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Abstract

Some class of J-selfadjoint ordinary differential operators is investigated. A criterion
of similarity to selfadjoint operators is obtained for this class.

Consider the operator A = (sgnz)p (—2’%) in the Hilbert space L?(R), where

p(2) = 2" +ag, 12"+t az+ag (0.1)
is a polynomial with real coefficients a;. Denote D = —i<t. Then L = p(D) is a constant

coefficient differential operator in L?(R) defined on the Sobolev space WZ"(R) (see [1]). It is
clear that L = L*. Let J = J* = J~! be the multiplication operator defined by (Jf) (z) =
(sgnz)f(x), x € R. The operator A = JL, being a product of two selfadjoint noncommuting
operators, is a nonselfadjoint one.

If p(t) is nonnegative (i.e. p(t) > 0 for all £ € R), then JA = L = L* > 0 and the operator
A is a definitizable operator. The resolvent set p(A) is nonempty and therefore M. Krein-H.
Langer’s spectral theory can be applied. In particular, this spectral theory shows that A has
a spectral function defined on open intervals in R with the endpoints different from 0 and
oo. The positive (negative, respectively) spectral points are of positive (negative, respectively)
type. Hence 0 and oo are the only possible critical points. Starting with this fact B. Curgus
and B. Najman proved in [3] that (sgn x)% is similar to a selfadjoint operator in L*(R). Later
they extended this result to more general polynomials p. Namely, in [4] they proved, that the
operator A is similar to a selfadjoint operator if p(t) is a nonnegative polynomial with at
most one real root. In the paper [5] corresponding questions for partial differential operators
was studied. For more detailed references see [5]. We reproved the result of [3] in [7].

In this paper we obtain the following criterion for an operator A to be similar to a selfadjoint
one:

Theorem 0.1. Let p(z) = 22" + a9, 12> 1 + ... + a1z + ap be an even order polynomial with
real coefficients. Then the operator A = (sgnx)p(D) is similar to a selfadjoint operator if and
only if the polynomial p(t) is nonnegative.

Our approach is completely different. It is based on the following similarity criterion which
has been obtained by S. N. Naboko [10] and M. M. Malamud [9] (see also [2], where this criterion
has also been obtained under an additional assumption).

*This is an English translation of the authors M.S. thesis. It differs in introduction, pagination, and ty-
pographic detail from the paper published in Methods of Functional Analysis and Topology 6 (2000) no.2,
22-49.



Theorem 0.2 ([10],[9]). A closed operator A with real spectrum acting in a Hilbert space H is
similar to a selfadjoint one if and only if
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where Ra(X) :== (A — XI)™" and my, m*. are some constants independent of f € H.

Thus, we have to find and estimate the resolvent of A. This problem leads to the investiga-
tion of roots of the equations p(§) £ A = 0.

1 The roots of the polynomials p(§) + A

Let p(z) be polynomial (0.1). Denote Z, := {z € C: p'(z) =0}, Ay := p(Zy), My := Ag N R.
The sets Zy, Ao, My are finite. Let {eg,e1,...,€9,-1} 1= {| Im Xg| : Ao € AgNC,} U{0}, where
g; are arranged in ascending order, 0 = gg < gy < ... < Eon—1. Let g9, := +00. Denote
At = {AeC:iegy <ImA<egi}, £ = 0,...,2n — 1. Then A, NAE = @ for j # k and
UAY = C.. Here G stands for the closure of G. Let A, be one of the sets A’i, k=0,..2n—1.
We say that a family of functions {£;(\)}" is a complete solution, if for fixed A numbers
{ﬁj()\)}f" present all the roots of the equation p (§) — A = 0 counting their multiplicities.

Lemma 1.1. Let Gy and G be simply connected domains in C such that Go C G, GN Ay =1
and Gy \ Ag C G. Then there exists a complete solution {£;(\) f" of the equation p(§) — A =0

such that functions ;(\) are holomorphic in G and continuous in Gy.

Proof. Let \g € C\ Ag and let £° be any solution of p(§) — Ao = 0. Then £° ¢ Zy, p/'(£Y) # 0 and
£% is a simple root of the polynomial p(¢) —\g. By the theorem on local inversion of holomorphic
function there exist a neighborhood U(A\g) = {|A — Ao| < 7(Xg)} and a holomorphic function
£(X) defined in U()g) such that £(Ng) = &% p(E(N)) = A, E(N) # €% for A € U(Ng) \ {N\o}-

Choose an arbitrary point \; € G. Since G N Ag = ), we have \; ¢ Ag. Thus, the equation
p(§) — A1 = 0 has 2n simple roots 5?, j=1,...,2n. For each of them there exist a neighborhood
U;(A1) and a holomorphic function &;(A) defined in U;(A1) such that (A1) = &7, p(&(N) = .
The pair (U;(A1),§;(N)) is an analytical element. By virtue of the previous paragraph this
analytical element can be continued along any curve 7 in the simply connected domain G such
that p (§;(A)) = A. Then the monodromy theorem [12] implies that all the analytical functions
&;(\) are univalent in G. Since p (§;(\)) = A and G N Ag =0, we have p' (§;(N\)) # 0 for X € G.
Hence, &;(\) is a simple root of a polynomial p(§) — A for all j = 1,...,2n. Thus, the family
{&(N) f” of holomorphic functions is a complete solution.

The functions &;(\) are continuous in G\ Ag as they are holomorphic in G. Thus, it remains
to show that the functions &;()\) are continuous at the points A € Gy N Ag. Let \g € Go N Ag
and let zy be a root of multiplicity k of the polynomial p(z) — Ag. Then the theorem on local
inversion of holomorphic function implies that for all » > 0 there exists po(r) > 0 such that
for all A € U(Ng) := {|X — Ao| < o} the polynomial p(§) takes on value X in exactly k distinct
points of the circle | — 2| < 7. If A € G NU()\), these points belong to the set {&;(\)}>".



Denote them by &;,(\), ¢ = 1,..., k. Define &;,(\o) := 2. If 7 — 0 then p(§) = A — A¢ and
/\hH)\l €jq(A) = 2. So we have continuously prolonged the functions ;,() to the point Ag. The
— A0

set Gy N Ay is finite. Arguing similarly for all the roots of p(2) — Ao and for all Ay € GoN Ay we
continuously prolong the functions &;(\) on Gy. O

Applying Lemma 1.1 to the domain Gy = A, we conclude that the equations p(€)—A=0
and p(¢) + A = 0 have complete solutions =+ = {fj()x)}fn and 27 = {5 }1n, respectively,
defined in A.

