УДК 521.1:531

©2020. А.М. Ковалев, С.Н. Судаков

О ДВИЖЕНИИ СПУТНИКА, СОСТОЯЩЕГО ИЗ ДВУХ МАТЕРИАЛЬНЫХ ТОЧЕК, СВЯЗАННЫХ ПРУЖИНОЙ, ПО ОРБИТЕ ВОКРУГ СФЕРИЧЕСКОЙ ПЛАНЕТЫ

Исследуются угловые движения спутника, состоящего из двух материальных точек, к одной из которых прикреплен жесткий невесомый стержень, по которому движется вторая материальная точка. Материальные точки соединены между собой невесомой пружиной, расположенной вдоль стержня. Между стержнем и движущейся по нему точкой действуют силы вязкого трения.

Ключевые слова: спутник, орбита, упругая связь, материальная точка.

После запуска первого искусственного спутника Земли стала активно развиваться механика космического полета. В печати появилось большое количество статей и монографий на эту тему. Были подробно исследованы орбитальные движения спутников, рассматриваемых как материальные точки [1–4]. В монографии [5] был исследован полет к Луне космического аппарата, который рассматривался как материальная точка. В монографии [6] исследованы движения спутника, моделируемого твердым телом. В сборнике [7] исследовалась динамика составных спутников. В настоящее время публикуется много работ по оптимизации космических полетов [8,9]. Приведенный обзор является далеко не полным и может быть легко продолжен.

Ниже рассматривается движение искусственного спутника в поле тяготения сферической планеты радиуса R. Конструктивно спутник состоит из двух материальных точек A_1 и A_2 , массы которых соответственно равны m_1 и m_2 . К материальной точке A_1 прикреплен невесомый жесткий стержень, по которому перемещается материальная точка A_2 . Между материальной точкой A_2 и стержнем действуют силы вязкого трения. Точки A_1 и A_2 связаны между собой пружиной, внутри которой расположен упомянутый стержень. Материальные точки A_1 и A_2 притягиваются по закону всемирного тяготения Ньютона сферической планетой, которая считается неподвижной.

1. Уравнения движения. Обозначим через Oxyz прямоугольную декартову систему координат Oxy, начало которой O совпадает с центром сферической планеты. Координаты материальных точек A_1 и A_2 обозначим соответственно (x_1, y_1, z_1) и (x_2, y_2, z_2) . На материальные точки A_1 и A_2 действуют три вида сил:

а) силы притяжения к планете;

б) силы упругости пружины;

e) силы вязкого трения, возникающие при движении точки A_2 по невесомому стержню, прикрепленному к точке A_1 .

Запишем выражения для проекций этих сил на оси Oxyz. Проекции сил притяжения планетой имеют вид

$$-\frac{GMm_ix_i}{r_i^3}, \quad i = 1, 2, \quad (xyz), \tag{1}$$

где $r_i = \sqrt{x_i^2 + y_i^2 + z_i^2}$ – расстояние между точкой A_i и центром планеты; i = 1 соответствует материальной точке A_1 , а i = 2 – материальной точке A_2 ; G – гравитационная постоянная; M – масса планеты; символ (xyz) означает, что проекции сил на оси Oy и Oz получаются из записанного выражения (1) для проекции на ось Ox циклической перестановкой взятых в скобки символов.

Проекции сил, действующих на материальные точки A_1 и A_2 со стороны пружины, имеют вид

$$f_x = \mp k \left(1 - \frac{l}{r_{12}} \right) (x_1 - x_2), \quad (xyz), \tag{2}$$

где $r_{12} = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (z_1 - z_2)^2}$ – расстояние между точками A_1 и A_2 ; знак минус соответствует силе, действующей на материальную точку A_1 , а знак плюс – на A_2 ; k – коэффициент упругости пружины; l – длина пружины в нейтральном состоянии.

