructed solution is unique we assume on

the contrary that there exist two solutions f1(t, x), f2(t, x) to (2.2), (2.3)
possessing the same initial data f1(0, x) = f2(0, x) = f0(x). It results
from Lemma 2.1 that

‖f1(t, ·) − f2(t, ·)‖L ≤
t∫

0

‖f1(τ, ·) − f2(τ, ·)‖L dτ
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and hence ‖f1(t, ·) − f2(t, ·)‖L = 0. Finally, we know that stochastic
equations with Lipschitz coefficients have unique solutions to the Cauchy
problem that yields the uniqueness of the solution to the system (2.2),
(2.3).

In addition notice that the uniqueness of the Markov process ξ(t)
which solves (2.2) leads to the equality f1(t, x) = Ef0(ξ(t)) = f2(t, x).

As the result we get the following assertion.

Theorem 2.2. Let C 2.1 holds. Then there exists the interval [0, T ]
determined by (2.13) and the function f(t) given by (2.3) is the unique
in L weak solution to the Cauchy problem (2.1) defined on [0, T ].

Remark 2.1. We call f a weak solution to (2.1) because if we succeed
to prove that f(t) belongs to C2(Rd) then we can prove that (2.3) gives
a unique classic solution to (2.1) defined on [0, T ].

Consider next the Cauchy problem for the parabolic system

∂uk

∂t
+Bi

kl(u)∇iul + ckl(u)ul =
1

2
TrA∗(u)u′′kA(u),

uk(0, x) = u0k(x), k = 1, 2, . . . , d1, x ∈ Rd. (2.15)

Notice that if Bi
kl(u) = uiδkl, c(u) = 0, A = σI and d = d1 = 1

then (2.15) coincides with the Burgers equation (1.1) and the approach
to construct its solution developed in this section is an alternative to one
connected with the Cole-Hopf transformation mentioned in the introduc-
tion. Note that in the multidimensional case it allows to consider the
Cauchy problem for the Burgers equation without assumption that the
initial data should be a potential vector field which is necessary due to
(1.2) in the application of the Cole-Hopf transformation.

Note that one can treat the system (2.15) as a scalar equation of the
form

∂Φ

∂s
+ ∇M(y)Φ =

1

2
Dik(y)

∂Φ

∂yi∂yk
, Φ(T, y) = Φ0(y) = 〈h, u0(x)〉.

(2.16)
with respect to the scalar function Φ(s, y) = 〈h, u(s, x)〉, y = (x, h) ∈
Rq, where 〈·, ·〉 is the inner product in Rd1 . Here M = (0, c) ∈ Rq,

D =

(
F B
B 0

)
is a q × q matrix and F = A∗A.

Below we state the conditions which guarantee that the coefficients
M,D of this auxiliary scalar equation obey the estimates that ensure the
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existence and uniqueness of the solution to the Cauchy problem (2.16)
and hence to the above system (2.15) as a consequence of a fixed point
theorem.

Namely we construct a solution Φ(t, z), z = (x, h) ∈ Z which be-
longs to the set Θ of continuous functions Φ(x, h) linear in the argument
h ∈ Rd1 and bounded for a fixed h. By this reason we meet additional
difficulties due to the necessity to prove that successive approximations
are uniformly bounded that was granted before by the bounded initial
data.

Note that this idea slightly resembles the idea to introduce additional
space variables used by Kruzkov to study quasi-linear scalar parabolic
equations.

Consider the set Θ = {Φ : Φ(z) = 〈h, φ(x)〉, where φ ∈ Cb(R
d, Rd1)

are Lipschitz continuous functions. It is a linear space with the norm

‖Φ‖Θ = sup
‖h‖=1

sup
x∈Rd

|〈h, φ(x)〉|.

Here and below we identify Rd1 with its dual Rd1 = (Rd1)∗. Denote by Θ1

the linear space Θ1 =Cb(R
d, Rd1) with the norm ‖φ‖Θ1 = supx∈Rd ‖φ(x)‖.

It should be mentioned that ‖Φ‖Θ = ‖φ‖Θ1 .
Let c(u) ∈ Rd1 , C(u)y ∈ L(Rd1), x, y ∈ Rd, u ∈ Rd1 . To prove the

convergence of the successive approximations we need some restrictions
on the coefficients of (2.16).

We say that C 2.2 holds if C 2.1 holds, B = CA and besides the
following estimates are valid

〈c(f)h, h〉 + σ2‖C(f)h‖ ≤
[
C0 + C1‖f‖p

]
‖h‖2,

∥∥[c(f) − c(f1)]h
∥∥2

+ σ2
(
[C(f) − C(f1)]h

)
≤
[
Mf,f1‖f − f1‖2

]
‖h‖2

where C1 > 0, C0 are absolute constants and Mf,f1 is a positive constant
depending on the maximum of norms of functions f and f1. In addition
we assume that all coefficients are smooth and their derivatives satisfy
the above estimates.