By Wy ;(z) we denote the branch of the multifunction %/z defined in C with a cut along the
e 2W(jfl)>

+
positive semiaxis Ry and fixed by wy, j(—1) =e <m m

Lemma 1.2. There exists a numbering of functions f;L(A), & (A) such that
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as A\ —oo, AeEA,, j=1,...,2n.
Proof. Clearly, 0 is a zero of multiplicity 2n of the function ¢(¢) := —A~. Therefore ¢(¢) =

| 0
1(¢)¢*™, where ¢1(¢) = % = 4(2_1n) is holomorphic in a neighborhood of 0 and ¢;(0) = 1. Let
e
¢
U(0) be a neighborhood of 0 where ¢;(¢) # 0. Let 11(¢) be the branch of the multifunction
X/ ¢1(C) fixed by 11(0) = 1. The only zero of the function ¥ (¢) := ¥1(¢) ¢ in U(0) is the simple
zero 0. If p (%) =\, ¢(¢) :=9*(¢) = A~'. By the theorem on local inversion of a holomorphic

function for each j = 1, ..., 2n and for all \ sufficiently large there exists the only function (,(\)
taking values in U(0) such that ¢4 ((j(N)) (;(A) = . Then ¢;(A\) — 0 as A — oo and

W2n
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ie.,p <ﬁ> — X = 0. Consequently, there exists a numbering of 5;“( ) such that §+( ) = 5 (1A),
j=1,...,2n. But

& (N 1 I
Wan, ;i (A) C]( Jwan i (A) =11 (G (A)) 1
as A — 00. The proof for £ () is the same. -

Assume that the functions §j[ are enumerated as in the statement of Lemma 1.2. Now we
can introduce the following families of functions: = := Z* UZ", Zf = {7 }], 25 = {§ )04,
= = {& 11 By = {§ 134, For an arbitrary family ® C =, [z, Ao denotes the famlly of
all functions £(\) defined on A, such that ¢ € ® and £(X\g) = zp. Let #(®) be the number of
elements in a family ®.

Let £ € 2, A € A,. Then, by virtue of Lemma 1.1, £()) is a continuous in A, function.
Obviously, (M) ¢ R for all A € A,. Therefore, either £(\) € C, forall A € Ay or {(\) € C_ for
all A € A;. The polynomial equation 2" — X\ = 0 has exactly n solutions wa, j(A), 7 =1,...,n
in C; and exactly n solutions ws, j(A), 7 = n+ 1,...,2n in C_. Analogously, the equation
2" + X = 0 has exactly n solutions wy, j(=A), j = 1,..,n in C_ and exactly n solutions
wanj(—A), j =n+1,...,2n in C;. Therefore one derives from Lemma 1.2 the following lemma.



Lemma 1.3. Each of the families =, =~ contains exactly n functions taking values in C,
and exactly n functions taking values in C_. Namely, the functions from =7 25 take values in

C., the functions from =3 =] take values in C_.

If \o € A, then all the roots of polynomials p(z) F Ao are simple. If Ay € A; and z is a
root of multiplicity & of the polynomial p(z) — Ag (respectively p(z) + Ag), then by Lemma 1.1
#(27[20, o)) = k (respectively #(Z[z0, Ao]) = k).

Lemma 1.4. Let Ay € A, and let 2y be a_root of multiplicity k of the polynomial p(z) — Ao
(respectively p(z) + Xo). Let (20, Ao] = {&S (A} (respectively = [z, o] = {&; (\)}f). Then
forq=1,...,k and for A € A, sufficiently close to \g

&) =20 =7 (& ) wrg(d = Xo)
( respectively éq_(/\) —2zp=" (éq— ()\)) Weq(—A + )xg)) :

Here v(z) is an arbitrary holomorphic in a neighborhood of zy branch of the multifunction

p(’z)—;‘: (respectively p(z) = % ‘

) _
(z — 2o

Vpi(z)
Proof. By the conditions of the lemma we have p(z) — Ay = (2 — 20)*p1(2), p1(20) # 0. Let
U(zp) be a neighbourhood of zy such that p;(z) # 0 for z € U(z). Let us choose a branch of
the multifunction {/p1(z) in U(zp). In U(zp) the function ¢(z) := {/p1(2)(z — 20) has the only
root zp, which is simple. Hence, for A sufficiently close to Ay and for each ¢ = 1, ..., k there exists
the sole family of functions z,(\) taking values in U (2g) with the property ¥/pi(2z4)(z, — 20) =
Wr.q(A = Xo). Indeed, p1(z,)(z, — 20)* = X — X and the last statement follows from the theorem

on local inversion of a holomorphic function. Consequently, p(zr) — A = 0 and we can enumerate
§5(N) so that £F(A) = 2z,(A). Then

where py(z) =

& V) = ——=wrg(A = No)

for A\ sufficiently close to .
The proof for £, (A) is completely similar. O

Let k(z9, A\g) be the multiplicity of a root zy of the polynomial p(z) — Ag. Lemma 1.1 implies
that #(ZF[20, Mo]) + #(E5[20, Mo]) = k(20, £No). Assume that 2z, € C,. Then #(Z5[20, A\o]) =
#(Z71 [20, Ao]) = 0 and, therefore

£(Z1 [20, Ao]) = £(EF [20, Mo]) = k(20, Mo) (11)

1(Z5 [20, M) = £(E [20, Ao]) = k(20, —Ao) '
Analogously, if zg € C,, then

£(Z5 [20, Ao]) = £(EF [20, Mo]) = k(20, Mo) (12)

(21 [20, Ao) = £(E [20, Ao]) = k(20, —Ao) '

Let £€t(\) € EF, then p(¢t(\)) = A = 0 and p (f+()\)> + (=A) = 0. It is equivalent to

£ (N) == £F(=A) € Z7. Taking into account Lemma 1.2, we see that £ (X) = & (=),
j =1,...,2n, and therefore one arrives at once

127 2, — o)) = H(Er [20, M), H(ES [Fo, —Nol) = H(E5 [20, Mo)). (1.3)




If 2o € R is a root of one of the polynomials p(z) F Ao, then \g € R. In this case the
distribution of roots among C, and C_ is provided by the following lemma.