Чтобы найти выражения для сил вязкого трения, действующих на материальную точку A_2 , движущуюся по стержню, заметим, что проекции вектора, проведенного из точки A_2 в A_1 , имеют вид

$$x_1 - x_2, \quad y_1 - y_2, \quad z_1 - z_2.$$

Тогда компоненты скорости точки A_1 относительно A_2 будут равны

$$\dot{x_1} - \dot{x_2}, \quad \dot{y_1} - \dot{y_2}, \quad \dot{z_1} - \dot{z_2}.$$

Проекции единичного вектора, направленного от A_2 к A_1 , имеют вид

$$e_x = \frac{x_1 - x_2}{r_{12}}$$
 (xyz).

Тогда компоненты силы вязкого трения g_x , действующей на материальную точку A_2 , будут следующими:

$$g_x = \mu e_x \sum_{(xyz)} e_x (\dot{x_1} - \dot{x_2}) \quad (xyz),$$
 (3)

где μ – коэффициент вязкого трения. Компоненты сил вязкого трения, действующие на жестко прикрепленную к стержню материальную точку A_1 , определяются формулами (3), взятыми со знаком минус. Формулы (1)–(3) определяют компоненты всех сил, действующих на материальные точки A_1 и A_2 . Используя эти формулы, запишем уравнения движения материальных точек A_1 и A_2 :

$$m_1 \frac{d^2 x_1}{dt^2} = -\frac{GMm_1 x_1}{r_1^3} - f_x - g_x, \qquad m_2 \frac{d^2 x_2}{dt^2} = -\frac{GMm_2 x_2}{r_2^3} + f_x + g_x,$$
(4)
(xyz).

2. Первое частное решение уравнений движения. Это решение имеет вид

$$x_1 = r\cos(\omega t + \varphi_0), \qquad y_1 = r\sin(\omega t + \varphi_0), \qquad z_1 = 0;$$

$$x_2 = r\cos\omega t, \qquad y_2 = r\sin\omega t, \qquad z_2 = 0,$$
(5)

где r = R + h; h – высота полета спутника над поверхностью планеты; φ_0 – постоянная. Угловая скорость ω определяется формулой

$$\omega = \sqrt{\frac{GM}{r^3}}.$$

Параметр l, входящий в (2), задается выражением

$$l = 2r\sin\frac{\varphi_0}{2}.$$

Решение (5) описывает такое движение спутника, при котором точки A_1 и A_2 движутся в плоскости Oxy по круговой орбите радиуса r с угловой скоростью ω и угол между радиусами, соединяющими эти материальные точки с центром планеты, постоянен и равен φ_0 .

3. Второе частное решение уравнений движения. Пусть $m_1 = m_2$. В этом случае уравнения (4) имеют решение

$$x_1 = \rho \cos \omega t, \quad y_1 = \rho \sin \omega t, \quad z_1 = \text{const},$$

$$x_2 = \rho \cos \omega t, \quad y_2 = \rho \sin \omega t, \quad z_2 = -z_1,$$
(6)

где ρ и ω – постоянные, $z_1 > 0$. Чтобы определить постоянные ρ , ω , z_1 , подставим (6) в уравнения (4). Подстановка решения (6) в уравнения (4) приводит к соотношениям

$$\omega^2 = \frac{GM}{(\rho^2 + z_1^2)^{3/2}}, \qquad \rho^2 = x_1^2 + y_1, \tag{7}$$

$$\frac{GMm_1}{(\rho^2 + z_1^2)^{3/2}} = k \frac{l - 2z_1}{z_1}, \qquad l > 2z_1.$$
(8)

97

Величины k и l являются конструктивными параметрами пружины. Поэтому в некоторых случаях их можно считать заданными заранее. Величина ω определяет частоту вращения спутника по орбите. Ее тоже можно считать заданной. Тогда ρ и z_1 могут быть найдены из уравнений (7), (8).

В некоторых случаях удобно считать заранее заданными ρ и z_1 , а ω , k, l определять из уравнений (7) и (8).

Отметим, что решение (6) уравнений (4) описывает движение спутника, которое можно охарактеризовать так:

a) материальные точки A_1 и A_2 движутся по одинаковым круговым орбитам, лежащим в плоскостях, параллельных плоскости Oxy;

 δ) отрезок прямой, соединяющей центры круговых орбит, проходит через центр планеты и делится им пополам;

b) отрезок прямой, соединяющий материальные точки A_1 и A_2 , ортогонален плоскостям их орбит;

 $\boldsymbol{s})$ пружина, соединяющая материальные точки A_1 и $A_2,$ находится в сжатом состоянии.

