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1. Introduction

Entropy is one of the most important notion in the information the-
ory and the ergodic theory. Initially entropy has appeared in the Claude
Shannon’s applied works. Next Kolmogorov and Sinai developed the im-
portant invariant, namely the entropy for an automorphism of an Abelian
W ⋆-algebra (see [9], [15], [16]). In 1975 the entropy for an automorphism
of a non-abelianW ⋆-algebra with a central state was defined by A. Connes
and E. Størmer (see [5]). The final definition was given in the paper of
Connes, Narnhofer and Tirring in 1987 (see [4]). This one is usually called
by the quantum dynamical entropy or the CNT-entropy.

The CNT-entropy is calculated for many non-commutative dynami-
cal systems of the topological, algebraic or physical origin. We consider
in our work the dynamical systems generated by the shift automorphism
on the II1-representations of the infinite symmetric group S(∞). The
group S(∞) has been often quoted as a typical example of ICC-groups
and hence of groups of non-type I. For that reason S(∞) involves a
number of interesting features which not observed in groups of type I.
Dynamical systems generated by the non-commutative shift have been
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16 Entropy of the Shift...

investigated beginning from the introduction of the notion of the CNT-
entropy. Connes and Størmer obtained the explicit formulae for the
non-commutative Bernoulli shift (see [5]). In the work of Størmer and
Golodets the similar results was obtained for the binary shift on a CAR-
algebra (see [7]). The main examples for which the C∗-algebra entropy
have been computed, are those of quasifree states of the CAR and CCR-
algebras and invariant Bogoliubov (or quasifree) automorphisms (see [2],
[6], [11], [12], [14], [17]). In our work [3] the Bogoliubov automorphisms
on the II1-representations of U(∞) are defined and the explicit formulae
for the CNT-entropy are obtained in the case of elementary characters.
Using the results of the present work for a low estimation of the CNT-
entropy of the shift on the II1-representations of U(∞) we obtain the
formulae for the Bogoliubov automorphism in the case of a general char-
acter (this results will be published in the separate paper).

Denote by S(2n+1)=S (Bn) the group of permutations of the set Bn =
{−n, . . . , 0, . . . , n}. If A and B are two sets and B ⊂ A, then we identify
S (B) with the subgroup {g ∈ S (A) : ga = a ∀ a ∈ A\B} of S (A). Let
S(∞) =

⋃
n
S(2n+ 1). Thoma has obtained the full description of II1-

factor-representations of group S(∞). Corresponding normalized charac-

ters χ
(S)
α,β are labelled by a pair of sequences of real numbers {αi} = α,

{βi} = β, i = 1, 2, . . ., such that αi ≥ αi+1 ≥ 0, βj ≥ βj+1 ≥ 0 ∀ i, j ∈ N,∑
αi +

∑
βj ≤ 1. The value of a character χ

(S)
α,β on a permutation with a

single cycle of length k is equal to
∑

j

αk
j + (−1)k−1

∑

j

βk
j (1.1)

Its value on a permutation with several disjoint cycles equals to the prod-
uct of its values on each cycle. As usual, it is assumed that an empty
product equals to 1. In particular, the character of the regular represen-
tation of the group S(∞) corresponds to the sequences αj ≡ 0, βj ≡ 0.

The bijection i ∈ Z → i + 1 ∈ Z defines naturally an automorphism
ϑS of the group S(∞), which extends up to the automorphism ϑχ

S of the
II1-factor built by the representation that corresponds to the character
χ. We denote by Hχ(θ) the CNT-entropy of an automorphism θ of the
II1-factor.

The main result of our work is following

Theorem 1.1. Let χ=χ
(S)
α,β, let η(t)=−t ln t and γ=1− (

∑
αi+

∑
βj).

(i) If γ > 0 then Hχ

(
ϑχ

S

)
= ∞.

(ii) If γ = 0 then Hχ

(
ϑχ

S

)
=
∑
j
η (αj) +

∑
j
η (βj).
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2. The Case γ > 0

In this section we will consider the case γ > 0.

Theorem 2.1. Let χ = χ
(S)
α,β and γ = 1 − (

∑
αi +

∑
βj) > 0, then

Hχ

(
ϑχ

S

)
= ∞.

We will prove several subsidiary statements.
Consider the complex type II1 factor-representation Πχ of the group

S(∞) which corresponds to the normalize character χ (see (1.1)). We
assume that Πχ is realized in Hilbert space Hχ which is the closure of the
linear span of vectors u ∈ S(∞) with the scalar product 〈u, v〉χ = χ(uv∗).
In Hχ we define the unitary representations lχ and rχ of the group S(∞):

lχ(u)v = uv, rχ(u)v = vu∗. (2.1)

Let us denote by Lχ (Rχ) the W ⋆-algebra generated by lχ (S(∞))
(rχ (S(∞))) and denote by Hχ (N1, N2, . . . , Nk) a CNT-entropy of a sys-
tem of finite-dimensional subalgebras N1, N2, . . . , Nk ⊂ Lχ (see [5]).

If A is an operator family and A′ is the commutant of A then L′
χ = Rχ.

Definition 2.1. A normalize character χ on G is called an indecompos-
able one if algebra Lχ (Rχ) is a factor.

Lemma 2.1. Let A ⊂ Bn and let W ⋆-algebra Lχ (S (A)) be generated by
operators lχ(g) (g ∈ S (A)). If χ is an indecomposable normalize char-
acter on S(∞) then

Hχ(ϑχ
S) ≥ Hχ (Lχ (S (A)))

2n+ 1
(2.2)

Proof. Let trχ be a trace on Lχ that corresponds to character χ. If
α = (ϑχ

S)2n+1, Nk = αk (Lχ (S (A))), then the following properties hold
true:

i) Nk are pairwise commute for any k ∈ Z, where Z is the set of
integers;

ii) if n1, n2 ∈ Z and n1 < n2, then ∃ a masa 1 A ⊂
n2∨
n1

Nk for which

Ak = A
⋂

Nk is the masa in Nk;

iii) A =
n2∨
n1

Ak and trχ

(
n2∏

k=n1

ak

)
=

n2∏
k=n1

trχ (ak) ∀ ak ∈ Ak.

1maximal abelian subalgebra
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From these statements and properties (D), (E) [5] it follows that

Hχ (Nn1 ,Nn1+1, . . . ,Nn2)=Hχ

(n2∨

n1

Ak

)
=(n2 − n1 + 1)Hχ(Lχ(S (A))).