Lemma 1.5. Let A, = Al. Let yjg € R C Ay, to € R.
(a) If k(to, o) is an even number, then

8(={ [to, mo]) = 8(E3 Tto, ko)) = 4(E7 [to, —10]) =

= H(E5 [to, — o)) = =h(tor jo). (14)

2
(b) If k(to, po) = 2ky + 1 is an odd number, then one of the following assertions is valid
(1) #(E{ [to, o)) 8(E1 [to, —po]) = ki, (1.5)
8(E5 [to, o)) = £(E5 [to, —po]) = k1 + 1.
(i1)  #(={[to, pol) 8(E1 [to, —po)) = k1 + 1, (1.6)
85 [to, o)) = 8(E5 [to, —po]) = Fu-

Proof. We set k = k(to, f10). In the case k <1 the lemma is trivial. Let = [tg, uo] = {é;()\) K
where the functions f;()\) are enumerated according to Lemma 1.4. Since ¢y € R and pp € R,

the polynomial pi(z) = Izgz_)t_o’)‘,f has real coefficients and, therefore pi(ty) = p; (5; (/L(])) €
Ti
k

R\ {0}. Choose 7(z) such that arg~y(z9) = 0 in the case pi(z9) > 0, and argy(zp) = T in the
case p1(2z0) < 0. In what follows we consider all angles modulo 27. Note that if A = pg + ie,
where £ > 0 is small enough, then

arg 5;()\) = argwy (A — \o) + argy <§;(>\)> ,

T 27
argwy q(A — o) = o + ?(q -1),

and arg -y (é;()\)) — argy(zo) as € — 0.

Assume that k = 2k; > 2 is an even number. Then for any p; (%)

Va>0§|5€:5<55:—a<arg7<§~;()\)><%+a,

and, therefore

T - 7T
——a<agl, (\)<m——+4a, q¢=1,.,k,

2k 2k
77 - I
7T+ﬁ—a<arg§;()\)<27r—%+a, q=rk +1,..,2k.

Thus é;()\) eCyiforqg=1,.. ki, 5;()\) € C_ for ¢ = ky + 1, ..., 2k;. This proves (a).
Assume that £ = 2k; + 1 > 3 is an odd number. Then in the case p;(ty) > 0 we have

Va>0§|5a:5<55:>27r—k—a<arg§;(/\)<7r—%+a,q:1,...,k1—l—l,
3 ~ 3
7r+—7r—a<arg£;(>\)<27r——7r+oz, g=Fki+2,...,2k +1,

2k 2k



and, therefore assertion (ii) holds. In the case p;(to) < 0 we have

3 3T
Va > 03). : e < 9. :>—7T—a<arg§+()<7r——+a qg=1,.... ki,

2k 2k
7T+ﬁ—oz<arg§+( )<27T—ﬁ+04, qg=k +1,..,2k +1,
and, therefore assertion (i) holds.
N k
The statements for =~ [tg, — o] = {fj_ ()\)} follow from (1.3). O
1

We need Lemma 1.6 to estimate some integrals.

Proposition 1.1. Let z = n(t) be a rectifiable curve lying in the circle U = {z : |z — 29| < R}.

Assume that sup |argn'(t1) — argn/(ta)] < w/2 for some set T such that [a,b] \ T is a set
t1,t2€T

of the zero Lebesque measure. Then the length of the curve z = n(t) is less then 4R, that is
f |/ (t)|dt < 4R.

Proof. By conditions we can choose z; € C such that

sup |argn'(t) — arg 2| < 7 /4. (1.7)
teT

Let 1 := {az : @ € R}. Denote by z = 7(t) the orthogonal projection of the curve z = n(t)
on the line [;. Since n(t) € U for all t € [a,b], the length of the curve z = 7(¢) is less then 2R,

f |7 (t)|dt < 2R. On the other hand, by virtue of (1.7), we have
b
/ t)|dt > / —|n'(t)|dt.
The combination of these inequalities proves the proposition. O

Lemma 1.6. Let A= p+ic, ImA =¢, £ € Z, £(N) € Cx for all X € Ay. Then there exists a
constant Mc such that for all € > 0 and for any function F(z) from the Hardy space H*(C..)
the following inequality is valid:

/ F(€0) 2 |deN)] = / F (€N €N < M| (18)

( Henceforth we take integrals along lines A = pu + ie, where € is fized.)

Proof. We establish inequality (1.8) for £ € =] . According to the well known Carleson embed-
ding theorem (see, for example, [8, viii E], [6],[11]) it is sufficient to prove that for all ¢ > 0,
R >0, zp € R there exists a constant M such that

&'V dpp < MR, (1.9)

[E(A)—z0|<R



that is, the length of the part of the curve
{Z = £<)\)7 A= H+ ig’/’t € (_007 +OO>} n {lZ - ZO‘ < R}

is less then M R.

By Lemmas 1.2 and 1.4 we obtain that for all A\ € C; U {occ} there exist a neighborhood
U(Xg) of Ao, a number k(Xg) € {1,...,2n} and a holomorphic in a neighborhood of the point
£(Ao) function 7,,(z) such that vy, ({(Ag)) # 0 and one of the following equalities is valid for

A€ U(N)

E(A) = &(Xo) + 10 (€(A)) Wr(re),1 (A = Ao) for Ag # o0,
EN) = Yoo (E(N)) w2n 1 (N) for \g =
(If Ao = oo we set for convenience wy(xy),1(A — Ao) := wan,1(A).) Now one derives
o (E(A))

§'(N) =

I 7&0 (50\)) Wk()\o),l(/\ - )\0) (wk(AO (/\ )\0)) .

Therefore,

€] < CO) | (@rpa(A = 20)) (1.10)

for A sufficiently close to Ag. Constricting U()g) we suppose that the last inequality is valid
there. o -
Since the set C, U{oo} is compact with respect to the topology of C, we can extract a finite

subcovering |J U(A;) from the covering | JU()). By virtue of (1.10) the measure |£'()\)|dp is
jerI Ao

less than or equals the measure C'(\g) ‘ (Wr(r)1 (A — /\0))/’ dp on U(Ng). Therefore, it suffices to

prove inequality (1.9) for £(A) = &k(N\) = wra(N), k=1, ..., 2n. For these curves, by Proposition
1.1, we have

L/ €' (V)] du < 4R, ./‘ 1€'(N)] dp < 4R,

[§(A)—z0|<R [§(A\)—z0|<R
n<0 u>0

so inequality (1.9) holds true for M = 8.
The proof for other functions from = is the same. Choosing the greatest constant we obtain
Me. O

2 The resolvents of the operators A, A*

Since the operator L = p(D) = L* is closed and J is unitary, A = JL is closed too. Let us
define the restriction Ag = A |p(a,), where

= {y(x) e W3"(R_) & W3"(Ry) :
(D7y)(—0) = (D7y)(+0) =0, j=0,...,2n — 1}.

