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In this article we will introduce and consider a notion of generalized solutions of
boundary value problems for the equations of the following general form

L+ ◦A ◦ Lu = f (1)

in arbitrary fixed domain Ω ⊂ Rn, where

L =
∑

|α|≤m

aα(x)Dα, Dα = (−i∂)|α|/∂xα1
1 ...∂xαn

n , α ∈ Zn
+, |α| =

∑

k

αk

is a differential operation with complex j × k-matrix coefficients aα(x), all elements of
which are C∞(Ω̄)-functions depending on x ∈ Ω̄, L+ =

∑
|α|≤m Dα(a∗α(x)·), a∗α = aT

α

is the formally adjoint differential operation; and A : Lk
2(Ω) −→ Lk

2(Ω) is some continu-
ous (in general, nonlinear) operator of an arbitrary origin. The equations of such form
were studing as a rule due to examinations of quasilinear differential equations on the
whole of the elliptic type (see, for example, the books [1,2]). Note that every quasi-
linear differential equation

∑
|α|≤m

Dα Aα(x, u,∇u, ..., Dmu) = f can be considered as an

equation (1), if the Nemytsky’s operator A : (u; u1, ..., un; u11, ..., unn; ...unn...n) −→
{Aα(x, u1, ..., un; u11, ..., unn; ...unn...n)} is an continuous operator from LN

2 (Ω) into it-
self, where N be the number of all α, |α| ≤ m; in this case Lu = (u,∇u, ..., Dmu). Note
also that arguments by M.Vishik [3] and H.Gajevski [1] suggest a way of the study of
boundary value problems for the equations (1) with an arbitrary operation L.

On this way we shall need some definitions and facts from the general theory of
boundary value problems.
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1. Some definitions of general theory.
We call to mind general facts about extensions of the differential operator and bound-

ary value problems in the domain (see [3, 4, 5, 6]).
The closing of the operator, which is given on the space C∞,j

0 (Ω), consisting of
finite smooth vector functions, by means of the operation L, in the norm of the graph
‖u‖2L = ‖u‖2

Lj
2(Ω)

+ ‖Lu‖2
Lk

2 (Ω)
is called the minimal expansion of the operator L in

the space Lj
2(Ω) or simply the minimal operator L0. The contraction of the operator,

wich is generated by the operation L in the space D′(Ω), to the domain of the definition
D(L) = {u ∈ Lj

2(Ω)|Lu ∈ Lk
2(Ω)}, L = L|D(L) is said to be the maximal expansion of

the operator L|C∞0 (Ω) or simply the maximal operator L. Note that the space D(L) is
the Hilbert space with a scalar product of the norm ‖ ‖L as well as his close subspace
D(L0), which is the domain of the definition of the operator L0. The kernel ker L is
closed in the spaces D(L) and Lj

2(Ω), the kernel kerL0 is closed in the spaces D(L) and
kerL. Consider another expansion of the operator L|C∞,j(Ω), which we define L̃. This
is an operator with a definition domain D(L̃), which is the closing of the space C∞,j(Ω)
in the norm of the graph ‖ · ‖L.

We consider the following conditions:

the operator L0 : D(L0) → Lk
2(Ω) has the continuous left-inverse; (2)

the operator L+
0 : D(L+

0 ) → Lk
2(Ω) has the continuous left-inverse; (3)

L̃ = (L+
0 )∗; L̃+ = (L0)∗. (4)

It is well known that L = (L+
0 )∗ and L+ = (L0)∗, so that the condition (4) means

the equalities D(L) = D(L̃), D(L+) = D(L̃+), i.e. the possibility to approximate each
fuunction from D(L) or D(L+) by functions from C∞,j(Ω). The conditions (2), (3)
imply respectively the conditions: kerL0 = 0, kerL+