Решение (6) может быть обобщено на случай $m_1 \neq m_2$. Для этого представим его в виде

$$x_1 = \rho_1 \cos \omega t, \quad y_1 = \rho_1 \sin \omega t, \quad z_1 = \text{const},$$

$$x_2 = \rho_2 \cos \omega t, \quad y_2 = \rho_2 \sin \omega t, \quad z_2 = \text{const},$$
(9)

где ρ_1 , ρ_2 , z_1 , z_2 , ω – пока неизвестные величины. Подставляя (9) в (4), получаем уравнения для определения ρ_1 , ρ_2 , z_1 , z_2 , ω :

$$m_{i}\omega^{2}\rho_{i} = \frac{GMm_{i}\rho_{i}}{(\rho_{i}^{2} + z_{i}^{2})^{3/2}} - (-1)^{i}k(\rho_{1} - \rho_{2})\Phi(l,\rho_{1},\rho_{2},z_{1},z_{2}),$$

$$\frac{GMm_{i}z_{i}}{(\rho_{i}^{2} + z_{i}^{2})^{3/2}} - (-1)^{i}k(z_{1} - z_{2})\Phi(l,\rho_{1},\rho_{2},z_{1},z_{2}) = 0,$$

$$i = 1, 2,$$
(10)

где

$$\Phi(l,\rho_1,\rho_2,z_1,z_2) = 1 - \frac{l}{\sqrt{(\rho_1 - \rho_2)^2 + (z_1 - z_2)^2}}.$$

Задав один из параметров ρ_1 , ρ_2 , z_1 , z_2 , ω , например ω , из уравнений (10) можно найти все остальные.

4. Третье частное решение уравнений движения. Это решение будем искать в виде

$$x_{1} = r_{1} \cos \omega t, \quad y_{1} = r_{1} \sin \omega t, \quad z_{1} = 0,$$

$$x_{2} = r_{2} \cos \omega t, \quad y_{2} = r_{2} \sin \omega t, \quad z_{2} = 0,$$
(11)

где r_1 , r_2 , ω – неизвестные постоянные. Для определенности будем считать, что $r_1 > r_2 > 0$. Подставляя (11) в уравнения (4), получаем соотношения

$$m_1 \omega^2 r_1 = \frac{GMm_1}{r_1^2} + k(r_1 - r_2 - l),$$

$$m_2 \omega^2 r_2 = \frac{GMm_2}{r_2^2} - k(r_1 - r_2 - l).$$
(12)

Будем считать, что параметры M, m_1, m_2, l, k заданы. Зададим радиус r_1 . Тогда из уравнений (12) можно найти неизвестные r_2 и ω . Складывая уравнения (12) почленно, находим

$$\omega^2 = \frac{GM(m_1r_2^2 + m_2r_1^2)}{r_1^2 r_2^2(m_1r_1 + m_2r_2)}.$$
(13)

С учетом (13) из первого уравнения (12) получаем

$$k = \left(\frac{GM(m_1r_2^2 + m_2r_1^2)}{r_2^2(m_1r_1 + m_2r_2)} - \frac{GM}{r_1}\right)\frac{m_1}{r_1(r_1 - r_2 - l)}$$

Последнее уравнение перепишем в виде многочлена по степеням r_2 :

$$a_4r_2^4 + a_3r_2^3 + a_2r_2^2 + a_1r_2 + a_0 = 0, (14)$$

где

$$a_4 = km_2r_1^2, \quad a_3 = kr_1^3(m_1 - m_2) + m_2(klr_1^2 - GMm_1),$$

 $a_2 = -km_1r_1^3(r_1 - l), \quad a_1 = 0, \quad a_0 = GMm_1m_2r_1^3.$

Значение r_2 находится из решения уравнения (14). При этом должно выполняться неравенство $r_1 - r_2 > l$, означающее, что пружина, соединяющая материальные точки спутника, растянута. Растянутая пружина увеличивает центростремительную силу, действующую на точку A_1 , движущуюся по окружности большего радиуса, и уменьшает центростремительную силу, действующую на точку A_2 , движущуюся по окружности меньшего радиуса. Это позволяет обеим точкам находиться при движении на одной прямой, проходящей через центр планеты. Найдя r_2 , по формуле (13) находим ω .