Thus (2n+ 1)Hχ

(
ϑχ

S

)
= Hχ(α) ≥ Hχ (Lχ (S (A))).

Next statement allows a lower boundary for the entropyHχ(Lχ(S(A)))
in a case of the regular representation.

Lemma 2.2. Let A be the same one as in Lemma 2.1. If χ is a character
of the regular representation, then there exists a number C which does not
depend on A and Hχ (Lχ (S (A))) ≥ C · |A| · ln |A|.

Proof. Let |A| = m, and let χ(λ) be a character of an irreducible repre-
sentation πλ of the group S(m) = S (A) which corresponds to the Young

diagram λ, dimλ = dimπλ, χ
(λ)
norm = χ(λ)

dim λ . If χm is a restriction of χ on
S(m) and |λ| is the number of boxes in λ, then

χm =
∑

λ:|λ|=m

(dimλ)2

m!
χ(λ)

norm. (2.3)

We denote by eλ the minimal projection in W ∗-algebra (πλ (S(m)))′′

which is generated by operators πλ (g) (g ∈ S(m)). h(p, q) will denote
the corresponding hook length for a box (p, q) ∈ λ. Recall the well-known
hooks-formula

dimλ = m! ·
∏

(p,q)∈λ

1

h(p, q)
. (2.4)

Using (2.3) and (2.4), we obtain

χm (eλ) =
∏

(p,q)∈λ

1

h(p, q)
. (2.5)

It implies that

Hχ (Lχ (S (A))) =
∑

λ:|λ|=m

−dimλ · χm (eλ) · ln (χm (eλ))

=
∑

λ:|λ|=m

(dimλ)2

m!
· ln
( ∏

(p,q)∈λ

h(p, q)

)
. (2.6)
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Using the following inequality belonged to Vershik and Kerov (see [18])
and (2.3)

exp
[c0

2

√
m
]
·
√
m! ≤ min

λ:|λ|=m

∏

(p,q)∈λ

h(p, q) ≤ exp
[c1

2

√
m
]
·
√
m!,

where c0 and c1 are positive integers , from (2.6) we obtain

Hχ (Lχ (S (A))) ≥ c0
2

√
m+

1

2
· ln (m!) .

So the statement of our lemma follows from Stirling’s formula.

Now let us take for χ an arbitrary indecomposable normalize character
on S(∞). If M is an injective finite factor with normalize trace tr, then
there is a representation

πχ : S(∞) → U(M)

with the property
χ(g) = tr (πχ(g)) .

Here U(M) denotes a group of unitary operators in M.
Consider the following operator limit in the weak operator topology

lim
n→∞

πχ ((i, n)) = Ai, (2.7)

where (i, n) ∈ S(∞) is a transposition. It is obviously, that Ai = A∗
i . Let

µ be a spectral measure of operator Ai:

∫
xkµ(dt) = tr

(
Ak

i

)
∀ k ∈ N.

We denote by N/g a set of orbits of a permutation g on the set N. Denote
by |p| the cardinality of an orbit p ∈ N/g. The following statement
belongs to A. Okounkov (see [13]).

Lemma 2.3. The following properties are true:

a) AiAj = AjAi ∀ i, j ∈ Z and tr

(∏
l

Akl
jl

)
=
∏
l

tr
(
Akl

jl

)
∀ kl ∈ Z+ =

N
⋃{0};

b) πχ (g)Aiπχ

(
g−1
)

= Ag(i);

c) suppµ ⊂ [−1, 1], the measure µ is discrete and ∀ ε > 0 a set
[−1,−ε]⋃[ε, 1] contains at the most 2

ε its atoms;
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d) Let fi, gi (i ∈ Z) are functions on [−1, 1] which are pointwise limits
of uniformly bounded sequences of continuous functions. If all of
fi, gi (i ∈ Z) but finitely many identically equal to 1, then

tr

(∏

i∈Z

ḡi (Ai)πχ (g)
∏

i∈Z

fi (Ai)

)
=
∏

p∈N/g

∫
x|p|−1

∏

i∈p

fi(t)gi(t) dµ;

e) ∀x 6= 0 ν(x) = µ(x)
|x| ∈ Z+;

f) if χ = χ
(S)
α,β (see (1.1)), x 6= 0 and x ∈ suppµ, then ∃ i ∈ N, for

which

{
αi = x, . . . , αi+ν(x)−1 = x if x > 0,

βi = |x|, . . . , βi+ν(x)−1 = |x| if x < 0.

Denote by δx the function that equals to 1 at the point x, and that
equals to 0 at all the rest points. Let Ei = δ0 (Ai).

The next statement easily follows from the previous lemma.

Corollary 2.1. Let χ = χ
(S)
α,β, γ = tr (En) = 1 −∑

i
(αi + βi), and let

Ak = {i1, i2, . . . , ik} be a set of different numbers from Z. If EAk
=

k∏
j=1

Eij , γ > 0, then for g ∈ S (A)

ϕγ,k (g) = γ−k · tr (EAk
πχ(g)EAk

) =

{
1 if g = e,

0 otherwise.

From here and from lemma 2.2 it follows the next

Lemma 2.4. If γ ∈]0, 1[, and if Ei (|i| ≤ n) and πχ (S (Bn)) generates
a W ∗-algebra Mn, then there is some constant C1 which doesn’t depends
on n and such that

Hχ (Mn) ≥ C1 · n lnn.

Proof. Let us use the notations of Corollary 2.1. By Lemma 2.2 there
exists a constant C which does not depend on k and C is such that

Hϕγ,k
(EAk

πχ (S (Ak))EAk
) ≥ C · k ln k.
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Taking into consideration this result, we obtain

Hχ (Mn) ≥
n∑

k=0

∑

λk:|λk|=k

(
n

n

)
(1 − γ)n−k γk (dimλk)

2

k!

×
[
ln

( ∏

(p,q)∈λk

h(p, q)

)
− k ln γ − (n− k) ln(1 − γ)

]

≥ −n (γ ln γ + (1 − γ) ln(1 − γ)) + C

n∑

k=0

(
n

k

)
(1 − γ)n−k γkk ln k.