Consider the system of stochastic equations

dξ = A(u(t− τ, ξ(τ)) dw(τ), ξ(0) = x, (2.17)

dη(τ) = −c(u(t− τ, ξ(τ))η(τ) dτ

− C(u(t− τ, ξ(τ))(η(τ), dw(τ)), η(0) = h, (2.18)

〈h, u(t, x)〉 = E〈η(t), u0(ξ(t)〉. (2.19)
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We construct the solution to (2.17)–(2.19) by a successive approxima-
tion method.

Let
u0(t, x) = u0(x), ξ0(t) = x, (2.20)

dξk = A(uk(t− τ, ξk(τ)) dw(τ), ξk(0) = x, (2.21)

dηk(t) = c(uk(t− τ, ξk(τ))ηk(τ) dτ

+ C(uk(t− τ, ξk(τ))(ηk(τ), dw(τ)), ηk(0) = h, (2.22)

〈h, uk+1(t, x)〉 = E〈ηk(t), u0(ξ
k(t))〉. (2.23)

To prove that the family uk(t) is uniformly bounded or what is the
same to prove the corresponding property for Φk(t, z) = 〈h, uk(t, x)〉 for
all h such that ‖h‖ = 1 we introduce the two component Wiener process
W (t) = (w(t), w(t)) with identical components w(t) ∈ Rd and prove the
following assertion.

Lemma 2.3. Let C 2.2 hold, u0 ∈ Θ1 and Ψ(t, z) be determined by

Ψ(t, z) = EΦ0(ζ0,z(t)), (2.24)

where ζ(t) solves the Cauchy problem for the stochastic differential equa-
tion

dζ = MΦ(ζ(t)) dt+DΦ(ζ(t)) dW, ζ(0) = z. (2.25)

Then there exists an interval ∆1 such that Ψ(t) ∈ Θ for all t ∈ ∆1 if
Φ ∈ Θ. In other words the function g(t, x) determined by

〈h, g(t, x)〉 = E〈η(t), u0(ξ(t))〉, (2.26)

where the processes (ξ(t), η(t)) solve the Cauchy problems

dξ = Av(ξ(τ)) dw, ξ(s) = x,

dη = −c(v(t− τ, ξ(τ))η(τ) dτ

+ C(v(t− τ, ξ(τ))(η(τ), dw(τ)), η(s) = h (2.27)

belongs to Θ1 if v ∈ Θ1 for all t ∈ ∆1.

To prove that u(t) has a uniformly bounded Lipschitz constant if v(t)
possesses this property we consider the system obtained from ()() by
formal differentiation in x variable. The resulting system has the same
structure as (2.15) and hence we can apply the above approach to prove
the uniform boundedness of ∇u(t, x) on a certain interval [0, T2] that
yields the following statement.
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Theorem 2.3. Assume that C 2.2 holds. Then there exists an interval
[0, τ ] with the length bounded

|τ | < 1

2C0 + 3C1
ln
[
1 +

2C0 + 3C1

3C1Ku0

]

such that for all t ∈ [0, τ ] there exists a unique bounded solution to
the Cauchy problem (2.15). If in addition 2C0 + 3C1 = 0, then |τ | <
[3C1Ku0 ]

−1. If in addition the solution to (2.15) constructed in this way
is smooth enough it represents a unique classical solution defined on a
(possibly smaller) interval [0, τ1].

3. Vanishing Viscosity Limit

Unfortunately the approach of the previous section does not allow to
deal with the vanishing viscosity limit immediately. Actually the C 2.2
says that B = CA and hence if A goes to zero then B goes to zero too.
To avoid this situation we can take Aε = εA and Cε = ε−1C but in this
case coefficients in (2.18) come to be singular. To overcome this obstacle
we need more assumptions about Bi

lm, l,m = 1, . . . , d1, i = 1, . . . , d in
(2.15). For the simplicity we restrict ourselves to the case d = 1.

Consider the Cauchy problem

ut + a(u)ux +B(u)ux =
ε2

2
A2(u)uxx, u(0, x) = v(x) ∈ Rd1 . (3.1)

We say that the condition C 3 holds if A(u) and B(u) satisfy C 2.2,
A(u) > 0 and the matrix Bkl(u), k, l = 1, . . . d1 has eigenvectors lα,
α = 1, . . . , d1 corresponding to distinct real eigenvalues λα(u), Clα =
λαlα (λα 6= λβ), α, β = 1, . . . , d1 if α 6= β) 〈lα, lβ〉 = δαβ , where δαβ is
the Kronecker symbol. In particular to ensure that C 3 holds it is enough
to assume B to be symmetric.