Ap is a symmetric operator. The adjoint operator A} has the domain D(Af) = Wi"(R_) &
W3™(R, ) and is defined by the same differential expression. Lemma 1.3 implies that any A ¢ R

is an eigenvalue of A of multiplicity 2n. If, in addition, A € C\ Ay, the functions et/ Ny (2),
¢S Ny _(x), j = 1,...,n form a basis of ker(A5 — AI). If A € C_\ Ao, then ¢ Y7y (z),



eiff(’k)xx_(z), j=mn+1,..,2n form a basis of ker(Aj — AI). Here x_(z), x+(z) stands for
the indicator functions of R_ and R, respectively. Thus the deficiency index of Ay is (2n,2n).
Let A = Af |p4), where

= {y(z) € Wi"(R_) & W5"(Ry) :
(D7y)(—0) = (D7y)(+0) =0, j=0,....,n—1}.

Then A is a selfadjoint extension of Ag. The operators A and A* are proper nonselfadjoint
extensions of Ay with the domains

D(A) = {y(z) € W5 (R-) & W5"(Ry) :
(D7y)(—=0) = (D7y)(+0), j=0,....2n — 1}, (2.2)

D(A*) = {y(z) € W"(R-) & W™ (Ry) :
(D7y)(—=0) = =(D7y)(+0), j=0,....,2n — 1}. (2.3)

Clearly, Ag C A C Aj, Ay C A* C A;.
The following lemma is known [4, Theorem 2.2]. We present the proof for the sake of
completeness.

Lemma 2.1 ([4]). The operators A, A* have the real spectrums, c(A) C R, o(A*) C R.

Proof. Let A ¢ R. By Lemma 1.3 the polynomial equation p(z) — A = 0 has exactly n roots
{z}1 in C, (counting their multiplicities). These roots lead to the standard system of lin-
early independent solutions {gbj}’f of the homogenous equation p(D)y — Ay = 0 such that
QS;“(;U)X+(.:I:) € W3"(R,) are eigenfunctions of Aj. Analogously, the equation p(z) + A = 0
has exactly n roots {z; } in C_. There exists the corresponding system {¢; } of solutions of
p(D)y + Ay = 0 such that ¢, (z)x_(x) € W3"(R_) are eigenfunctions of Aj. Since 2" # 2

for all j,q, the system {gb;“, o5 11 is linearly independent. Moreover, it is a basis of solutions of
n

the homogenous equation ¢(D)y = 0, where ¢(t) = (t — z[)(t — z; ). Therefore its Wron-
J=
skian does not have zeros. The functions ¢ (x)x+ (), gzﬁj_ ()x_(x), 7 =1,...,n form a basis of
ker(Ag — AI). . .
Since the operator A is selfadjoint, we have o(A) C R and therefore for any f(z) € L*(R)
there exists the only function g(z) € D(A) such that Ay — Ay = f. Then

Ay-dy=[f < yl +Zc+¢++Zc é;,

where c;-: are arbitrary numbers. Suppose that y € D(A). Then the coefficients c clearly

satisfy the system

n n

St (DUgF) (+0) + (DY) (+0) = Y ¢; (D7) (=0) + (D) (~0),

J=1 J=1

q=0,...,2n — 1. It follows from the continuity of the functions gb;t and its derivatives that the
determinant of the system is the Wronskian of the functions {gb;“, gbj_}’f evaluated at 0. Hence,
the determinant differs from 0. Therefore, for any f(z) € L*(R) there exists the only y € D(A)
such that Ay — Ay = f,i. e, A ¢ o(A).

Thus, we obtain the inclusion o(A) C R. The identity 0(A*) = o(A) implies o(A*) C R. O



Setting w = {w;}]", we put

1 1 1
M(w) = wy W Wi,
wt wyt L wm!
Denote by V(w) the Vandermonde determinant, V(w) := det M(w) = [ (w; —w,). The

I<g<j<m
minor of V(w) obtained by excluding the j-th column and the last row is denoted by Vj(w).
We denote the vector-column (w;)7* by col(w;)}".
Let A € A,. Then the system of functions eifj(’\)mer(x), e NVey (), 5 =1,...,n form a
basis in ker(Aj — AI). Let us introduce the family of functions

O = {0,V = (€1 (), -, € (& (V) & (N} = 5 UE;
For a family of functions ® = {¢;(e)};c; and for fixed A, ®(\) denotes the family of numbers

{¢;(N)}jer. We shall sometimes abbreviate M (®(X)), V (®(X)) as M (), V().
As usual we denote the Fourier transform of f(z) € L*(R) by

+N

-~ too
Here l.i.m. means limit in quadratic mean. We also write f(z) := \/LQ? e " f(t) dt for z € C,

o0

if the integral converges. Let fi(z) := f(z)x+(x). Then ﬁ(z) is in the Hardy space H?*(C_),
f-(2) € H*(C,). If u(z) € H*(Cy) and u(t) = u(2) |g, we shall write u(t) € H*(C). Let

+oo
Hf(x) = 1 v.p.—/ % dt be the Hilbert transform of f(t) € L?*(R), where v.p.- [ means the
T _
principal value i;gégral.
It is known ([8, vi. D]) that
f() € HY(Cy) = Hf(t) = —if(t), [f(t) € H(C-) = Hf(t) =if(t).