(2.8)

Now we take a constant d > 0 for which

[nγ+d
√

n]∑

k=[nγ−d
√

n]

(
n

k

)
(1 − γ)n−k γk >

1

2
∀ n ∈ N.

Taking into account this and (2.8), we have

Hχ (Mn)≥−n (γ ln γ + (1 − γ) ln(1 − γ))+
C

2

[
nγ − d

√
n
]
ln
[
nγ − d

√
n
]
.

Thus, the statement of Lemma 2.4 is proved.

Proof of Theorem 2.1. If γ = 1, then the statement of Theorem 2.1
follows from Lemmas 2.1 and 2.2. Let γ < 1. Using a method we have
proved Lemma 2.1, we receive the following estimation

Hχ

(
ϑχ

S

)
≥ Hχ (Mn)

2n+ 1
(see Lemma 2.4).

Thus, the statement of Theorem 2.1 follows from Lemma 2.4.

3. The Case of γ = 0

In this section we will present two different entropy estimation meth-
ods developed for the case of finite cardinality of set I = {i : αi > 0}∪{i :
βi > 0} and for the case of infinite one correspondingly. First method
is based on the important formulaes from the theory of symmetric func-
tions. The second one uses the structural properties of von Neumann
factors constructed by the representations of S(∞). It will be clear, that
the case of finite cardinality can be included in the second one, but we
would like to show special technic in the Subsection 3.1.
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3.1. The Subcase |I| <∞

In this Section we will prove the following theorem.

Theorem 3.1. Let η(t) = −t ln t, ∑αi +
∑
βj = 1, χ = χ

(S)
α,β and let

N ∈ N exist for which αj = βj = 0 ∀ j > N . Then

Hχ

(
ϑχ

S

)
=
∑

j

η (αj) +
∑

j

η (βj) .

Consider the restriction of χ onto a finite symmetric group S (A).
The characters of the finite symmetric group S (A) are labeled by the
Young diagrams with |A| boxes. Let χ(λ) be a (non normalized) character
corresponding to an irreducible representation λ. The restriction χS(A)

to the group S (A) is a non-negative linear combination of the functions
χ(λ)

χ
∣∣
S(A)

=
∑

λ:|λ|=|A|
s̃λ(α, β) · χ(λ). (3.1)

The Fourier coefficient s̃λ(α, β) is given by the extended Schur function
(see [8]), which can be formally defined by Jacoby-Trudi determinant

s̃λ(α, β) =

∣∣∣∣∣∣∣∣∣∣

hλ1 hλ1+1 hλ1+2 . . . hλ1+m−1

hλ2−1 hλ2 hλ2+1 . . . hλ2+m−2

hλ3−2 hλ3−1 hλ3 . . . hλ3+m−3

. . . . . . . . . . . . . . .
hλm−m+1 hλm−m+2 hλm−m+3 . . . hλm

∣∣∣∣∣∣∣∣∣∣

, (3.2)

where the extended complete homogeneous symmetric functions hl =
hl (α, β) arise as the coefficients of the generating series

ezγ
∞∏

j=1

1 + zβj

1 − zαj
= 1 +

∞∑

l=1

hl(α, β)zl.

We denote by d = d(λ) the number of diagonal boxes in the Young
diagram λ and we will use the Frobenius notation [10]

λ = (p1, . . . , pd|q1, . . . , qd) .

Here pi = λi − i is a number of boxes in the i−th row of λ on the right
of the i−th diagonal box; likewise, qi = λ′i − i is the number of boxes
in the i−th column of λ below the i−th diagonal box (λ′ stands for the
transposed diagram).
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Lemma 3.1. Let α = {αi}∞i=1, β = {βi}∞i=1 be Thoma-parameters,
∞∑
i=1

(αi + βi) = 1, Nα =max {i ∈ N : αk > 0}, Nβ =max {i ∈ N : βk > 0}.
If max {Nα,Nβ} <∞, then sλ(α, β) = 0 in each of the following cases

i) d(λ) > d = max {Nα,Nβ};

ii) λi > d ∀ i = Nβ + 1, . . . , d;

iii) λ′i > d ∀ i = Nα + 1, . . . , d.

Proof. We consider a sequence of the Young diagrams

λ(2n+1) =
(
p
(2n+1)
1 , . . . , p

(2n+1)
d |q(2n+1)

1 , . . . , q
(2n+1)
d

)

with properties:

i)
∣∣λ(2n+1)

∣∣ = 2n + 1 and d = d
(
λ(2n+1)

)
= max {Nα,Nβ} for n

sufficiently great;

ii) αi = lim
n→∞

p
(2n+1)
i
2n+1 , βi = lim

n→∞
q
(2n+1)
i
2n+1 ∀ i = 1, . . . , d.

It follows from the approximation Theorem [19] that

χ(g) = χ
(S)
α,β(g) = lim

n→∞
χ(λ(2n+1))(g)

dimλ(2n+1)
∀ g ∈ S(∞).

Using this claim, property i) and the Young branching rule

χ(Λ)
∣∣
S(|Λ|) =

∑

λ:Λցλ

χ(λ),

where the notation Λ ց λ means that diagram λ ⊂ Λ is obtained from
the diagram Λ by removing a box, we obtain the statement of the lemma.

Further we will need the Berele-Regev formula (see [1]) for the super-
symmetric Schur functions sλ

sλ (x1, . . . , xd; y1, . . . , yd) =
det
[
x

pj

i

]d
i,j=1

V (x1, . . . , xd)
·

det
[
y

qj

i

]d
i,j=1

V (y1, . . . , yd)

d∏

i,j=1

(xi + yj) .

(3.3)
Here λ = (p1, . . . , pd|q1, . . . , qd), V (. . .) is the Vandermonde determinant
and the parameters x1, . . . , xd, as well as y1, . . . , yd, are assumed to be
pairwise distinct.
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If
∞∑
i=1

(αi + βi) = 1, then the extended Schur (3.1) function coincides

with the supersymmetric Schur function

s̃λ(α, β) = sλ(α, β).

Now we will obtain the lower boundary for entropy Hχ (Lχ (S (n))) (see
Lemma 2.1).

Lemma 3.2. Let parameters α = {αi}∞i=1 and β = {βi}∞i=1 satisfy the

conditions of Lemma 3.1, χ = χ
(S)
α,β. Then ∀ ε > 0 ∃ N (ε) ∈ N for which

Hχ (Lχ (S (n))) ≥ −n(1 − ε)

{Nα∑

j=1

[αj − ε] · lnαj

+

Nβ∑

j=1

[βj − ε] · lnβj

}
+ N lnn ∀n > N (ε),

where N is a constant, which does not depend on n.

