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On a classical solvability of a Florin problem

GALINA . BIZHANOVA

(Presented by E. Ya. Khruslov)

Abstract. There is considered the multidimensional two-phase Stefan
problem with a small parameter x at the velocity of a free boundary in
a Stefan condition. The unique solvability and coercive uniform with
respect to k estimate of the solution for ¢t < Ty, Ty — independent
on k, are proved and on the basis of this the existence, uniqueness and
estimate of the solution of a Florin problem (Stefan problem with x = 0)
are obtained in the Holder spaces.
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1. Statement of the problems. Main results

Let 2 be a bounded domain in R"™, n > 2, with a boundary ¥. In
Q there is a closed surface (t), t € [0, to], which divides Q into two
sub-domains Q(t) and Q2(t) with the boundaries 0Q;(¢) = X U ~v(¢),
0€Q(t) = v(t). Denote ~(0) :=T C Q and Q;(0) :=Q;, j=1,2. We
assume dist(I', 3) > dy = const > 0, diam Qg > dp to guarantee that a
surface y(t) will not touch ¥ and a domain Q9 (¢) will not degenerate for
small time.

Let I € C?*® o € (0,1), then we can represent y(t) for small ¢ < g
by an equation [8,9]

r=£§+ p(&)t) N(§)7 §= f(ﬂ?) el, te [OutO]v (11)

where p|,_, =0, N(§) = (N1,...,N,) € C***(T;R") is a unit vector
field on T satisfying condition vo(£) NT(¢) > dy = const > 0, vp(€) is a
unit normal to I' directed into 29
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Here and further by symbol “7” we denote transposed matrix A7 and
column-vector N dj,, Ci, k =1,2,..., are positive constants.

Let QT =0 x (O,T), ET =X X [O,T], I'r =1 x [O,T], QjT =
Q; x (0,T), Qjr = {(z,t) : @ € Q;(t), t € (0,T)}, j=1,2.

Consider two-phase Stefan problem with the unknown functions
uj(x,t), j = 1,2, and p(&,t) satisfying the parabolic equations, initial
and boundary conditions

8tu]‘ —a; AUJ' =0 in QjTy ] = 1, 2, (1.2)
Y)|,g =T, wj],_o=woj(x) in Q j=12 (1.3)
Ul’z :p(xat)) te (OuT)v (14)

and conditions on a free boundary v(t), t € (0,T),
Ul = Uy = 0, (1.5)

A Opu1 — Ao Opus = —kvNT osp, (1.6)

where a;, Aj;, j = 1,2, are positive constants; x > 0 — small parameter,
v(z,t) — a unit normal to «(t) directed into Qa(t), vNTOp=V, is a
velocity of a free boundary on the direction of v due to (1.1); 9; = 9/0t,
0, = 0/0v = vV is the normal derivative, V = 0,,, ..., 0y, .

Letting k to zero in the condition (1.6) we shall have degenerate Stefan
or Florin [14] problem with unknown functions u;, j = 1,2, p:

Owuj —ajAu; =0 in Q;r, j=1,2, (1.7)
Y)|,—o =T, uj|,_y = uoj(z) in Q, j=12, (1.8)
ul’z = p(:ﬂ,t), te (05T>7 (19)

up=u2 =0, AN Oyu; —Xdyus =0 on ~(t), te(0,7). (1.10)

Classical solvability of the multidimensional Stefan problem was stud-
ied by A. Friedman and D. Kinderlehrer [15|, L. A. Caffarelli [11, 12],
D. Kinderlehrer and L. Nirenberg [17], A. M. Meirmanov [19], E. I. Han-
zawa [16], B. V. Bazaliy [1], E. V. Radkevich [20], B. V. Bazaliy and
S. P. Degtyarev 2], M. A. Borodin [10], G. I. Bizhanova [5,6], G. I. Bizha-
nova and V. A. Solonnikov [9]. In [21] J. F. Rodrigues, V. A. Solonnikov
and F. Yi have obtained the existence of the multidimensional one-phase
Florin problem locally in time in the Hélder space C2T8:1+5/2 0 < 8 < a,
with the help of the imbedding theorem applied to the solution from
C?tel+a/2 o e (0,1) of the corresponding Stefan problem with the
small parameter.
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Solvability in C?t®1+e/2 o € (0, 1), for small time of the multidimen-
sional one-phase Florin problem was established by A. Fasano, M. Prim-
icerio and E. V. Radkevich [13]. In [5,6] G. I. Bizhanova has proved
existence, uniqueness and estimates of the solution of multidimensional
two-phase Florin problem in the classical and weighted Hélder spaces
with time power weights [3], when free boundary is a graph of function
on the plane z,, = 0 and on the unit sphere.