В рассмотренном случае спутник совершает по круговой орбите такое движение, при котором обе его материальные точки лежат все время на одном радиусе, который поворачивается в плоскости орбиты вокруг центра планеты с постоянной угловой скоростью.

5. Переход к вращающейся системе координат. В ряде случаев угловые движения спутника удобнее изучать в подвижной системе координат, в которой три рассмотренных выше решения становятся стационарными. Для этого от осей Oxyz перейдем к осям $O\tilde{x}\tilde{y}z$, которые вращаются вокруг оси Oz

с постоянной угловой скоростью $\omega.$ Формулы перехода от осе
йOxyzк осям $O\tilde{x}\tilde{y}z$ имеют вид

$$x_{i} = \tilde{x}_{i} \cos \omega t - \tilde{y}_{i} \sin \omega t,$$

$$y_{i} = \tilde{x}_{i} \sin \omega t + \tilde{y}_{i} \cos \omega t,$$

$$i = 1, 2.$$
(15)

Координата z при этом преобразовании не меняется. Здесь $\tilde{x}_i, \tilde{y}_i, z_i, i = 1, 2,$ – координаты материальной точки A_i спутника в осях $O\tilde{x}\tilde{y}z$.

Дифференцируя равенства (15) по t, выразим компоненты абсолютной скорости \dot{x}_i , \dot{y}_i , i = 1, 2, материальных точек через компоненты их относительных скоростей \dot{x}_i , \dot{y}_i , i = 1, 2:

$$\dot{x}_{i} = \dot{\tilde{x}}_{i} \cos \omega t - \dot{\tilde{y}} \sin \omega t - \tilde{x}_{i} \omega \sin \omega t - \tilde{y}_{i} \omega \cos \omega t,$$

$$\dot{y}_{i} = \dot{\tilde{x}} \sin \omega t + \dot{\tilde{y}} \cos \omega t + \tilde{x}_{i} \omega \cos \omega t - \tilde{y}_{i} \omega \sin \omega t,$$

$$i = 1, 2.$$
(16)

Дифференцируя (16) по t, получаем аналогичные равенства для компонент ускорений \ddot{x}_i , \ddot{y}_i , i = 1, 2:

$$\ddot{x}_{i} = \ddot{x}_{i} \cos \omega t - \ddot{y} \sin \omega t - 2\dot{x}_{i}\omega \sin \omega t - 2\dot{y}_{i}\omega \cos \omega t - - \tilde{x}_{i}\omega^{2} \cos \omega t + \tilde{y}_{i}\omega^{2} \sin \omega t,$$

$$\ddot{y}_{i} = \ddot{x} \sin \omega t + \ddot{y} \cos \omega t + 2\dot{x}_{i}\omega \cos \omega t - 2\dot{y}_{i}\omega \sin \omega t - - \tilde{x}_{i}\omega^{2} \sin \omega t - \tilde{y}_{i}\omega^{2} \cos \omega t,$$

$$i = 1, 2.$$

$$(17)$$

Подставляя (15) – (17) в уравнения (4), приводим последние к виду

$$\ddot{\tilde{x}}_1 \cos \omega t - \ddot{\tilde{y}}_1 \sin \omega t - 2\dot{\tilde{x}}_1 \omega \sin \omega t - 2\dot{\tilde{y}}_1 \omega \cos \omega t - \omega^2 \tilde{x}_1 \cos \omega t + + \omega^2 \tilde{y}_1 \sin \omega t = -\frac{GM}{(\tilde{x}_1^2 + \tilde{y}_1^2 + z_1^2)^{3/2}} (\tilde{x}_1 \cos \omega t - \tilde{y}_1 \sin \omega t) - -\frac{F}{m_1} [(\tilde{x}_1 - \tilde{x}_2) \cos \omega t - (\tilde{y}_1 - \tilde{y}_2) \sin \omega t],$$