0 = 0. The conditions (2),(3),(4)
was introduced in connection with the study of the concept of the correct posed bound-
ary value problem which we remind here too (see [3,4,5,6]). We define the Cauchy
space as D(L)/D(L0). In the paper [4] the Cauchy space was introduced as the factor
G(L)/G(L0), where G(L), G(L0) are the graphs of the operators L and L0 res- pec-
tively. It is not difficult to see that this definition is equivalent to entrodused. The
homogeneous linear boundary value problem is by definition ([4]) the problem to find
the solution u ∈ D(L) of the relations

Lu = f, Γu ∈ B, (5)

where Γ : D(L) → C(L) is the map of the factorization, B is a linear set in C(L).
The boundary value condition Γu ∈ B generates the subspace D(LB) = Γ−1(B) of the
space D(L) and the operator LB , which is a contraction of the operator L on the spase
D(LB) and which is an expantion of the operator L0. This operator LB is closed if and
only if the linear space B is closed in C(L) or the space LB is closed in D(L) [4]. A
boundary value problem is called correct posed and the operator LB is called solvable
expansion of the operator L0 if the operator LB : D(LB) → Lk

2(Ω) has a two-sided
inverse. The operator L1 : D(L1) → Lk

2(Ω), which is the contraction of the operator L
(i.e. D(L1) ⊆ D(L)), is called the solvable contraction if it has a two-sided inverse.



Statement 1. There exist a solvable expansion of the operator L0 and there exist
a correct posed boundary value problem for the equation Lu = f if and only if the
Vishik conditions (2) and (3) are fulfilled .

See the proof of this statement in the works of M.I.Vishik [3] and L.Hörmander [4].
Note that the same conditions (2) and (3) are equivalent to the exist of a correct posed
boundary value problem for the equation L+u = f .

We consider the following conditions too:

the operator L : D(L) → Lk
2(Ω) is surjective; (6)

the operator L+ : D(L+) → Lj
2(Ω) is surjective; (7)

the operator L : D(L) → Lk
2(Ω) is normally solvable. (8)

Statement 2 ([4]). The condition (2) is equivalent to the condition (7), the
condition (3) is equivalent to the condition (6).

Remark 1. By virtue of this statement one could interpret the condition (7)
as the fulfilment of the estimate ‖ϕ‖L2(Ω) ≤ C‖Lϕ‖L2(Ω) for all ϕ ∈ C∞0 (Ω), or,
what is the same, ‖ϕ‖D(L) ≤ C1‖Lϕ‖L2(Ω) with some C1 > 1 , and it is analo-
gously for (6). The condition (8) admits also such an interpretation. Namely, the
fact that a linear continuous operator M : H1 → H2 in Hilbert spaces is normally solv-
able, is equivalent to the fulfilment of the two-sided estimate C2‖u‖H1 ≤‖ Mu ‖H2≤
C3‖u‖H1 on the orthogonal addition to kerM, which is equivalent to the inequal-
ity ∃C > 0,∀u ∈ H1, ‖u‖2H1

− ‖ Pkeru ‖2H1
≤ C ‖ Mu ‖2H2

(or the inequality ∃C >
0, ∀u ∈ H1, ‖u‖H1− ‖ Pkeru ‖H1≤ C ‖ Mu ‖H2), where Pker : H1 → kerM is
the orthogonal projector. Therefore, the condition (8) is equivalent to an estimate
∀u ∈ D(L), ‖u‖D(L) − ‖Pkeru‖D(L) ≤ C‖Lu‖L2(Ω) with some C > 1, or, what is the
same, an inequality ∃C > 0, ∀u ∈ D(L), ‖u‖L2(Ω)− ‖ Pker u‖L2(Ω) ≤ C ‖ Lu ‖L2(Ω),

where one can suppose u ∈ C∞(Ω) if the condition (3) holds.