We are considering (1.2)—(1.6) as a problem with a small parameter
k at the principle term — velocity of a free boundary in the condition
(1.6). Comparing Theorems 1.1 and 1.2 we can see that the smoothness
of a free boundary in the Stefan and Florin problems is different and it
is higher in the Stefan problem. That is the problem (1.2)—(1.6) with a
small parameter is singularly perturbed.

We note that applying of the method of a small parameter permits us
to obtain required results for the solutions of the problems, in which one
of the unknowns is given in the implicit form, like in the Florin problem
a free boundary is set.

Using the solution of the Stefan problem (1.2)—(1.6) and letting x to
zero we shall prove existence, uniqueness and estimate of the solution
of the Florin problem (1.7)—(1.10) without loss of a smoothness of this
solution. We can not apply for that available results on the solvability of
Stefan problem, because the time T of an existence of the solution and
a constant in the estimate for it depend on a small parameter k.

In Chapter 2 we prove Theorem 1.1 for the solution of Stefan problem
with Ty and a constant in the estimate of a solution independent on
and in Chapter 3 on the basis of Theorem 1.1 we obtain Theorem 1.2 on
the solvability of a Florin problem.

The problems are considering in the classical Hoélder spaces C’i’l/ t2 (Q7),
[ is positive non-integer, of the functions u(x,t) with the norm [18]

! m -
[l == > loForulo, + Y [OFarul, "
2k+|m| <l 2k+|m|=[]
k ()
+ Z [at aac u]t7QT ’
2k+|m|=[l]—1

where the last term is omitted, if [I] = 0, [v|o, = max(, ycq, [v];

@ 2
1S = ), + W52,

(oo, = max (1) = o(z0)] e 27,
(z,t),(2,t)€EQT
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R\, = max _ |u(e,t) — oz, t)| [t 1], ae(0,1).
(z,t), (z,t1)EQr
°11/2 1l/2
C ;7 (Qr) is a sub-space of the functions u(x,t) € C ;7 (Qr) satis-
fying the conditions 9 u|t:0 0, k<[l/2].
We formulate the main results of the paper.

Theorem 1.1. Let 3, T' € C?*T*, a € (0,1).

For any functions ug; € C*T*(Q;), j = 1,2, p € C2Ia’lta/2(ZT)
satisfying the compatibility conditions of zero and the first order on X
and I' and the conditions

0 < k < Ko, Oy uoj|p < —d2 <0, j=1,2, (1.11)
there exists Ty > 0 such that the Stefan problem (1.2)~(1.6) has a unique
solution u; € CZIQ’IJ{O‘M(@J»TO), ji=12pe€e CQIQ’IJ[Q/Z(FTO), KOip €
Cl+o"1+a/2(1“;r0) and the following estimate holds for t € (0,T):

Z| w5 1 | 4 kel () <C1<Z|UOJ o]

(1.12)
where Ty and a constant Cy do not depend on k.

Theorem 1.2. Let X, I' € C**®, o € (0,1). For any functions ug; €
C*H(Qy), 7 = 1,2, p € CQ;Q’ltO‘/Q(ZT) satisfying the compatibility
conditions of zero and the first order on % and I' and the condition
Ovo UOJ‘F < —do, 7 = 1,2, there exists Ty > 0 such that the Florin prob-

lem (1.7)~(1.10) has a unique solution u; € CQ;ra’lJ{a/Q(@jTo), j=1,2,
pE C2ia’1ta/2(FTo) and the following estimate holds for t € (0,Tp]:
2 2

2+ (2+ 2+ 2+
Sl 1ol <CQ(Z’”OJ ) lplS ‘”‘). (1.13)

j=1 J=1
We note that the compatibility conditions for a Florin problem are
the compatibility conditions for a Stefan problem with x = 0.