According to Paley-Wiener theorem (see, for example, [13, vi. 4]) ||E(2)||H2 = || fir(@)]| L2,

I = 1 @)l | |

At first, we find the resolvent for the function e***x (x). Let A € Ay, fo(z) = € x (),
where a € C; and a # 6;()\) for all j € {1,...,2n}. Evidently, f,(z) € L*(R). Since A}f, =
p(a) fo, then yi(z) = mfa(x) € Wi*(R,) is a particular solution of the equation (Af —
M)y = f,. Then the general solution is

- it ~ _ i€ w
y(x) =yi(r) + Y e Txa(z) + > et Ty (x).
j=1 j=1
In order to find y,(x) = Ra(A)fa, we have to use condition (2.2). Taking equalities

D)0 =D (S ) =D

r=—0

(D)(+0) =~ @+ 3 (€]
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into account one arrives at the system

n n B B 1
;(_C;r)(f;r)q + ;Cj (é‘j )q = p(Oé) . >\ aq ) q= 07 7277/ - L
We rewrite the system as
| | | | —f
g ... & & . & L
(30 PR (50 L (50 S o & =
@io i i e ) |
_Cl+ .
—ct 1 o
e | | =i |
. a2n—1

Cn

Since all the numbers fji, j = 1,...,n are different, the determinant of the system is V' (0) =
V(& . &8 &, ., &) # 0 and, therefore there exists the only solution:

CoTe) e —a) 0 Le) T, a)
I o - o
J bl —ve) bl - NV(©)

j=1..n.
Lemma 2.2. Let A € Ay, fo(z) = x4 (x), with « € Cy and o # 0;(N), for j = 1,...,2n.
Then the Fourier transform of yo(z, \) := Ra(A) fo is

2n

1 j=1

21 2n

y/(;(t, )‘) = .
(pla) =) (¢ —a) IT (6;(A) — 1)

Proof. Using the expressions for cj[, we have

. 1 1 —~ 1 ~ 1 B
O S Sy R DR v R DL v e
(07 5(0) T 0 - )
_ ! LY %3 1|
V2 (pa) = ) (t—a)_l_; V(O©) 0; —t |
v(O) I (0, =)+ X (=110t = o) I [0, = )6, )
q7]




11

The numerator of the last fraction is a polynomial p;(t) of degree 2n. It is clear that p;(a) =
2n

p1(01) = p1(02) = - - = p1(02,) = V(O) 1;[1(9j —a). So
pi(t) =V(O) H(Qj —a) (2.4)
Finally, we have
1:[1(93' —a)
i) - N

[l
Let us find the resolvents (A — AI)~! and (A* — AI)~'. Since p(D) = F'p(t)F, we have

. 1 i
yi (x) = (p(D) = \I)" f(x) = F o) — (@),
L (x) = (— A7 fo(z) = a1 x
yr () = (=p(D) = AI)™ f-(x) = F _p(x)_AFf—( )-

Since y; (z)x+(x) € D(Ap), y1 (z)x—(2) € D(A), then (A§—AI)(y{ x++y; x-) = f. Therefore
yr(a) = (A= A7 f(a) =

= i (2)x+(2) + 7 ( ) + Z cf e’ Ty (z) + DG ey (x)
yi(x) = (A" =AD" f(x) =
=y (@)x4(2) + yy (z ) + Z e Ty (o) + ZC}f‘e’g

Using (2.2) we have

(st S]]
j=1 -0 j=1 -0

q=20,...,2n — 1. Thus, we obtain the system

n

(D9y)(0) + Z (&)= (D)) + > (&) q=0,....2n— 1. (2.5)
j=1
From . ]
Dy (z) = Dq}—_lm}-ﬁr(fﬂ) = 7:_1$qm7‘—f+(35),

one derives

(Dy)(0) = (%27 / tqmm) dt) - ¢127 / ;(Z;g dt.
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q
Analogously, (Dy;)(0) = / ! f dt Substituting these equalities into (2.5),
V2T
obtain the system
M(©O\))col(c],...,ct, —cy sy —C,)) =
“+oo P P 2n—1
1 J+(7) f-(7)
= 1| — q9 | _ d
o | /7 <zmv—x+—pﬂ—A ’
—00 q=0
The solution is given by
2n
de-n N
fHéJ f+(7) f-(7)
; - + d =1
CJ /o / ( p(t) = A —p(1T) — A nJ
(6 — 6;)
q=1
aF#]
2n
B
_ —1 [ e f+(7) f-(7)
¢y = 5 (— + dr,j=n+1,....,2n
V2 " p(r) = A —p(1) = A
W—OO Hl(eq - 8])
o=

Lemma 2.3. Let A € C; \ Ay and f € L*(R). Then the resolvents y;(x,\) = Ra(A\)f(x) and
Ra«(N) f(z) are given by the following formulas:

yi(z, \) =
_ 7t — + -
Yr =YX FYXC Y Yo (2.6)
Yr =YX, FYIXC F YN, — Yo X — Yo X+ Yo X (2.7)
where the functions yi, ySE are defined by their Fourier transforms:
2n i
N Jhe-g)
— fe(t) & r 1 f+(&)
yf(ﬁ:p(tg—)\ -y Y = ; —tp’(fi)’ (2.8)
j=n+1 g=1 H(er_eq) q J
=
2n _
N I
—~ fo(t —~ 2 &3 1 &)
yp (t) = —_p(t)( 1 T =y Y= n p/(fi) _ (2.9)
j=n+1 g=1 H(er_eq) q
=

Proof. We have shown that y; =y x, + y1 X_ + yo, where

yole) =3 e oy (@) + Y e T x_(a
j=1

j=1



Substituting ci, we have

o —1 _ 1
JZI i2r(Er — 1) Zcﬂ'i\/%(g—t)

H(9 - B
1 qséa f+(7) _ f-(7) - 1 _
#J

. 21V (O) ]1;[1(93‘ — )t —1)
o) 10 ~ 7
B 4 )]1;[1( i~ ( J+(7) _ f=(7) ) dr =
2miV (©) fﬁ(ej —t)(t—7) p(r) =X —p(r)—A
V(O [0 1) = VO TT 0 —1) , — =
_ ( )11;11( / ) ( )jl;[l( ) ( fr(7) B f-(7) ) dr —
J oiV(©) 2_n(6 o) p(r) =X —p(T) = A

oo 110, — 7 0, —t) , — _
— 1 J'Ell( ’ )= j= 1( i f+(7) . f-(1) dr
27ri_oo (t— 1) 1:”[(&] . p(r) =X —p(1) = A :

Here we used the relation (compare (2.4) )

2n 2n 2n 2n

Y (@) =) [T 16 =) 1 =v(e) ][ - - ve) [ -

Jj=1 q=1 j=1 j=1
q#7

Let us denote
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(2.10)



It is easy to see that

+o0 0 0; —7)f+(7 +00 —
0 _ 1 v.p jl;[l( o )dr L p.-/ f+(7) dr =
0 o ﬁ(ej—t) . (t—71)(p(T) = \) 2mi . (t—7)(p(T) = A)
2n 0 _ 3 .
o feeere oy
2i 12_"[ (6 — 1) p(t) — A 20 p(t) — A