2. Dirichlet problem.
The function u ∈ D(L0), satisfying the integral identity

< A ◦ L0 u, Lv >=< f, v > (9)

for each function v ∈ C∞,j
0 (Ω), will be called a generalized solution of the Dirichlet

problem in the domain Ω for the equation (1) with f ∈ D′(L) in the right-side part.
Note that the integral identity (9) is equivalent to the identity < A L0u, L0v > =

< f, v >, ∀v ∈ D(L0), which means the following realisation of the equality (1):

L′0 AL0 u = f, (10)

where L′0 : Lk
2(Ω) → D′(L0) is the dual operator to the operator L0 : D(L0) → Lk

2(Ω).
If the domain Ω has the smooth boundary ∂Ω and the operator A maps the space

Cm,k(Ω) into itself then one can introduce a notion of the classical solution. The function
u ∈ C2m,j(Ω) ∩ Cm−1,j(Ω), satisfying the equation (1) with a function f ∈ Ck(Ω) and
the boundary value conditions

u|∂Ω = u′ν |∂Ω = ... = u(m−1)
ν |∂Ω = 0,



is called a classical solution of the Dirichlet problem in the domain Ω for the equation
(1). It is obviously that the following statement is correct.

Statement 3. Each classical solution of the Dirichlet problem in the domain with
the smooth boundary for the equation (1) with operator A continuous maping from the
space Cm,k(Ω) into itself is a generalized solution of this problem.

A generalized Dirichlet problem (9) shall be named correct posed or simply correct if
the operator L′0 AL0 : D(L0) → D′(L0) has the continuous two-sided inverse operator
M : D′(L0) → D(L0). Let P : Lk

2(Ω) → Im (L0) be the orthoprojector.
Statement 4. A generalized Dirichlet problem (9) is correct if and only if the

condition (2) is fulfilled and the operator P ◦A : Im (L0) → Im (L0) is a homeomorphism.
This statement follows from more general statement 6, see below section 4.

Example 1. Consider the generalized Dirichlet problem for the Poisson equation

∆u = f : L = grad,L+ = −div, D(L) = W 1
2 (Ω), D(L0) =

◦
W 1

2(Ω), f ∈ [
◦

W 1
2(Ω)]′.

The statement 4 say, in particular, that such problem is correct posed in the arbitrary
domain Ω if and only if in this domain one can prove the Fridrichs inequality: ‖∇u‖ ≥
C‖u‖, ∀u ∈ C∞0 (Ω), which is in this case the Vishik condition (2) for the operator ∇.

3. Neumann problem.
The function u ∈ D(L), satisfying the integral identity

< A ◦ Lu,Lv >=< f, v > (11)

for each function v ∈ D(L), will be called a generalized solution of the Neumann problem
in the domain Ω for the equation (1) with the arbitrary function f ∈ D′(L).

If the condition (4) is fulfilled then it is sufficient to require the fulfillment of the
integral identity (11) for each funtion v ∈ C∞,j(Ω). Note that the integral identity (11)
is equivalent to the identity < Lu, Lv >=< f, v >, which means the realisation of the
equality

L′A Lu = f, (12)

where L′ : Lk
2(Ω) → D′(L) is the dual operator to the maximal operator L : D(L) →

Lk
2(Ω). This equality is, as a matter of fact, also a realization of the equation (1).
A generalized Neumann problem (11) shall be named normally correct if for each

function f ∈ D′(L), which is orthogonal to the space kerL, there exists an unique to
within an additive component h ∈ kerL the function u ∈ D(L), which is a solution of
the equation (12) and which continuous depend on f .

Let us denote by P the orthoprojector from Lk
2(Ω) onto ImL, which exists if the last

subspace is closed.
Statement 5. A generalized Neumann problem (11) is normally correct if and

only if the operator L is normal solvable and the operator P ◦ A : ImL → ImL is a
homeomorphism.

This statement follows from more general statement, see below section 4. The oper-
ator L is normally solvable, in particular, if it is fulfilled the condition (6).