Proof. Let Yn(d) be a set of Young diagrams λ such, that |λ| = n and
d(λ) ≤ d. For k < d we define two sets

Yn(d, k) =
{
λ ∈ Yn(d) : λ′i ≤ d ∀ i = k + 1, k + 2, . . .

}
,

Y ′
n(d, k) = {λ ∈ Yn(d) : λi ≤ d ∀ i = k + 1, k + 2, . . .} .

We assume, that Nα ≥ Nβ. By Lemma 3.1, we have

χ
∣∣
S(n)

=
∑

λ∈Yn(Nα,Nβ)

sλ(α, β) · χ(λ). (3.4)

Let

Yn(d, k, ε) =
{
λ ∈ Yn(d, k) : λ′i = Nα ∀ i = Nβ + 1, . . . ,Nα,

|pi(λ) − nαi| < nε and |qj(λ) − nβj | < nε

∀ i = 1, . . . , d; j = 1, . . . , k
}
. (3.5)

Using (3.4) and (3.5), by the approximation Theorem [19] we obtain,
that there exists N (ε) ∈ N for which

1 ≥
∑

λ∈Yn(Nα,Nβ ,ε)

dimλ · sλ(α, β) > 1 − ε ∀n > N (ε). (3.6)
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Formula (3.3) can be extended by a continuity to the case, when the
number of parameters x1, . . . , xn is not equal to the number of parame-
ters y1, . . . , ym. We assume that, the parameters {α1 ≥ . . . ≥ αNα > 0}
are pairwise distinct as well as the parameters

{
β1 ≥ . . . ≥ βNβ

> 0
}
.

The next statement is obtained for the diagram λ = (p1, . . . , pNα |
q1, . . . , qNα) ∈ Yn (Nα,Nβ, ε) from relation (3.3) by passing to the limit
( βNβ+1 → 0, . . ., βNα → 0)

sλ

(
α1, . . . , αNα ;β1, . . . , βNβ

)
=

det
[
α

pj

i

]Nα

i,j=1

V (α1, . . . , αNα)

×
det
[
β

qj

i

]Nβ

i,j=1

V
(
β1, . . . , βNβ

)
Nα∏

i=1

[
α
Nα−Nβ

i

Nβ∏

j=1

(αi + βj)

]
. (3.7)

Now we consider the case, when there are the coincident parameters. Let

{ni(α)}kα
i=1 and {ni(β)}kβ

i=1 be subsets in N with the properties:

kα∑

i=1

ni(α) = Nα,

kβ∑

i=1

ni(β) = Nβ,

αn1(α)+...+nj(α)+1 = . . . = αn1(α)+...+nj(α)+nj+1(α) = tj ,

βn1(β)+...+nj(β)+1 = . . . = βn1(β)+...+nj(β)+nj+1(β) = sj ,

the parameters t1, . . . , tkα , are pairwise distinct as well as

s1, . . . , skβ
.

(3.8)

If

Tjk =





tpk
r if j =

r+1∑
i=1

ni(α),

m−1∏
i=1

(pk − i+ 1) tpk−m+1
r if j = −m+

r+1∑
i=1

ni(α),

where m = 1, . . . , nr+1(α) − 1;

Sjk =





sqk
r if j = 1 +

r+1∑
i=1

ni(β),

m−1∏
i=1

(qk − i+ 1) sqk−m+1
r if j = −m+

r+1∑
i=1

ni(β),

where m = 1, . . . , nr+1(β) − 1;

then we can rewrite (3.7) as follows:

sλ (α, β) =
detT

∏
1≤l<j≤kα

(tl − tj)
nl(α)·nj(α) · (nj(α) − 1)! (nl(α) − 1)!
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× detS
∏

1≤l<j≤kβ

(sl − sj)
nl(β)·nj(β) · (nj(β) − 1)! (nl(β) − 1)!

×
kα∏

j=1

kβ∏

i=1

(tj + si)
nj(α)·ni(β) . (3.9)

Using inequality

xn1
1 xn2

2 . . . xnk
k ≥ xn1

π(1)x
n2

π(2) . . . x
nk

π(k),

where π is a permutation, 0 < xk ≤ . . . ≤ x2 ≤ x1, ni ∈ N (1 ≤ i ≤ k)
and 0 < nk ≤ . . . ≤ n2 ≤ n1, from (3.9) we have

sλ (α, β) ≥
PT (p1, . . . , pNα)

kα∏
i=1

t
ni(α)

(
2pi−ni(α)+1

2

)

i

∏
1≤l<j≤kα

(tl − tj)
nl(α)·nj(α)

Nα∏

i=1

[
α
Nα−Nβ

i

]

×
PS

(
q1, . . . , qNβ

) kβ∏
i=1

s
ni(β)

(
2pi−ni(β)+1

2

)

i

∏
1≤l<j≤kβ

(sl − sj)
nl(β)·nj(β)

·
kα∏

j=1

kβ∏

i=1

(tj + si)
nj(α)·ni(β) .

(3.10)

Here PT (PS) is a polynomial of Nα − kα (Nβ − kβ) degree with coeffi-
cients which does not depend on n. Thus, we have

Hχ (Lχ (S (n))) = −
∑

λ:|λ|=n

dimλ · sλ (α, β) · ln sλ (α, β)

≥ −
∑

λ∈Yn(Nα,Nβ)

dimλ · sλ(α, β) · ln sλ (α, β)

see (3.10), (3.8)

≥ −
∑

λ∈Yn(Nα,Nβ)

dimλ · sλ(α, β)

×
[( Nα∑

j=1

pi · lnαi +

Nβ∑

j=1

qi · lnβi

)
+(Nα + Nβ − kα − kβ) lnn+C(α, β)

]
.

Here C(α, β) is a constant that does not depend on n. From here, taking
into account (3.5) and (3.6), we obtain the statement of the lemma.
The case when Nα < Nβ can be considered analogous by taking Yn(·, ·)
instead of Y ′

n(·, ·).
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3.2. The Subcase of Infinite Cardinality

Next we consider the case of the infinite number of nonzero param-
eters {αi} = α, {βi} = β and obtain a lower boundary for the entropy
Hχ (Mn), where Mn is generated by A0 and πχ (S(n)) as a W ∗-algebra.