Since ﬁ(t) € H?*(C_), we have

—
— M

f+(&)

w2 w € H*(C.),
He-g) =g -g-g)
” 0]
2n T+
Z — f+(€]) c HQ(C_,_).
=g -ene-g)
o
Therefore,
W DOy T
! I1(t—¢)
7j=1
e 2n T e+ 2n T /et
Y 2nf+(t) B Z _ fe(&) N Z _ f(&) _
He-¢) ~ollg-ew-g) | =g -gu-¢)
” o 0]
i 2n T et 2n T et
_ an+(t) _ Z _ f+(§7) + (=) Z _ f+(53) _
l:[l(t—ﬁf) j=ntl Hl(fj+ — &Nt —¢&) j=ntl Hl(éf—ﬁg*)(t—ﬁf)
” i 4

I RORPR N (3D
() =X 3 PENE &)

j=n+1

14
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Analogously,
T, - 0o
U=
o, -070 w0 He-6)7E) T, -7
B U e SR *”J;H GiEE
2n — 2n —
fo,-ofo  a He-efe
B G v s
Thus,

—~ 1. W = £ (&)
w05 (x5 W>+

j=n+1

M0 -0 o H(9 — e

1 1 Cg=1 g=1
JE— —_— 2 pr—
Toim T - 2 PENE—¢&)
[1(0;—1) j=n+1 J
j=1
2n 2n

S Tooe-g S
Taking (2.10) into account, we have
S 0re) - ) T 6 -6) 6 -]
f(t) _ 2”: =1 "= f+ (&) _
V(e I 6, - (- &) P

T -¢) -

_ o2 r;éq f+ §+

S p o 2

S5 110, - 0,0, - 1) 7
"
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In just the same way one derives

e[ 0;— )~ T1 (0, 1) —
v () = —— BT RO F dr =
0 27TZ_OO (t—T)i_n[(@J—t) p(T) + A
el He-npo
S e -ne-g) PO

Since yp = 3;01 + ﬁ, we conclude (2.6).
We can obtain (2.7) similarly. On the other hand, note that the functions vy x,, ¥4 x_,
Yo X+» Yo X_ belong to ker(Aj — AJ) and

VU= UG X F U Yo XS — Yo X T Ug x- € D(AT).

It follows that

(A" =ADy" = (A5 = ADy" = (A = AD(wix, +yix ) =fr+f- =1,

and, therefore y} = y*. O

3 Necessary conditions for similarity

Consider the case when the polynomial p(¢) changes sign. Then the polynomial has real roots
of odd multiplicity. If A = 0, then the equation p(§) — A = 0 coincides with the equation
p(€) + X = 0. For this reason we investigate the behavior of the resolvent (A — A\I)~! for A
small enough.

Recal that =* = {gf()\)}%" are the complete solutions (see Section 1) of the equations
p(§) F A = 0 enumerated as in the statement of Lemma 1.2, 2 := ZF UZ", Z7 = {&}],
2y = {1, B =& 25 = {& 12, For an arbitrary family ® C Z, ®[z0, Ag] denotes
the family of all functions £(\) defined on A, such that ¢ € ® and ¢(A\g) = 2. The notation
#(®) means the number of elements in a family .

Proposition 3.1. Assume that p(t) takes both positive and negative values for t € R. Then
there exists tg € R such that

HET 110, 0)) = (=1 [t0, 0)) = ka + 1, $(ES [t0, ) = 4(5 [f0, 0)) = .

where k1 = 5 (k(to,0) — 1) and k(ty,0) is an odd number.

1
2
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Proof. By definition, > #(Zf[2,0]) = n = Y. #(E5[2,0]). Since p(z) has real coefficients,
z€C 2€C

1(Z5[2,0]) = £(Z5[7, 0]) for z ¢ R. According to (1.3), we have
D HETE0) =) HES=0) =) #(E [ 0) = ) #(Er [z, 0))
z¢R z¢R z¢R 2¢R
This implies
D HEF ) =) 8= =D HE 2 00) = ) #(Er [ 0]). (3.1)

Because p(t) changes sign, there exist real roots of odd multiplicity. By Lemma 1.5 one of the
assertions (i) or (ii) is valid for such roots. By virtue of (3.1), the both cases are realized. [

Theorem 3.1. If the polynomial p(t) takes both positive and negative values for t € R, then
the operator A = (sgnx)p(D) is not similar to selfadjoint operator.

Proof. Assume that p(t) takes both positive and negative values for ¢ € R. By Proposition 3.1
there exists ¢y € R such that

H(EL [to, 0)) = #(Er [t0, O]) = K + 1, #(ES [t0, O]) = #(Z5 [t0, 0]) = o,

where k1 =  (k(fo,0) — 1). In this proof we abbreviate k(to, 0) as k(to) and #(Olto, 0]) as ne (o).
According to the definition of ©, we have

ne(to) = #(Z{ [to, 0]) + £(Z; [to,0]) = 2ky +2 > 2k + 1 = k(to). (3.2)

Let A = p+ie, Im A = e. In what follows we fix some € € (0,¢;) and take integrals along
the line A = p +ie, p € R.
Lemma 2.2 and Parseval equality yield the following relation:

400 400
o [ Malo e == [ a2~

+00 +00 2n Hj()\) — )
/ / o dt dy >
—00 —00 —Oz) L (ej(A) _t)
+00 400 a) 2 1 2
> = dt dy.
S 44 O 10,00 - tl +1e - o]

j—

Let T := [to,to + &;) be a neighborhood of ¢, which does not contain other roots of the
equation p(t). By Lemmas 1.1 and 1.4 there exists a neighborhood of zero By := {\ : 0 <
Im\ < 0., 0 <ReA <d,} such that

1

10(\) — to| <Cy|A|[F()  for all @ € Olt,, 0],

(3.3)
16(N\) — to] <Cq for all 8 € © \ Oty, 0],



18

here C;, Cy are some constants.
We choose o € C,. such that

2n

> (5 = const > 0 (3.4)

for all A € By, t € T, here (5 is some constant.
By virtue of (3.4) we have

+o0
o [ Noata Vs>

2n
S to+6s (QJ(A) — Oé) 2 ] 2
€ j=1
> — dt dp >
— 21 a)— M) (t —« 2n -
b 1PV 40,00 — ol 41— o)
J:
Ou to+6 1 2
> (Cye dt du,
= T (60—t +t—to) II (6,00 —tol+1t—to)| "
to 0j<,i_®[to,0} Ojee)[to,[)]

with some constant Cy > 0. Accounting (3.3), for some positive constant C5, one derives