2. Proof of Theorem 1.1

We apply coordinate transformation [8,9,16] to the problem (1.2)-
(1.6) to reduce it to the problem in given domains €y U 2y

z=y+x(A@)pET)NE), ye0, {=¢y) el

(2.1)
r=y,y€ OO, t=r,
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where O is a 2\g-neighborhood of I'; Ag > 0 is sufficiently small value
depending on I' and such that y(¢t) C O for Vt € [0,to], A(y) is the
distance between a point £ = £(y) € I' and a point y € O lying on
a vector N (&) or it’s continuation (see [9]), x(A) is a smooth cut-off
function: x =1, |A| < Ag, x =0, |[\| > 2.

The mapping (2.1) transforms I' into (¢) and the domains §2; into
the unknown ones €;(t), j = 1,2. We keep the variable ¢ instead of a

new one 7. 3
3+a, ;

We construct auxiliary functions [18] po(&,t) € " (I'7) under
the conditions
ajAqu‘ )
Po‘tzo =0, 3tpo‘t:0 = 8tp‘t:0 == - j=1,2

Y
I/()NTayoqu ‘1"

and Vj(y,t) € Ci+a’1t+a/2(R’T‘,), j = 1,2, as the solutions of the Cauchy
problems

Vi — a; AV;—x 0poNVTV; =0 in RE, (2.2)
Vil,— = tioj(y) in R™.

These functions satisfy the estimates

3 (2 (2 (2 .
‘PO‘(r; < Csluojlg +a)’ |V| ) <C4Z’u0] +a7 J=12

(2.4)
Here symbol ¢~ ” denotes the smooth extension of a function into R”,
R% = R™ x (0,7T); p| 1o is found, when we reduce the compatibility
conditions. We note also that the functions pg, Vi, Vo are one and the
same for the Stefan and Florin problems.
In the problem (1.2)—(1.6) we make the following substitutions

p(€7t) :p0(£at)+¢(£vt)a Uj(@H‘XPN,t) :Uj(yat)—i_‘/j(y’t)v J=12,
(2.5)
where 1), v; are the new unknown functions satisfying zero initial condi-
tions 0y vj‘t 0 =0, a%\t 0=0, k=01 =12
Jacobian matrix of the transformation (2.1) J = {0z;/0y;}1<ij<n
may be represented in the form [8]

J = {0ij + 9y, (Nix(po + ) )}1<z j<n
=1+ (VTNX(00+¢)) =I1+Jn+J1=Jo+ 1,
Jo=1I+Joi,  Jo=(V'Nxp),
Ji = (VINxw)" = NOxve + (VI (V)" = s+ iz,

(2.6)
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where 0;; is a Kronecker delta, I is identity matrix, V = (9y,,...,0y,)-

With the help of the expansion formulae of the inverse Jacobian ma-
trix J™' and J;5 J'= I+ B =1-BJY, B = Ju+Ji,
Jal = I+ JOl)_1 =1- J01J51, we extract linear principal terms with
respect to unknown functions, known functions and remainder terms con-
taining the rests after separating linear terms and known functions. Then
we obtain the problem in a given domain €2 Ny for the unknown func-
tions v;, j = 1,2, 1 satisfying zero initial data

O — aj Avj — (Op) — a; Ap) x NJg T VTV = f(y.t) + Fj(v,¥)
in QjTa ] = 1,2, (27)
'Ul‘z = pl(ya t)> te (O’T)a (2'8)
vi|p =y, 1), te(0,7), j=1,2, (2.9)

()\1 &,Ovl — A 61,01)2 + K1 NT O
— v NT [ Vi = 22 V) I I T+ i NG T Gupo] VT0) |

= SO(?/, ta N) + (I)(’Ul, v2, wa H)

. te(0,7), (2.10)

1 «T»

where the symbo means transposed matrix and column-vector, vg NT

2 dl > 07
fi =X 0ipoN Ty " VIV = 0V +a;(Jg T VLI T VIV, =12,
(2.11)
Fj=x0(po+¢) NI T (Vv — JL T VTV;)
+a;[V BT + (BT 7TV T
e O/ 30 A VA KRR (7 A v K A S [ A v 7
—a;[V BT + (BT 77TvT) 117 Tv 7y,
—a;(VO)VI (xNJ VTV, =12, (2.12)

p= () - Vi) m=-VilwD|, j=12  (213)
o =—uJy [Ty TV (MW — XaVa)| . + kN Oypo], (2.14)
o = Vo(BT + J_IB) J_TVT(Al V1 — A9 UQ)