Lemma 3.3. If
∑
αi +

∑
βj = 1, then

Hχ

(
ϑχ

S

)
≥
∑

i

(η (ν(αi) · αi)

ν(αi)
+
η (ν(βi) · βi)

ν(βi)

)
,

where ν is the multiplicity function (see Lemma 2.3).

Proof. Let χ = χ
(S)
α,β and let πχ be the representation that corresponds

to χ. We denote by A the W ∗-algebra which is generated by operators
{Ai}i∈Z

(see Lemma 2.3). Since ϑχ
S (Ai) = Ai+1 (2.7), ϑχ

S restricts to
an automorphism of A. So we get, using properties a), c), d), e), f) of
Lemma 2.3, that the Abelian dynamical system

(
A, ϑχ

S , tr
)

is the classical
Bernoulli shift with the entropy

∑

i

(η (ν(αi) · αi)

ν(αi)
+
η (ν(βi) · βi)

ν(βi)

)
.

Let us consider the following union {αi} =
⋃

j Uj , where ∀αk, αl ∈
Uj , αk = αl, ∀αk ∈ Uj , αl ∈ Um, αk > αl if j < m. Next we define
α′ = {α′

i} such that ∀ i α′
i ∈ Ui, α

′
i 6= 0 and ∀ i, j, i 6= j α′

i 6= α′
j . In the

same way we define the sequence β′ = {β′i}.
Let ai = ν (α′

i)α
′
i, bi = ν (β′i)β

′
i and let

Nα,β (m, kα, kβ , D)

=

{(
mα

1 , . . . ,m
α
kα
,mβ

1 , . . . ,m
β
kβ
,mkα+kβ+1

)
∈

kα+kβ+1

×
j=1

N :

(
aim−D

√
m ≤ mα

i ≤ aim+D
√
m
)

∧(
bjm−D

√
m ≤ mβ

j ≤ bjm+D
√
m
)

∧( kα∑

j=1

mα
j +

kβ∑

j=1

mβ
j +mkα+kβ+1 = m

)

∀ i = 1, 2 . . . , kα; j = 1, 2 . . . , kβ

}
.

(3.11)

The next statements follows from the central limit theorem.
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Lemma 3.4. Let
∑
αi +

∑
βj = 1, aj = ν

(
α′

j

)
α′

j, bj = ν
(
β′j
)
β′j,

γkl = 1 −
k∑

j=1
aj −

l∑
j=1

bj and let δ1, δ2 be given. Then there are N (δ1) ,

N (δ1, δ2) ∈ N and D = D (δ1, δ2) > 0 with properties:

i) γkl < δ1 ∀ k, l ≥ N (δ1);

ii) if kα = min {N (δ1) , |α′|}, kβ = min {N (δ1) , |β′|}, m ≥ N (δ1, δ2),
then

∑

m̃∈Nα,β(m,kα,kβ ,D)

m! ·
kα∏
j=1

a
mα

j

j

kβ∏
j=1

b
mβ

j

j

mkα+kβ+1! ·
kα∏
j=1

mα
j !

kβ∏
j=1

mβ
j !

· γmkα+kβ+1

kα kβ
> 1 − δ2,

where m̃=
(
mα

1 , . . . ,m
α
kα
,mβ

1 , . . . ,m
β
kβ
,mkα+kβ+1

)
and D, N(δ1, δ2)

are constants which do not depend on m.

Let Ei (x) = δx (Ai) (see Lemma 2.3) and let Ak = {i1, i2, . . . , ik}
be a set of different numbers from Z. We denote by EAk

(x) projection
k∏

j=1
Eij (x). If g ∈ S (Ak) then by Lemma 2.3 b)

[EAk
(x), πχ(g)] = 0. (3.12)

Therefore, the positive definite function τAk
on S (Ak), which is defined

by formula

τAk,x(g) =
tr (EAk

(x)πχ(g))

tr (EAk
(x))

, (3.13)

where x ∈ {α′}⋃ {β′}, is the normalize character.
The next Lemma is an auxiliary one.

Lemma 3.5. The next “dual” formula for extended Schur functions

s̃λ(α, β) = s̃λ′(β, α), (3.14)

where λ′ is the transposed diagram for λ, is valid.

Proof. The formula (3.14) is the generalization of the formula (2.9′) from
[10]. We will repeat the main ideas of that proof as applied to our case.
Let us denote

H(α,β)(z) = ezγ
∞∏

j=1

1 + zβj

1 − zαj
= 1 +

∞∑

l=1

hl(α, β)zl. (3.15)
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Then

H(α,β)(z)H(β,α)(−z) ≡ 1. (3.16)

Let us consider two matrices

H = (hi−j(α, β))0≤i,j≤N (3.17)

and

H̃ =
(
(−1)i−jhi−j(β, α)

)
0≤i,j≤N

, (3.18)

where N is some positive integer. We remind that hk(α, β) = 0 for k < 0
and hence the both matrices are upper-triangular with

det H̃ = detH = 1. (3.19)

Moreover, in view of (3.16)

H̃H = HH̃ = I (3.20)

holds. Hence H̃ = H−1. Let H̃′ be the transposed matrix for H̃, M
is an arbitrary minor of the matrix H and A is the algebraic adjunct
corresponding to the minor M ′ of the matrix H̃′ with the same numbers
of columns and rows as the numbers of ones in M . By the Laplace
theorem and by the (3.19)-(3.20) we obtain the equation M = A.