+oo
e / o, \) 2oyt >

Ou to+6: .
> Cae dt dy >
_1 2ne(to)
0 1 (Co+ |t —to])22n—nelt) (Cl|)\|k(to) + |t — t0|>
Ou to+6¢ .
2 Cse T ang) Ot AH =
0 o ((t —to) + C1| M| k(to))
Op
5 1 1
_ _Cse _
o 2ng(to)—1 / 2ne (to)—1 _1 2ng(to)—1 dll[/ (35)
o \@A) ke (6 + iAo

It is clear that 5
ol 1
ll_r%e/ — 2n@(t0)—1d'u = 0. (3.6)
0 <5t+01|>\|k(t0)>
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Further, one has

1 €
8/ 2ng(to)—1 dp = / ne(to)—1/2 dp =
0 0 (u2+e2) ko)

n —1/2
) A
n@(to)fl/Q €
0

(1)

ne(to)—l/Q
_ 2w / ! (3.7)
0

ne(to)—1/2 dpy .
(ui +1) ko)

Besides,
du/e +oo
) 1 1
fimy el 12 1 = / ret—1z > 0- (3.8)
o (8+1) A o (1)

By virtue of (3.2) it easy to see that

2(177@(150)—1/2)
€ k(to) — +00 as € — 0. Therefore, it follows from (3.7), (3.8) that

k(i) = Tl > 1 and, consequently,

Su

. 1

ll_r)%a/mduz—l—oo (39)
0 ’)\| k(to)

+oo
Now, the relation lim ¢ J NRA(N) fallZ2dp = 400 is implied by (3.5), (3.6), (3.9). Thus,

it is shown that inequality (0.2) of Theorem 0.2 is not valid for f,(z) = ey, (x) € L*(R).
Hence the operator A is not similar to a selfadjoint operator. O

Remark 3.1. Let p(z) be an odd order polynomial. It is easy to see that the spectrum of A
is the whole complex plane, 0(A) = C. Therefore, the operator A = Jp(D) is not similar to
selfadjoint one.

4  Sufficient conditions for similarity

In Section 2 we have shown, that the operator A is closed and the spectrum of A is real. To
prove that A is similar to a selfadjoint operator we have to check expressions (0.2), (0.3). The
formulas for the resolvents of A and A* are provided in Lemma 2.3.
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There follows from (2.8) and from Parseval equality that

+00 +oo
e / o (s )X (@) Pod < € / o (6, M)y =

400 00 ?\ 2 +o00 +00 1
+(t T2
dtdp = 5/ t / dpdt =
_\O/o' ZO 2 J |f+( )| J (p(t) —,LL)2+52 H
= 7l f+ONZ2 = 7l f+ ()] (4.1)
In the same way one obtains
+oo
€ / lyr (2, Mz2dpe < 7l f-(@)]|72- (4.2)

Remark 4.1. On the other hand

v (2, A) = By (M) f (@), yi (2, 4) = Ropn)(A) f ().

Since p(D) is a selfadjoint operator, estimates (4.1), (4.2) are consequences of Theorem 0.2.

For n+1<j <2n, 1 < ¢ < 2n we define functions y*(z, \) by their Fourier transforms:

2n
H(er_gj[>/\
- oy (&) 1
) =2 J .
I G Bt
r=1 " a
r#q

2n /\
Then yO - Z Z y]q'

j=n+1lq=

Proposition 4.1. Let M be a measurable subset of the real line, A\ = u+ic. Then
o [ gt N i < mM sup B+ i) 172 (43)
pe

where

Tm \ ﬁl 16,(\) — &5 (M)

Bjiq(/\) = rZq — 1 |
110 = 6,0 I (€£)] [ Tm 6,(A)]
T#q

(The constant M¢ was defined in Lemma 1.6.)

Proof. We prove the proposition for y;-f]. The other case is analogous.
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By definition
2n

[116:(A) = & (NP

r=1
r#
/ ok (6, 0) 2y = / q

‘ 2

Fr(gr )| du

O,(N) —t]|, -
110,00 - 0,00 [ (60 1) =1l
T#q
Since (5]*()\))/ = m, we have
o [ e Ve =
M
T [6.(0) — & ()
g + d§+(u+za)
:W/% 2l (e |Im9 ‘f+§ ‘ =
i L6 = 0,V [ (6 (V)]
"
+ T (et 2 et ~
< sup B (u+ 9 / 7 ()| g v o))
By Lemma 1.6 we arrive at inequality (4.3). O

To estimate the functions B]j-;()\) we derive several propositions from lemmas of Section 1.

Let wy(A), wa(A) be arbitrary different functions from the family {wy ;(\), wkﬁk_jﬂ(—)\)}?:l.

Then |wi(A)] = Jwa(A)| = |A|F. Since the angle a := argw; (\) — argw,(\) # 0 is constant and
is a multiple of 7/k, we have

w1 (\) — wa (V)| :2sin%|x|%. (4.4)

Proposition 4.2. (a) Let zy be a root of the polynomial p(§)F Ao of multiplicity k = k(zo, £Xg) >
. k

2 and {535(/\)} = Z*%[20, \o]. Then, for \ sufficiently close to Ny and for some positive con-

stants M1(Xo), Ma(Xo) the following inequality holds:

M) A= Aol F < [EF(N) — EE(N)| < Ma(No) A = Nol¥ . j#q . (4.5)

(b) If Ao # 0, £7(A) € EF and £ (N) € 27, then £ (Ao) # £ (o).
(c¢) Let zy be a root of the polynomial p(&) of multiplicity k = k(z9,0). Then
B(E"[20,0]) = #(E" [20,0]) = k,  #(E[20,0]) = £(E" 20, 0]) + §(E" [20,0]) = 2k.
For any different functions & (\), &(X) from Z[z0,0] and for X sufficiently close to Ay the
following inequality holds:
Mi(0) [l < 1&(A) = &N < Ma(0) AT (4.6)

where M;(0), M(0) are some positive constants.
(d) Let £&(N), &(N) be arbitrary different functions from the family =. Then, for X\ large
enough and for some positive constants My(o0), My(oo) the following inequality holds:

M (00) A7 < [€1(A) — &(N)] < My(o0) [N . (4.7)
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Remark 4.2. Assume & (\) € EF, &(\) € E7. Then the equlity & (0) = £»(0) is possible. So
we need item (c) of Proposition 4.2 to estimate the difference & (\) — & () for A small enough.