— MV (M V= X Vh)
+ kg M (BNTOwp + (Ji2 — BJi1) Jg 'NT9ypo), (2.15)
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M=J B +JhJy T I = Jy T ) T+ T Y (B g = Jia) Jy Iy T
In the same manner we reduce Florin problem (1.7)-(1.10) to the

problem with unknown functions v;, j = 1,2, % satisfying zero initial
conditions

drvj — aj Avj — (O — a; AY) x NJg T VTVj = f(y,t) + Fj(vj, )
in QjT, j - 1, 27 (2'16)
'Ul}z :pl(y7t)7 te (07T)a ,Uj‘F - nj(y7t)7 j = 1727 (217)

(A1 Buov1 — Ao Buovz — o NT (M VWA — Mg VW) Jy LTy T 0T ) (F

= ¢(y,t;0) + D(v1,v2,1;0) -

where functions f;, Fj, p1, n;, ¢, ® are determined by formulae (2.11)—
(2.15).

Theorem 2.1. Let the assumptions of Theorem 1.1 be fulfilled. Then
there exists Ty > 0, such that the Stefan problem (2.7)—(2.10) has a

o R o
unique solution vj € C?a’lta/Q(QjTO), j=1,2, ¥ € C'Q;a’ltam(FTo),

o1 lta ) ) . .
kO € C, e 7 (I'ry) and this solution satisfies an estimate for t < T

, te(0,T7), (2.18)

2

2
2+« 24« (1+«) (24« 2+«
Sl oI+ o <G5 Clul + )
j=1 j=1
(2.19)
where Ty and a constant Cs do not depend on k.

Consider the functions f;, p1, n;, j = 1,2, ¢ determined by (2.11),
(2.13), (2.14).
Lemma 2.1. Let 3, T' € C?T o € (0,1). For any functions ug; €
C*Qy), 7 = 1,2, p € CQJQ’IJ{Q/Q(ET) satisfying the compatibility
conditions of zero and the first order on X and I" there exists t1 > 0,

such that f; € Caa/2(Q]t1) n; € 02+a 1+a/2(rt1) J =12 p €

C’ZJFQ ?O‘/Q( Y4), p € CHO"t2 (Ty,) and an estimate holds

2

2a 24« 14+«
SUHIE + ) + a8 + ol
j=1

24+« 24«
Zw 1S +1pIS), (2.20)

for t <ti, k € (0, ko], where constant C’G does not depend on k.



G. I. BizHANOVA 23

Proof. This estimate is derived with the help of the estimates (2.4) for
the functions pg, Vi, V2 and an estimate HJ071||§0:+V) <1/(1—-¢q), v=
0,1, ¢ € (0,1), of the inverse matrix J(;l existing for ¢ < t; under

e 3+a,3te
the conditions po(f( ),t) € C, 7 (I'r), po’t:o = 0 (see [8]) (here

H{am}1<w<n”1“ =N max; j \a”\r ). The functions f; satisfy zero initial
data by (2.2), (2 3), the functions p1, N, J = 1,2, ¢ — due to the
compatibility conditions. O

Consider a linear problem with the unknowns satisfying zero initial
data

OZj — aj AZj — aj(z,t) (¥ — a; AT) = fi(x,t) in Qr, j=1,2,

(2.21)
Zi|y, = pi(z,t), te(0,T), (2.22)
Zilp =mnj(z,t), te(0,T), j=1,2, (2.23)

(M OvyZ1 — X2 0u Z2) |1 + K0T + d(z,8) VIW = p(z,t), te(0,T),

Ir

where \;, a; are positive constants, j = 1,2, d = (di,...,dy).

Theorem 2.2. Let &, T' € C*™*, o € (0,1), aj(z,t) € CY CY/Q(QJT),
di(z,t) € CTT2(0y), j=1,2,i=1,...,n, and

0<r<rko, ojx,0)|,<—d3<0, j=1,2. (2.25)

aoz/2( 2+a, 1+o¢/2(ET)