 $\ddot{\tilde{x}}_1 \sin \omega t + \ddot{\tilde{y}}_1 \cos \omega t + 2\omega \dot{\tilde{x}}_1 \cos \omega t - 2\omega \dot{\tilde{y}}_1 \sin \omega t - \omega^2 \tilde{x}_1 \sin \omega t - \omega^2 \tilde{x}_$

$$-\omega^2 \tilde{y}_1 \cos \omega t = -\frac{GM}{(\tilde{x}_1^2 + \tilde{y}_1^2 + z_1^2)^{3/2}} (\tilde{x}_1 \sin \omega t + \tilde{y}_1 \cos \omega t) - \frac{F}{m_1} [(\tilde{x}_1 - \tilde{x}_2) \sin \omega t + (\tilde{y}_1 - \tilde{y}_2) \cos \omega t],$$

100

$$\ddot{z}_1 = -\frac{GMz_1}{(\tilde{x}_1^2 + \tilde{y}_1^2 + z_1^2)^{3/2}} - \frac{F}{m_1}(z_1 - z_2),$$

 $\ddot{\tilde{x}}_2\cos\omega t - \ddot{\tilde{y}}_2\sin\omega t - 2\dot{\tilde{x}}_2\omega\sin\omega t - 2\dot{\tilde{y}}_2\omega\cos\omega t - \omega^2\tilde{x}_2\cos\omega t +$

$$+\omega^{2}\tilde{y}_{2}\sin\omega t = -\frac{GM}{(\tilde{x}_{2}^{2} + \tilde{y}_{2}^{2} + z_{2}^{2})^{3/2}}(\tilde{x}_{2}\cos\omega t - \tilde{y}_{2}\sin\omega t) - \frac{F}{m_{2}}[(\tilde{x}_{1} - \tilde{x}_{2})\cos\omega t - (\tilde{y}_{1} - \tilde{y}_{2})\sin\omega t],$$
(10)

 $\ddot{\tilde{x}}_2 \sin \omega t + \ddot{\tilde{y}}_2 \cos \omega t + 2\omega \dot{\tilde{x}}_3 \cos \omega t - 2\omega \dot{\tilde{y}}_2 \sin \omega t - \omega^2 \tilde{x}_2 \sin \omega t -$ (18)

$$-\omega^2 \tilde{y}_2 \cos \omega t = -\frac{GM}{(\tilde{x}_2^2 + \tilde{y}_2^2 + z_2^2)^{3/2}} (\tilde{x}_2 \sin \omega t + \tilde{y}_2 \cos \omega t) - \frac{F}{m_2} [(\tilde{x}_1 - \tilde{x}_2) \sin \omega t + (\tilde{y}_1 - \tilde{y}_2) \cos \omega t],$$
$$\ddot{z}_2 = -\frac{GM z_2}{(\tilde{x}_2^2 + \tilde{y}_2^2 + z_2^2)^{3/2}} + \frac{F}{m_2} (z_1 - z_2),$$

где

$$F = k \left(1 - \frac{l}{\sqrt{(\tilde{x}_1 - \tilde{x}_2)^2 + (\tilde{y}_1 - \tilde{y}_2)^2 + (z_1 - z_2)^2}} \right) + \mu \frac{(\dot{\tilde{x}}_1 - \dot{\tilde{x}}_2)(\tilde{x}_1 - \tilde{x}_2) + (\dot{\tilde{y}}_1 - \dot{\tilde{y}}_2)(\tilde{y}_1 - \tilde{y}_2) + (\dot{z}_1 - \dot{z}_2)(z_1 - z_2)}{(\tilde{x}_1 - \tilde{x}_2)^2 + (\tilde{y}_1 - \tilde{y}_2)^2 + (z_1 - z_2)^2} .$$
(19)