Note that the Neumann problem in the domain with smooth boundary for the equa-
tion (1) with the smooth functions has the form: A◦Lu|∂Ω = 0. We shall need a notion
of the conjugate to (5) boundary value problem, which is named the problem

L+v = g, Γ+v ∈ B+,



where B+ = Γ+D+
B , D+

B = {v ∈ D(L+)|[u, v] = 0, ∀u ∈ Γ−1(B)}. Here we use the
Green’s formula

[u, v] :=
∫
Ω
(Lu · v − u · L+v) dx = < L∂ΩΓu, Γ+v >∂Ω = − < Γu,L+

∂ΩΓ+v >∂Ω.
Note that in the last definition the domain Ω can be arbitrary.

Example 2. Consider the generalized Neumann problem for the Poisson equation
∆u = f (see the example 1). The statement 5 permits to state, in particular, that such
problem is normally correct in the connected domain Ω with the finite-dimentional space
of the first cogomologies H1(Ω,R), for example, in the bounded domain with the smooth
boundary (Here we have the same operators and spaces which are in the example 1 and
the kernel and the cokernel of the operator of this problem are one-dimensional if the
domain is connected). Indeed, by the de Rham theorem the closed in Ln

2 (Ω) kernel of
the operator rot (= the exterior differential d2) include the image of the operator grad
(= the exterior differential d1) and the difference is a finite-dimensional space, therefore
the space of the potential vector fields ∇H1(Ω) is closed.

On the other hand, as we show in the remark 1, the normal solvability of the oper-
ator L is equivalent to the fulfilment of the inequality ∃C > 0, ∀u ∈ D(L), ‖u‖2L2(Ω) −
‖Pkeru‖2L2(Ω) ≤ C‖Lu‖2L2(Ω),where Pker : L2(Ω) → kerM is the orthogonal projector.
For L = ∇ we have ker L = {const}, Pker : u → 1

meas Ω

∫
Ω

u(x) dx and the last in-
equality in this case has the form of the well-known Poincare inequality: ∃C > 0, ∀u ∈
C∞(Ω), ‖u‖2L2(Ω) ≤ 1

meas Ω (
∫
Ω

u dx)2 + C ‖∇u‖2L2(Ω) . Thus, the statement 5 asserts
that the generelized Neumann problem for Poisson equation is normally correct in a
bounded domain Ω if and only if in this domain the Poincare inequality is fulfilled.

4. Other boundary value problems.
Let us consider the generalized setting of other boundary value problems. Assume

that the space B ⊂ C(L) give boundary value problem (5) and hence it gives an ex-
pansion LB of the minimal operator L0. The function u ∈ D(L), satisfying the integral
identity

< A ◦ LB u, LB v >=< f, v > (13)

for each function v ∈ D(LB), will be called a generalized solution of the problem Γu ∈
B, Γ+ALu ∈ B+ (B+ gives the conjugate problem, see s.3), generated of the problem
(5), in the domain Ω for the equation (1) with the arbitrary function f ∈ D′(LB).

Note besides that the integral identity (13) means the validity of the equality

L′B ALB u = f, (14)

where L′B : Lk
2(Ω) → D′(LB) is the dual operator to the operator LB : D(LB) → Lk

2(Ω),
which define the equation (1) more exactly. Note also that by virtue of the density of the
embedding D(LB) ⊂ Lj

2(Ω) the space Lj
2(Ω) is dense embedded in the space D′(LB),

therefore the solvability of the problem (13) with each function f ∈ D′(LB) imply its
solvability with f ∈ Lj

2(Ω).
We shall call as usually an expansion L1 of the minimal operator in the space L2(Ω)

(and the constraction of the maximal) normally solvable if the space ImL1 is closed
in L2(Ω). We shall call the problem (13) normally correct if for each function f ∈
D′(LB), which is orthogonal to the space kerLB , there exists the unique to within an
additive component h ∈ kerLB function u ∈ D(LB), which is a solution of the equation
(12), and which continuous depend of f . The generalized boundary value problem (13)
for the equation (1) will be called correct if the operator L′B ◦A◦LB : D(LB) → D′(LB)



has the continuous two-sided inverse M : D′(LB) → D(LB). This definitions imply the
following statement. Let us denote by P the orthoprojector from Lk

2(Ω) onto ImL,
which exists if the last subspace is closed.