Then for every functions f; € C T), P1 € C
+

nj € C’2+a 1JFO‘/Q(FT) j=1,2,p¢€ C 2 (T'r) the problem (2.21)-

(2.24) has a unique solutwn Zj € 02+a 1+a/2(Q r), j =12 ¥ €

o 1+
CQJQ Hta/Q(FT), kO € oLt » 3 (I'r) and it satisfies an estimate

7

2

2
2+« (2+a) 14«
507(2 1)+ ) + IG5+ 1617,
j=1

t<T, (2.26)

where T and constant C7 do not depend on k.
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This theorem is proved by standard technique. The proof is based on
the following model problem with unknown functions (2’ t), w;(x,t),
J=12,

6tuj — aj AU]' =0 in -DjTa j = 1,2,
ujl,_o=0in Dj, j=1,2
w‘t:o =0 on R; (2.27)
uj +a;p =0on Ry, j=1,2,
Whuy — eVTuy + W'V + kOp = g(2’,t) on Ry,

where all coefficients are constant; Dy := R", Dy := R}, D7 := D; x
(0,7); R is a plane z,, =0 in R", Ry := R X [0 T); 6= (b1,...,bn), c=
(c1,...,¢n)s W = (h1,...,hn_1); o, 7 = 1,2, are coefficients «;(&o,0),
& € I in the equations (2.21).

In the Holder spaces this problem with arbitrary x was studied by
B. V. Bazaliy [1], E. V. Radkevich [20], G. I. Bizhanova [4]. J. F. Ro-
drigues, V. A. Solonnikov, F. Yi [21] have established the uniform on &

estimates of the solution of a one-phase problem.
In [7] the following theorem was proved.

Theorem 2.3. Let 04] < () 17=12 b0,>0, ¢, >0, 0 <k < Kg. For
every function g € C Rr), a € (0,1), the problem (2.27) has a
unique solutwn uj EC 2+, lja/?(DjT), 7 =1,2, v 68’ ?a’lta/?(RT),
KO € C +a’ ; (

+a, 2(

Ry), and it satisfies the estimate
2
24 (2+ + (1+
Sl [l + w0l < Cslgl )

where T and a constant Cg do not depend on k.

Proof of Theorem 2.1. We introduce the Hoélder spaces. Let 10)2+°‘(FT)
be the space Of functions ¥(&,t) such that (£, t) € 02+a 1+a/2(FT)

KO € C’Ha ( 7). Let

o a a _ o 2+a,l4a/2 o
BQr) = P @) x ¢, (Qar) x DPTO(Tr),

H(QT) — C;,at/Q(ﬁlT) % C,Zolz,at/Q(ﬁZ ) % CQJra 1+o¢/2(ZT)

o o 014+ 71+704
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be the spaces of the functions w = (v1, va,¥) and h = (f1, f2, P1, 71, M2, ©)
respectively with the norms

2

(2+ (2+ (1+
lwllsor) = Zlvgl D I + ol
j=1

2
(2+ (2+ (1+
1Bllrr) = 151D + a5 +Zrm D gl
j=1

We write the problem (2.7)—(2.10) in the operator form
Alw] = h + Nw], (2.28)

where w = (v1,v92,%) is unknown vector, h = (f1, fa, 1,171,172, 0) —
given one, A is a linear operator determined by all the terms in the left-
hand sides of the equations and conditions of the problem (2.7)-(2.10),
N = (F1, F», 0, 0, 0, ®) — nonlinear operator, and A: B(Qr) — H(Qr),
N:B(Qr) — H(Qr).

In the left-hand sides of the equations and conditions of the problem
(2.7)—(2.10) there are the same linear terms as in the problem (2.21)-
(2.24). The condition (2.25): «;(z,0) |F < —dz < 0 with «a;(z,0) }I‘ =
XNJT VTV Ly = Ovugjlp = noNT Oy uos], is fulfilled by voNT >
dy > 0 and (111) So due to Theorem 2.2 and an estimate (2.26) we can
represent the problem (2.28) in the form

w = A" h + Nw]] (2.29)

and obtain an estimate
lwllg@r = A7 B+ Nw]] 507

2
scg(nhnH(QTme(vj, DI+ (001, 2, v >|”“>). (2.30)

J=1

Let B(M) C B(€1,) be a closed ball with the center at zero: B(M) :=

{wlv; € CHAT (@), 5= 1,2, v o€ O (), kO €

1+a _
Cy f Tr), lwlls@qg) < M, t < To}, M = Cy|lhllrq) (L —a)~

€ (0,1).
To prove that an operator A~[h + N[w]] acts from the closed ball
B(M) into itself and is a contractive one we estimate the norm (2.30)
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and the following one