Выполняя линейные комбинации первого и второго уравнений, а потом четвертого и пятого, приводим уравнения (18) к виду

$$\begin{split} \ddot{\tilde{x}}_{i} - 2\omega\dot{\tilde{y}}_{i} - \omega^{2}\tilde{x}_{i} &= -\frac{GM\tilde{x}_{i}}{(\tilde{x}_{i}^{2} + \tilde{y}_{i}^{2} + z_{i}^{2})^{3/2}} + (-1)^{i}\frac{F}{m_{1}}(\tilde{x}_{1} - \tilde{x}_{2}), \\ \ddot{\tilde{y}}_{i} + 2\omega\dot{\tilde{x}}_{i} - \omega^{2}\tilde{y}_{i} &= -\frac{GM\tilde{y}_{i}}{(\tilde{x}_{i}^{2} + \tilde{y}_{i}^{2} + z_{i}^{2})^{3/2}} + (-1)^{i}\frac{F}{m_{1}}(\tilde{y}_{1} - \tilde{y}_{2}), \\ \ddot{z}_{i} &= -\frac{GMz_{i}}{(\tilde{x}_{i}^{2} + \tilde{y}_{i}^{2} + z_{i}^{2})^{3/2}} + (-1)^{i}\frac{F}{m_{1}}(z_{1} - z_{2}), \\ i &= 1, 2, \end{split}$$
(20)

где *F* задано формулой (19).

Первое частное решение уравнений (20), соответствующее решению (5) уравнений (4), имеет вид

$$\tilde{x}_1 = r - \frac{l^2}{2r}, \quad \tilde{y}_1 = l\sqrt{1 - \frac{l^2}{4r^2}}, \quad z_1 = 0,$$

$$\tilde{x}_2 = r, \quad \tilde{y}_2 = 0, \quad z_2 = 0,$$
(21)

где

$$\omega = \sqrt{\frac{GM}{r^3}}.$$

Второе частное решение уравнений (20), соответствующее решению (6) уравнений (4), имеет вид

$$\tilde{x}_1 = \rho, \quad \tilde{y}_1 = 0, \quad z_1 = \text{const},
\tilde{x}_2 = \rho, \quad \tilde{y}_2 = 0, \quad z_2 = -z_1,$$
(22)

где

$$z_1 = \frac{kl}{m_1\omega^2 + 2k}, \quad \rho = \sqrt{\left(\frac{GM}{\omega^2}\right)^{2/3} - \left(\frac{kl}{m_1\omega^2 + 2k}\right)^2}.$$

Параметры k, l, ω считаются заданными.

Третье частное решение уравнений (20), соответствующее решению (11) уравнений (4), имеет вид

$$\tilde{x}_1 = r_1, \quad \tilde{y}_1 = 0, \quad z_1 = 0,
\tilde{x}_2 = r_2, \quad \tilde{y}_2 = 0, \quad z_2 = 0,$$
(23)

где радиус орбиты первой материальной точки r_1 задается, а радиус орбиты второй материальной точки r_2 находится из уравнения (14). Угловая скорость ω вращения системы кординат $O\tilde{x}\tilde{y}z$ определяется формулой (13).

Рассмотрим **численный пример**, иллюстрирующий растяжение пружины в частном решении третьего типа. Для этого массу планеты выберем равной массе Земли. Тогда, согласно [10], будем иметь

$$MG = 3986005 \cdot 10^8 \,\,\text{m}^3 c^{-2}.$$

Параметры спутника и радиус r_1 наружной орбиты выберем следующими:

$$m_1 = 10 \ \kappa r, \quad m_2 = 10 \ \kappa r, \quad l = 2 \ M, \quad r_1 = 7000002 \ M.$$

Задавая различные значения коэффициента упругости пружины k, из уравнения (14) находим соответствующие им значения r_2 . Результаты расчетов зависимости радиуса r_2 от коэффициента k представлены в таблице.