Theorem 3.1. Let C 3 holds. Then the solution uε to the Cauchy
problem (3.1) admits the representation

uε(s, x) =

d1∑

β=1

ũε
β(t, x)lβ,

where

ũε
β(t, x) = Eṽβ(γε

β(t)) =

∞∫

−∞

vβ(y)µγε
(t, dy),
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the diffusion process γε
β(t) ∈ Rd satisfies the stochastic equation

γε
β(t) = x−

t∫

s

[
a(γε(τ), uε(t− τ, γε

β(τ)) − λβ(uε(t− τ, γε
β(τ))

]
dτ

+ ε[w(t) − w(s)]. (3.2)

and µγε
(t, dy) = P{γε(t) ∈ dy} is a probability distribution of the process

γε(t).

Proof. The process ηε(t) governed by

dη(τ) = ε−1C(u(t− τ, ξ(τ))(η(τ), dw(τ)), η(0) = h, (3.3)

gives rise to a multiplicative operator functional Gε(t; ξ(·)) which can be
represented in the form ηε(t) = Gε(t; ξε(·))h = exp[Gε(t; ξε(·))]h, where

Gε(t) =
1

ε

t∫

0

n∑

i=1

Ci dwi(τ) − 1

2ε2

t∫

0

n∑

i=1

[Ci]2 dτ. (3.4)

Choosing h = lα in (2.2), we obtain

〈lα, u(t, x)〉 = E〈ηε
lα(t), u0(ξ

ε(t))〉

=

〈
lα, E

{
exp

[ t∫

0

ε−1(λα(ξε(τ)), dw(τ))

− ε−2

2

t∫

0

‖λα(ξε(τ))‖2 dτ

]
u0(ξ

ε(t))

}〉
. (3.5)

By the Girsanov formula and condition C 2.2 we derive from (3.5) that

E〈ηε
lα(t), v(ξ

ε(t))〉 =

〈
lα, E

d1∑

β=1

ṽβ(γε
β(t))lβ

〉
= Eṽα(γε

α(t)), (3.6)

where γε
α(t) satisfies (3.2). It is easy to derive from (3.6) that ũε

α(s, x) =
Eṽα(γε

α(t)) and finally, u(s, x) =
∑d1

α=1E ṽα(γε
α(t))lα.

Corollary 3.1. The process γε
α(t), governed by (3.2) continuously de-

pends on ε and the limit γα(t) = P − limε→0 γ
ε
α(t) exists. In addition

γα(t) coincides with the characteristic curve of the hyperbolic equation

∂uα

∂s
+ ∇a(x)+λα

uα = 0 (3.7)
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and the solution u to the Cauchy problem

ut + a(u)ux +B(u) ◦ ∇u = 0, u(0, x) = v(x) (3.8)

has the form u(t, x) =
∑d1

α=1 ṽα(γα(t))rα.

The proof of the Corollary statements follows immediately from (3.2)
and other results of Theorem 3.1
Final remarks. As a conclusion we discuss some possible developments
and applications of the above approach.

1. The approach discussed in Sections 2, 3 allows to construct local
(in time) continuous solutions of parabolic and hyperbolic systems. The
approach might be used as well to construct more complicated solutions
of hyperbolic systems by v.v.m. including both continuous and singular
parts (shock waves and even δ-shock waves) which evolve along a dis-
continuity line. To construct the equation for the discontinuity line by
v.v.m. one can use special properties of averaged trajectories of diffusion
processes (see[1]).

2. The above approach is based on the so called backward Kol-
mogorov equations for diffusion processes. One can consider the sim-
ilar approach based on forward Kolmogorov equations which might be
more corresponding to real physical systems. In this case one can use
the duality between forward and backward Kolmogorov equations as a
background for comparing the probabilistic weak solutions of the Cauchy
problem for nonlinear parabolic equations and systems and weak solu-
tions that satisfy the integral identity.

3. Based on the results from [5] one can use the above approach to
construct the probabilistic representation for the solution of the Cauchy
problem for parabolic systems with a more complicate higher order part.
Namely, under some additional assumptions one can consider the system
with nondiagonal higher order part and use it for studying the corre-
sponding hyperbolic system by v.v.m. See for example [6].

4. One can see as an example of a system that satisfies the above
assumptions the system of gas dynamic equations in the phase space Rd.
In the case d = 1 the above approach was applied to this system in [1].
The case d = 3 will be considered elsewhere.
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