T A+ Nwl) = AR+ Nl
= AT N w] = N@]] |50,

2
< C'9 (Z |Fj(vj71/}) - Fj(ajﬂ/}”gla-)

gt
j=1
|0, 2, 5 ) — D, B, B >“+a>) (2.31)

for Vw,w € B(M).
With the help of the estimates ||J~ 1|| (atv) < Cio(1 T W| (2+a) ),
t < b I < 1y/a —Q) € (0 1) < ti; [[Jully, (@)

2 2+a v
Cut T IS, a8 < Cra |8 <Ot

|po \ (3+a) , v=0,1, of the inverse Jacoblan matrix J ! and JO and the

matrlces J1 = Ji1 + Ji2, Jo1 determined by (2.6) we evaluate the norms
(2.30), (2.31) containing the functions (2.12) Fj, j = 1,2, and (2.15) @,
then we derive

A~ [+ Nwlllsy) < Co bl + 1t (15 lwllsg,, (2:32)

JA™ N w] = N@]] | s,

2 o 2 « 2+« ~
< ra(t, Jur |, Jool 5T [IET) lw — @lggay),  (2-33)

where r1(0, M) =0, ro(0, M, M, M) = 0.
We find 77 from the inequalities r(t, M) < q, ro(t, M, M, M) < q,
€ (0,1), then from (2.32) and (2.33) we shall have the estimates

IA= R+ Nwlllls@,) < Co llhllxan + allwlisen
< Gy [|All3) +aM < M = Cy[|hllnas,) (1 - q)~', (2.34)

AT A+ Nw]] = A7 A+ Nallsa) < allw - @llsq,) — (2:35)

for all w, w € B(M), Vt < Ty = min(to, t1, t2, T1) (the parametrization
of a free boundary (1.1) is valid for t < to; for t < ¢; and t < t9 the
inverse matrices J;;° Land J—1 exist).

From (2.34) and (2.35) by contraction mapping principle it follows
that the problem (2.28) or (2.7)—(2.10) has a unique solution w = (v, v,
¥) € B(Q,). We can see that Ty and a constant Cy(1 — ¢)~! do not
depend on k.
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From (2.29) by (2.34) it follows |lw|[gq,) < Co (1 —q) [|hlln(an)-
Applying an estimate (2.20) for the vector h we find an estimate (2.19)

lwlls@,) < Co (1 =)~ [Ihllro,)

<C5<Z]ugj @) |1 \2“‘), t<Ty, (2.36)

with a constant C5 = Cg Co(1 — ¢)~! independent on k. O

From the formulae (2.5) with z = y + x (po + ¢) N and estimates
(2.4) for Vj, j = 1,2, and py we shall have Theorem 1.1 and estimate
(1.12).

3. Proof of Theorem 1.2

We write down an index s at the functions v;, j = 1,2, ¢ of the
Stefan problem (2.7)-(2.10). Due to Theorem 2.1 this problem has a
unique solution vj,, € OQZa’lja/Q(ﬁjTo), Jj=1,2,v¢, € OQZQ’TO‘/Q(FTO),

o 1ta
KO, € Clya’ / (I'r,) and it satisfies a uniform with respect to x €
(0, ko] estimate (2.36) ((2.19)) for ¢ < Ty:

Zm Gr) el + |kl 8T

<c5<2\u0] @2+a) 4 1p |2+a>. (3.1)

From here it follows that the sequences {vj.}, 7 = 1,2, {¢)x}, as k — 0,

o
are compact in C ! (), CZ’%(FTO) respectively. We choose the con-
verging bubbequences

{v]'ffn}v .] =1,2, {Tﬂnn}, Kp — 0, (32)
and denote

lim v, = vj, lim v, =, (3.3)

Kn—0 kn—0

where v; € C 2 Un), ¥ € Cyt(FTo) These functions satisfy an esti-
mate

« (24«
ZWJ’O” a0 Tl <C5<Z|U0y 75 4 \ - )>, t < Ty,
(3.4)
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which is derived from an estimate (3.1) due to (3.3). To show that the
functions v, j = 1, 2, 9 possess higher smoothness we estimate the Holder
constants

a a (HJ) a o (HJ)
D20l s [0l Byl 1020 ) Byl -
(3.5)