N	$k \left(\kappa \mathbf{r} \cdot c^{-2} \right)$	$r_{2}\left(\mathcal{M} ight)$	$r_1 - r_2\left(\mathcal{M}\right)$
1	0.0001	6999999.578	2.422
2	0.0002	6999999.809	2.191
3	0.0003	6999999.877	2.123
4	0.0004	6999999.909	2.091
5	0.0005	6999999.928	2.072
6	0.0006	6999999.940	2.060
7	0.0008	6999999.955	2.045
8	0.0010	6999999.965	2.035
9	0.0012	6999999.971	2.029
10	0.0014	6999999.975	2.025
11	0.0020	6999999.982	2.018
12	0.0025	6999999.986	2.014
13	0.0030	6999999.988	2.012
14	0.0040	6999999.991	2.009
15	0.0050	6999999.993	2.007
16	0.0070	6999999.995	2.005
17	0.0100	6999999.997	2.003
18	0.0200	6999999.998	2.002
19	0.0250	6999999.999	2.001
20	0.0700	7000000.000	2.000

Из таблицы видно, как изменяется расстояние между материальными точками A_1 и A_2 при изменении коэффициента упругости k. Так, при $k = 0.0001 \, \kappa s \cdot c^{-2}$ расстояние $A_1 A_2 = 2.422 \, m$, т. е. длина пружины увеличилась на $0.422 \, m$. А при $k = 0.0700 \, \kappa s \cdot c^{-2}$ удлинение пружины будет менее 1 mm. При дальнейшем увеличении k удлинение пружины будет уменьшаться, стремясь к нулю при $k \to \infty$. Уравнение для r_2 является уравнением четвертой степени и, наряду с приведенными в таблице, дает еще одно положительное значение r_2 , которое меньше радиуса Земли и поэтому не рассматривалось. При k = 0 из уравнения (14) имеем $r_2 = r_1$, откуда следует, что обе материальные точки спутника совпадают и движутся как одно целое. При 0 < k < 0.0001 исследование стационарных движений сводится к исследованию корней уравнения (14) и в настоящей работе не проводилось.

Заключение. Составлены уравнения движения спутника, состоящего из двух материальных точек, связанных друг с другом невесомой пружиной, вокруг сферической планеты. Найдены три частных решения уравнений движения, описывающих стационарные движения спутника по круговой орбите. Полученные решения могут быть использованы при решении уравнений движения численными методами.

- 1. Балк М.Б. Элементы динамики космического полета. М.: Наука, 1965. 340 с.
- 2. *Маркеев А.П.* Точки либрации в небесной механике и космодинамике. М.: Наука, 1978. 312 с.
- 3. Фертрегт М. Основы космонавтики. М.: Просвещение, 1969. 304 с.
- 4. Эльясберг П.Е. Введение в теорию полета искусственных спутников Земли. М.: Наука, 1965. 540 с.
- 5. Егоров В.А. Пространственная задача достижения Луны. М.: Наука, 1965. 224 с.
- 6. Белецкий В.В. Движение спутника относительно центра масс в гравитационном поле. – М.: Изд-во Московского ун-та, 1975. – 307 с.
- Задачи стабилизации составных спутников. Механика. Новое в зарубежной науке. Редакторы серии: А.Ю. Ишлинский, Г.Г. Черный. – Вып. 1. – М.: Наука, 1975. – 208 с.
- 8. *Комаров В.Г.* Оптимальные траектории космического аппарата при скачкообразном изменении его параметров // Техн. механика. 2015. № 3. С. 46–53.
- 9. *Мозэкорина Т.Ю*. Численное решение задач оптимального управления с переключением методом пристрелки // Математическое моделирование и численные методы. 2017. № 2. С. 94–106.
- 10. *Мориц Г., Мюллер А.* Вращение Земли: теория и наблюдения. Киев: Наук. думка, 1992. 512 с.

A.M. Kovalev, S.N. Sudakov

On motion of a satellite consisting of two mass points, connected by a spring, along an orbit around a spherical planet

The satellite under consideration consists of two mass points, one of which is attached to a weightless rigid rod. Another mass point is able to slide along this rod in the presence of the viscous friction force. These two mass points are connected by a weightless spring, which is placed along the rod. In the paper, the angular and the transfer motions of this compound satellite in the gravity field of a spherically symmetric planet are investigated.

Keywords: satellite, orbit, elastic constraint, mass point.

ГУ "Ин-т прикл. математики и механики", Донецк sudakov@iamm.su

Получено 08.07.20