Let λ = (λ1, λ2, . . . , λn) be a Young diagram, λ′ = (λ′1, λ
′
2, . . . , λ

′
m)

be the transposed diagram. Then by the (3.2) s̃λ(α, β) can be consider
as the minor of the matrix H with the raw numbers λi − i+n, 1 ≤ i ≤ n
and the column numbers n−j, 1 ≤ j ≤ n. It is well-known that the m+n
numbers λi−i+n, 1 ≤ i ≤ n and (m+n−1)−(λ′j−j+m) = n−1−λ′j+j,
1 ≤ j ≤ m are the permutation of the {0, 1, 2, . . . ,m+ n− 1} (see [10]).
Below we assume that the dimension of the matrixesN = m+n−1. Then
the corresponded algebraic adjunct has the raw numbers n−1−λ′i+i, 1 ≤
i ≤ m and the column numbers n−1+j, 1 ≤ j ≤ m. Since the elements of
the matrix H̃′ look like (−1)j−ihj−i(β, α) the algebraic adjunct consists
of such elements (−1)λ′

i+j−ihλ′
i+j−i(β, α). Besides

∑n
i=1(λi − i + n) −∑n

j=1(n− j) = |λ|. Thus

s̃λ(α, β) = det (hλ+j−i(α, β))1≤i,j≤n

= (−1)|λ| det
(
(−1)λ′

i+j−ihλ′+j−i(β, α)
)
1≤i,j≤m

= det
(
hλ′+j−i(β, α)

)
1≤i,j≤m

= s̃λ′(β, α),
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Lemma 3.6. Let l(g) (g ∈ S (Ak)) is the number of cycles of a permu-
tation g. Then

τAk,x(g) =
(signx)k−l(g)

ν(x)k−l(g)
. (3.21)

Therefore, τAk,x is the restriction of characters χ
(S)
αν(x),0

for x ∈ α′
(
χ

(S)
0,βν(x)

for x ∈ β′
)

to the group S (Ak). Here αν , βν =
{
ν−1, . . . , ν−1

︸ ︷︷ ︸
ν

}
.

Proof. We denote by Ak/g a set of orbits of the permutation g on the
set Ak. If µ is a spectral measure of operator Ai, then µ(x) = ν(x) · |x|
(Lemma 2.3 e)) and by (Lemma 2.3 d)) we obtain

τAk,x(g) =

∏
p∈Ak/g

[
x|p|−1µ(x)

]

|xk|νk(x)
=
xk−l(g)|x|l(g)νl(g)(x)

|x|k · νk(x)
=

(sign x)k−l(g)

νk−l(g)(x)
.

Let parameters α = {αi}∞i=1 and β = {βi}∞i=1 satisfy the conditions

of Lemma 3.2, χ = χ
(S)
α,β , the W ∗-algebra Lχ (S (Ak)) be generated by

operators πχ (S (Ak)). We denote by Cx
k (Ak) the center of theW ∗-algebra

Mx
k (Ak) = EAk

(x)Lχ (S (Ak)).
At first we assume that x > 0. Then from (3.1) and Lemma 3.4 we

obtain

τAk,x = χ
(S)
α(ν(x)),0

∣∣
S(Ak)

=
∑

λ:|λ|=k

s̃λ

(
αν(x), 0

)
· χ(λ). (3.22)

The coefficients s̃λ

(
αν(x), 0

)
in the expansion can be easily evaluated by

using (3.1)

s̃λ

(
αν(x), 0

)
= |ν(x)|−k

∣∣∣∣∣∣∣∣∣

(
ν+λ1−1

ν−1

) (
ν+λ1

ν−1

)
. . .

(
2ν+λ1−2

ν−1

)
(
ν+λ2−2

ν−1

) (
ν+λ2−1

ν−1

)
. . .

(
2ν+λ2−3

ν−1

)

. . . . . . . . . . . .(
λν

ν−1

) (
λν+1
ν−1

)
. . .

(
ν+λν−1

ν−1

)

∣∣∣∣∣∣∣∣∣
. (3.23)

If x < 0, then

τAk,x = χ
(S)
0,βν(x)

∣∣
S(Ak)

=
∑

λ:|λ|=k

s̃λ

(
0, βν(x)

)
· χ(λ) and by the Lemma 3.5

s̃λ

(
0, βν(x)

)
= s̃λ′

(
βν(x), 0

)
= |ν(x)|−k

∣∣∣∣∣∣∣∣∣

(ν+λ′
1−1

ν−1

) (ν+λ′
1

ν−1

)
. . .
(2ν+λ′

1−2
ν−1

)
(ν+λ′

2−2
ν−1

) (ν+λ′
2−1

ν−1

)
. . .
(2ν+λ′

2−3
ν−1

)

. . . . . . . . . . . .(
λ′

ν
ν−1

) (
λ′

ν+1
ν−1

)
. . .

(
ν+λ′

ν−1
ν−1

)

∣∣∣∣∣∣∣∣∣
.

(3.24)
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Here λ′ stands for the transposed diagram and ν = ν(x).
Let Yk be a set of a Young diagrams λ such that |λ| = k. We in-

troduce further the set Yk(x) =

{{
λ ∈ Yk : s̃λ

(
αν(x), 0

)
6= 0
}

if x > 0,{
λ ∈ Yk : s̃λ

(
0, βν(x)

)
6= 0
}

if x < 0

and denote by Sx
k (Ak) the set of all minimal projections in Cx

k (Ak). By
virtue of (3.22) and(3.24), the mapping

λ ∈ Yk(x) →
dimλ

k!
EAk

(x) ·
∑

g∈S(Ak)

χ(λ)(g)πχ(g) = ex
k(λ) ∈ Sx

k (Ak)

is one-to-one correspondence and true

Lemma 3.7. Let Sx
k λ (Ak) be the set of all minimal projections in

ex
k(λ)Mx

k (Ak). If e ∈ Sx
k λ (Ak) then

χ
(S)
α,β (e) = [ν(x)|x|]k ·

{
s̃λ

(
αν(x), 0

)
if x > 0,

s̃λ

(
0, βν(x)

)
if x < 0

= oλ
x(k)|x|k,

where oλ
x(k) ∈ N ∀ k ∈ N and lim

k→∞
oλ

x(k)

kν2(x)
= 0 uniformly on the set Yk.

Proof. Using (3.22), (3.23) and (3.24), we obtain the statement of Lemma
3.7 from the next chain of equalities

χ
(S)
α,β (e) = χ

(S)
α,β (EAk

(x)) · τAk,x (e) = [ν(x)|x|]k ·
{
s̃λ

(
αν(x), 0

)
if x > 0,

s̃λ

(
0, βν(x)

)
if x < 0.

Let us denote for x > 0

oλ
x(k) =

∣∣∣∣∣∣∣∣∣

(
ν+λ1−1

ν−1

) (
ν+λ1

ν−1

)
. . .

(
2ν+λ1−2

ν−1

)
(
ν+λ2−2

ν−1

) (
ν+λ2−1

ν−1

)
. . .

(
2ν+λ2−3

ν−1

)

. . . . . . . . . . . .(
λν

ν−1

) (
λν+1
ν−1

)
. . .