Statement 6. The generalized problem (13) for the equation (1) in the domain Ω
is normally correct if and only if the operator LB is normally solvable, and the operator
P ◦A : ImL → ImL is a homeomorphism. The generalized problem (13) for the equation
(1) in the domain Ω is correct if and only if the operator LB is normally solvable and
kerLB = {0}, and the operator P ◦A : ImL → ImL is a homeomorphism.

Proof. The sufficiency is obvious. Let us prove the necessity. Let the operator
L′B A LB be a homeomorphism, M : D′(L) → D(L) be its inverse and let the expansion
LB be not normally solvable, i.e. the image of LB is not closed in Lk

2(Ω). Then
there exists such element g ∈ Im′LB , which is not belong in the space L2(Ω). On
the other hand the element A ◦ LB ◦M ◦ L′B g coincide with g, because this operator
also is a homeomorphism. Thus, the operator LB is normally solvable. Futher, the
operators L′B : ImLB → D′(LB) and LB : D(LB) → ImLB are homeomorphisms,
and if we shall consider the operator LB as asking in the spaces D(LB) → Lk

2(Ω) then
L′B : Lk

2(Ω) → D′(LB) and L′B◦P = L′B , therefore the operator PA is a homeomorphism
in the space ImLB .

The proof of the second part of this statement is analogous to the first part with such
variation that the space D(L) require the factorization by the space kerL.

The statement 6 implies the following statement.
Statement 7. Assume that the expansion LB is solvable. Then the problem (13)

is correct if and only if the operator A : Lk
2(Ω) → Lk

2(Ω) is a homeomorphism.
Example 3. Consider the generalized boundary value problem (13) for quasilinear

equation (1) with scalar operators and functions, where A : L2(Ω) → L2(Ω) is some
continuous mapping, for example, the Nemytsky’s operator given by means of a map in
R1 : A(v)(x) = a(v(x)). It is easily to see that

1) the homeomorphism of the map a(x) in R1 and
2) linear growth on the infty: (C1|ξ|+ C2 ≤ a(ξ) ≤ C3|ξ|+ C4)

ensures the homeomorphism of the mapping A. The statement 7 gives the correctness
of this problem if the problem (5) is correct. In particular, the following generalized
boundary value problem is correct:

¤a(¤u) = f ∈ D′(¤B) in the unit disk K,

u ∈ D(¤B), a(¤u) ∈ D(¤B+), ¤ =
∂2

∂x1∂x2

where D(¤B) = {u ∈ D(¤)| u(τ) = 0 on Γ1 = {∠τ ∈ ∂K, π
2 ≤ τ ≤ 2π}, u′ν(τ) =

0 on Γ2 = {∠τ ∈ ∂K, π ≤ τ ≤ 3π
2 }}, u(τ) ∈ B; D(¤+

B) = {u ∈ D(¤)|Γ+u ∈ B+},
B+ = {u(τ)| u(τ) = 0 on {Γ1 = {∠τ ∈ ∂K, 0 ≤ τ ≤ π

2 }, u′ν(τ) = 0 on {Γ2 = {∠τ ∈
∂K, −π

2 ≤ τ ≤ π}} and the function a has the properties 1), 2). The correctness of
boundary value problem (5) with such LB = ¤B proved in the work [7]. Note that
the boundary value conditions u|Γ1 = 0, u′ν |Γ2 = 0 are understanded in the sense of
the articles [8,9,10], i.e. as the vanishing of L-traces respectively of the zero and first
order, which exist for any functions from the definition domain of the maximal operator
L = ¤.
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