We evaluate, for instance, the difference 0pp(y,t) — O (2, t)

|8tw(y7 t) - atl/}(za t)’ < |8t1/}(y7 t) - atwﬁn (y7 t)|
+ |8t’(/1(2, t) - (97&1/%” (27 t)’ + |8t1/}/in (yv t) - atwmn (Zv t)‘ (36)

In (3.6) we apply an estimate (3.1) for the function ),
Ot (9:1) = Db, (2, )] < O], [y — 2I°

2
< 05<Z |UO] (2+a +| ’(2+a)> ’y . Z|a

j=1

and let x, — 0, then due to (3.3) we obtain an inequality
0w, ) — Dz, 1) < 05(2 sl + lSr Yy~ <1 e <o
which leads to the estimate of the Holder constant

[at’l]Z) Ir, <C5(Z|Uog (2+0) | |, |2+a) (3.7)

We obtain such estimates for the all other Holder constants in (3.5).
On the basis of (3.4) and estimates of the Holder constants, as (3.7)

we shall have for the limit functions (3.3) that v; € 02+a 1+O‘/2(QJTO),
j=1,2, ¢€C2+al+a/2(FTo) and

2 2
2+ 2+ 2+ (2+
oIl + IR < s Sl 48, 1< 339
=1 j=1
To show that the limit functions v;, j = 1, 2, v satisfy the Florin prob-
lem (2.16)—(2.18) we rewrite the problem (2.7)-(2.10) for the functions

of the subsequences (3.2) and with #,, instead of x in a Stefan condition
(2.10), in this problem we let x,, to 0 taking into account (3.3), then we
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obtain that the functions v;, j = 1,2, 9 are the solution of the problem
(2.16)—(2.18).

We prove a uniqueness of the solution of a Florin problem (2.16)—
(2.18). For that we assume there are two solutions of this problem w =
(v1, v, ¥) and w = (v1, V2, ¥) and let {wy, } and {w, } be subsequences
converging to w and w as k, — 0 respectively. We consider Stefan
problem (2.29) written for the functions of the subsequences w,, and
Wy, and estimate the difference wy,, — Wy, = A~ h+N|wy,]] — A [h+
Ny, ]]= A~ [N[w] — N[w]] using (2.31)

2
(2+ (2+
Z |Uj’in UJ"’v'n| a + ‘w’in w"’in‘ a

< Cy <Z |5 (Vjnns Vi) — (anmlznn) glv)

Jt

~ ~ T 1
+ ’(I)(Ul, V9, 1/J,.gn; /in) — (I)(Ul,{n, V2 s 1/},%; /in)‘%:—a)) .

We let Ky, to zero and apply the estimates (2.33), (2.35)
2
2+« (2+a) (o
S oy — TG+ 1 - G2 (Z\F 03,8) — Fy (35, D))
j=1
+ |(I)(1)171)271/}7 ) (Ul,U2,¢, )|(1+a>

<ro(t,M, M, M) <Z\vj—vj\2+a + |y — w‘(2+a>

j=1

Zm — TG -y — Pl

2
2 2
< q(Zyvj — TG + [y — +a>) t € (0, Tp),
j=1
where g € (0,1). This inequality leads to the identity w = w and to the

uniqueness of the solution of Florin problem (2.16)-(2.18).
From the formulae (2.5) with z =y + xNp

p=po+,  wi(x,t):=vj(r—xNp,t)+Vj(x—xNpt), j=12,
(3.9)
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we obtain that p € C2ia’1;ra/2(l“gp0), uj € Czja’lfa/Q(QjTo), Jj =12,
and with the help of the estimates (2.4) for the functions pg, Vj; (3.8) for
vj, ¥ , we have got an estimate (1.13) for the functions u;(x,t), j = 1,2,
and p.

Obtained functions uj, j = 1,2, and p (3.9) are the solution of the
Florin problem (1.7)-(1.10). Really, we substitute them into equations
and conditions (1.7)-(1.10), make coordinate transformation (2.1) and
substitutions (2.5) with p and wu;, determined by (3.9), then we obtain
for the functions v;, j = 1,2, and % the Florin problem (2.16)-(2.18).
As it was proved, these functions are the unique solution of the problem
(2.16)—(2.18), that is the functions w;(z,t), j = 1,2, and p determined
by (3.9) are the unique solution of the Florin problem (1.7)—(1.10). O
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