(
ν+λν−1

ν−1

)

∣∣∣∣∣∣∣∣∣

and for x < 0

oλ
x(k) =

∣∣∣∣∣∣∣∣∣

(ν+λ′
1−1

ν−1

) (ν+λ′
1

ν−1

)
. . .

(2ν+λ′
1−2

ν−1

)
(ν+λ′

2−2
ν−1

) (ν+λ′
2−1

ν−1

)
. . .

(2ν+λ′
2−3

ν−1

)

. . . . . . . . . . . .(
λ′

ν
ν−1

) (
λ′

ν+1
ν−1

)
. . .

(
ν+λ′

ν−1
ν−1

)

∣∣∣∣∣∣∣∣∣
.

The function oλ
x(k) can be considered as a polynomial from ν(x) variables

((λ1, λ2, . . . , λν) or (λ′1, λ
′
2, . . . , λ

′
ν)) with the degree equals ν(x)(ν(x)−1).

Thus the lemma is proved.
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By means of m̃ ∈ Nα,β (m, kα, kβ , D) (see (3.11), p. 27) we introduce

pairwise disjoint subsets Q
(
α′

j

)
(1 ≤ j ≤ kα) and Q

(
β′j
)

(1 ≤ j ≤ kβ)

in I(m) = {1, 2, . . . ,m} with properties

∣∣Q
(
α′

j

)∣∣ = mα
j ,
∣∣Q
(
β′j
)∣∣ = mβ

j .

Let Q (γ) = I(m) \
(

kα⋃
j=1

Q
(
α′

j

) kβ⋃
j=1

Q
(
β′j
))

and

EQ̃(m̃)
=

[ kα∏

j=1

kβ∏

l=1

∏

s∈Q(α′
j)

Es

(
α′

j

) ∏

s∈Q(β′
l)

Es

(
β′l
)] ∏

s∈Q(γ)

Fs, (3.25)

where Fs = I −
kα∑
j=1

Es

(
α′

j

)
−

kβ∑
j=1

Es

(
β′j
)
, Q̃ (m̃) is an ordered set

(
Q (α′

1) , . . . ,Q
(
α′

kα

)
;Q (β′1) , . . . ,Q

(
β′kβ

)
;Q (γ)

)
. If

G
(
Q̃ (m̃)

)
=

kα×
j=1

S
(
Q
(
α′

j

)) kβ

×
i=1

S
(
Q
(
β′i
))

and Lχ

(
G
(
Q̃ (m̃)

))
is generated by operators πχ

(
G
(
Q̃ (m̃)

))
as a W ∗-

algebra, then M
(
Q̃ (m̃)

)
= EQ̃(m̃)

Lχ

(
G
(
Q̃ (m̃)

))
is isomorphic to

kα⊗

j=1

M
α′

j

mα
j

(
Q
(
α′

j

)) kβ⊗

i=1

M
β′

i

mβ
i

(
Q
(
β′i
))

(see p.30). (3.26)

Lemma 3.8. Let trχ is the central normalize state on Lχ (S (∞)) which

corresponds to χ = χ
(S)
α,β. If ϕm̃ is the restriction trχ to the algebra

M
(
Q̃ (m̃)

)
and Hϕm̃

(
M
(
Q̃ (m̃)

))
is the CNT-entropy of M

(
Q̃ (m̃)

)
cor-

responding to ϕm̃, then

Hϕm̃

(
M
(
Q̃ (m̃)

))
= −γmkα+kβ+1

kα kβ

kα∏

j=1

a
mα

j

j

kβ∏

j=1

b
mβ

j

j

×
{(

mkα+kβ+1

)
ln
(
γkα kβ

)
+

kα∑

j=1

mα
j lnα′

j +

kβ∑

j=1

mβ
j lnβ′j +O (lnm)

}
,

where 0 ≤ lim sup
m→∞

O(ln m)
ln m <∞, γkα kβ

= χ (Fs) = 1 −
kα∑
j=1

aj −
kβ∑

j=1
bj.
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Proof. We denote by ϕx
Ak

the restriction trχ to the algebra Mx
k (Ak). In

view of (3.25) and (3.26), we have

ϕm̃ = γ
mkα+kβ+1

kα kβ

kα⊗
j=1

ϕ
α′

j

Q(α′
j)

kβ

⊗
i=1

ϕ
β′

i

Q(β′
i)
. (3.27)

Let

fλ
x =

{
s̃λ

(
αν(x), 0

)
if x > 0,

s̃λ

(
0, βν(x)

)
if x < 0.

Further, using (3.22) and (3.24), we obtain

Hϕx
Ak

(Mx
k (Ak))

= − (ν(x)|x|)k

{ ∑

λ:|λ|=k

dimλ · fλ
x

[
ln fλ

x + ln
(
(ν(x)|x|)k

)]}

= − (ν(x)|x|)k

{ ∑

λ:|λ|=k

dimλ · fλ
x

[
k ln |x| + ln

(
(ν(x))k fx

)]}

(see Lemma 3.7)
= − (ν(x)|x|)k

{ ∑

λ:|λ|=k

dimλ · fλ
x

[
k ln |x| + ln

(
oλ

x(k)
)]}

.

Since
∑

λ:|λ|=k

dimλ · fλ
x = 1, we may rewrite Hϕx

Ak
(Mx

k (Ak)) as follows:

Hϕx
Ak

(Mx
k (Ak)) = −k (ν(x)|x|)k ln |x| − (ν(x)|x|)k O (x, ln k) , (3.28)

where O (x, ln k) =
∑

λ:|λ|=k

dimλ · fλ
x ln

(
oλ

x(k)
)

and by Lemma 3.7

0 ≤ lim sup
k→∞

O (x, ln k)

ln k
<∞. (3.29)

It follows from (3.26), (3.27) and (3.28) that

Hϕm̃

(
M
(
Q̃ (m̃)

)) (by definition ϕm̃)
= −γmkα+kβ+1

kα kβ

kα∏

j=1

a
mα

j

j

kβ∏

j=1

b
mβ

j

j

×
{(
mkα+kβ+1

)
ln
(
γkα kβ

)
+

kα∑

j=1

mα
j lnα′

j +

kβ∑

j=1

mβ
j lnβ′j

+

kα∑

j=1

O
(
α′

j , lnm
α
j

)
+

kβ∑

j=1

O
(
β′j , lnm

β
j

)}
.
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Using (3.29) and the equality
kα∑
j=1

mα
j +

kβ∑
j=1

mβ
j +mkα+kβ+1 = m in latter

assertion, we have

0 ≤ lim sup
m→∞

kα∑
j=1

O
(
α′

j , lnm
α
j

)
+

kβ∑
j=1

O
(
β′j , lnm

β
j

)

lnm
<∞

and

Hϕm̃

(
M
(
Q̃ (m̃)

))
= −γmkα+kβ+1

kα kβ

kα∏

j=1

a
mα

j

j

kβ∏

j=1

b
mβ

j

j

×
{(

mkα+kβ+1

)
ln
(
γkα kβ

)
+

kα∑

j=1

mα
j lnα′

j +

kβ∑

j=1

mβ
j lnβ′j +O (lnm)

}
.

In the next statements we will use the notations from Lemma 3.4.

Proposition 3.1. Let Mm be a W ∗-algebra generated by A0 and
πχ (S(m)) and let δ1, δ2 be given. Then there exists a natural numbers:
kα (δ1), kβ (δ1), C(δ1, δ2), and M (δ1, δ2) such that

i) γkαkβ
= 1 −

kα(δ1)∑
j=1

aj −
kβ(δ1)∑
j=1

bj < δ1;

ii) ∀ m > M (δ1, δ2)

Hχ (Mm) ≥ −m (1 − δ2)

{ kα(δ1)∑

j=1

ν
(
α′

j

)
α′

j lnα′
j

+

kβ(δ1)∑

j=1

ν
(
β′j
)
β′j lnβ′j

}
+ C(δ1, δ2)

√
m (see Lemma 3.8).

Proof. It is clear that M
(
Q̃ (m̃)

)
⊂ Mm. Therefore,

Hχ (Mm) ≥
∑

m̃

m! ·Hϕm̃

(
M
(
Q̃ (m̃)

))

mkα(δ1)+kβ(δ1)+1! ·
kα(δ1)∏
j=1

mα
j !

kβ(δ1)∏
j=1

mβ
j !
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( Lemma 3.8)

≥ −
{
∑

m̃

m! · γ
mkα(δ1)+kβ(δ1)+1

kα(δ1)kβ(δ1)

kα(δ1)∏
j=1

a
mα

j

j

kβ(δ1)∏
j=1

b
mβ

j

j

mkα(δ1)+kβ(δ1)+1! ·
kα(δ1)∏
j=1

mα
j !

kβ(δ1)∏
j=1

mβ
j !

×
[ kα(δ1)∑

j=1

mα
j lnα′

j +

kβ(δ1)∑

j=1

mβ
j lnβ′j

]
+ O (lnm)

}

( Lemma 3.4, (3.11))

≥ −m(1−δ2)
[ kα(δ1)∑

j=1

aj lnα′
j+

kβ(δ1)∑

j=1

bj lnβ′j

]
+C(δ1, δ2)

√
m.

The latter inequality is true for all sufficiently large m.

Proposition 3.2. (An upper bound for the entropy) η(t) = −t ln t,∑
αi +

∑
βi = 1, χ = χ

(S)
α,β. Then

Hχ

(
ϑχ

S

)
≤
∑

j

η (αj) +
∑

j

η (αj) .

Proof. First we recall the well-known construction (see [20]) of the
embedding of the group S(∞) in the Powers factor. Let n(α) =
min {i : αi > 0}, n(β) = min {i : βi > 0}, n = n(α) + n(β), Nα

n =

{1, 2, . . . , n(α)}, N
β
n = {−1,−2, . . . ,−n(β)} and Nn = Nα

n

⊔
N

β
n. We

consider the algebra Mn (C) of all complex n×n-matrices with system of
matrix units {ei,j}i,j∈Nn

. Let hαβ = diag
(
α1, . . . , αn(α);β1, . . . , βn(β)

)
∈

Mn (C) and let ϕ(·) = Tr (·hαβ) is the state on Mn (C), where Tr is
ordinary trace. For j ∈ Z let Mj = Mn (C) and ϕj = ϕ. Let (M, ϕ̃) =

⊗j∈Z (Mj , ϕj), where ϕ̃ = ⊗j∈Zϕj . For sequence ik = (ij ∈ Nn)j=k
j=−k let

j (ik) =
({
j1 < j2 < . . . < jl(ik)

}
: ijl

∈ Nβ
n ∀ l = 1, 2, . . . , l (ik)

)
.

If g is any permutation of the set Bk = {−k, . . . , 0, . . . , k}, then there is
permutation s (g, ik) ∈ S (g (j (ik))) such that

s (g, ik) (g (j1)) < s (g, ik) (g (j2)) < . . . < s (g, ik)
(
g
(
jl(ik)

))
.

Let ψ (g, ik) = sgn (s (g, ik) ) and let Ik be the set of all sequences

(ij ∈ Nn)j=k
j=−k. Now by a direct checking we can make sure, that opera-

tors Ug =
∑

ik∈Ik

ψ (g, ik) e
ik g(ik)

, where

e
ik g(ik)

= e
i−k ig(−k)

⊗ e
i−k+1 ig(−k+1)

⊗ . . . e
ik ig(k)

∈ Mϕ̃,
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Mϕ̃ is the centralizer of ϕ̃, define a unitary representation of the group

S(2k + 1) = S (Bk) and ϕ̃ (Ug) = χ
(S)
α,β(g). Further, we notice that au-

tomorphism ϑχ
S of the W ∗-algebra generated by Ug

(
g ∈ ⋃

k

S (Bk)
)

ex-

tends to the automorphism θ of the W ∗-algebra M. But it is well-known
(see [5]), that θ is a noncommutative Bernouli shift with the entropy∑
j
η (αj) +

∑
j
η (βj).

Proof of Theorem 3.1. The statement of the theorem follows from Lemma
3.2 and Proposition 3.2 when sets {αi 6= 0} and {βi 6= 0} are finite ones.
In the general case we consider the algebra Mm that is generated by
A0 and πχ (S(m)) as a W ∗-algebra. Using a method by which we have
proved Lemma 2.1, we receive the following estimation

Hχ

(
ϑχ

S

)
≥ Hχ (Mn)

m
.

Hence, tacking into account Propositions 3.2 and 3.1, we complete the
proof.
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