Proof. The statement (a) follows at once from (4.4) and Lemma 1.4.

(b) Since P (€+()\0)) — )\0 =P (§_<)\0)) + )\0 = O, €+()\0) = f_()\()) 1mp11es )\0 = —>\0 = 0.

(c¢) Let \g = 0. Then we can choose the function y(z) in Lemma 1.4 such that the both
equalities

&) = 20 =7 (&) wrald = 20), & () = 20 =7 (§ (V) wea(=A + A0)

hold in a neighborhood of A\g. Accounting (4.4), we obtain (c).
The statement (d) follows at once from (4.4) and Lemma 1.2. O

Proposition 4.3. Let £(\) € =.
Im A

a) The function — s bounded in a neighborhood of \g = o0.
[
(b) If \o € R and £(\g) = 20 € R, then the function m A "1 s bounded in

Im&(N) [N — Ag| H(z0:00)
a neighborhood of \g.

Proof. Let £(A\) € 2. The case {(\) € =~ is considered analogously.
2n .
(a) Since p (§(N)) = > a; (§(N))) = X and a; € R, we have

Im\ = ImZaj (EN) = Zaj Im (Re&(N) +iImE(N))

Removing the parentheses, one obtains
Im (Re&(A) +iImg(A) = Im&(A) pjo (Re€(N), Img(N))

where p;_; is a polynomial of degree j — 1 in two variables. So we have

2n

Tm A =TméA) Y a; pj1 (Reg(A),ImE(N)) = TmE(N) Pan1 (Reg(A), TmE(N))

J=1

where Ps,,_; is a polynomial of degree 2n — 1 in two variables.
According to Lemma 1.2, the inequalities |Re&(\)| < [€(N)] < CIAY?, |[IméE(N)| <
I€E(N)] < CIA]Y? are valid for A large enough and for some constant C' > 0. Consequently, the

Im A Py, A), 1 A)) . : :
function - — = 2n-l (Reggnl m () is bounded in a neighbourhood of \y = co.

ImE(N) [Nz I\
(b) Since z is a real root of multiplicity k = k(zo, Ag) of the polynomial p(§) — Ao, we can
write p(£) — Ao = (€ —20)*p(€), where p(€) is a polynomial of degree 2n — k with real coefficients.

Then

0=p(ERN) = Ao — (A= Ao) = (€)= 20)" B (EN) — (A= Ao).

Since A\g € R, we have

Im\ = Im(A — Ag) = Im (£(A) — )" Re 5 (E(N)) + Re (E(N) — 20)  Im B (E(N)) .
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Note that

I (£(3) — 20)° = I (Re (6(3) — 20) +iImEQY)) =
=€) Py (Re (€)= =) iTme()) . (48)

where P,_; is a polynomial in two variables with monomials of degree &k — 1. According to
Lemma 1.4, the inequalities

|Re (E(\) — 20) | < |E(N) = 20| < CIA = No|VF,
[ Im &) = [Im (E(N) — 20) | < [E(A) — 20| < CIA = A"*

hold for A in a neighborhood of A\g and for some constant C' > 0. Therefore, bearing in mind
(4.8), the function

I (600 — 20 Rep(€()  Prt (Re (€00 = 20) i Im V) ) Re (€(V))
ImEMA = dol T A=

bl()\) =

is bounded in a neighborhood of .
Besides,

Re (§(\) — 20)" Imp (§(A)) = Re (§() — 20)* Im €() 4(Re (€(A) — z0), ImE(V)) .
where ¢ is a polynomial in two variables. Since the inequalities
[Re (£(A) = 20)" | < [€(N) = 20/" < CIA = Xol*/* = C|A = Ao

are valid for A in a neighborhood of g, we have lim by(A) = 0 for the function

— Ao
() e B (€N — 20) Tmp (e(n)  Re€d) - Zo)kQ<Re (€(A) — =) ,Imﬁ(A)>
T meh - F A=l F |
_ Im A : . :
Hence, the function by(\) + by(N) = — is bounded in a neighborhood of
Im E(A) A — Xo| *
Ao- O

For all 5;5 € = we define the sets

AE) = {ho € 20Nk (E o) M) > L & (M) £R}  j=1...2n
A = {0 € Mo nTOT: k(6 (o). —o) > 1, €00 €R} L j =120,

If 1 < j < nthen 6; = &, therefore A(6;) = A(E)). If n+1 < j < 2n, then 6; = &, therefore
A0;) = A(&;2,)-
Lemma 4.1. (a) Let £(\) € 25 UZ;, Ao € Ay \ A(€) and \g # oo. If 0,(No) # &£(No), the

1 16,00 - )P

T#q

function 1s bounded in a neighbourhood of \g.

P (E(N)
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Im A
(b) Let Xg = 00 or Ao € Ay \ A(0,), Ao # 0. Then the function — =
IL10-(0) = 0,(N)[* Tm 0,(X)
r#q

1s bounded in a neighbourhood of \. o
(¢) Let the polynomial p(t) be nonnegative. Let Ay € {0, 00} or Ao € Ay \ (A(6,) U A(fj.[)),
n+1<j5<2n,1<q<2n. Then the function Bjiq()\) is bounded in a neighbourhood of \.

Proof. We prove statement (a) for £ € =5, statement (b) for §, € Zf, statement (c) for a
function B;.;. The remaining cases are considered analogously.

If Ao € AL\ A(E]), then either zp := & (A) is a simple root of the equation p(z) — Ag = 0,
or 29 € R and, consequently, Ay € R. Hence the following inequalities hold

© (k0. M) — 1) < 8= z0. M) < 5 (klz0.20) 4 1) (1.9)

In the case k(zg, A\g) = 1 the inequalities are obvious, in the case zy € R they follow from

Lemma 1.5.
(a) Let £(A) = & (A), n+1 < j < 2n. By Lemma 1.1 the family of functions {£F(X)}72,

T#q

contains exactly k (£ (Xo), Ao) —1 functions such that & (Ag) = & (Xo) =: 2. Since 0,(Ao) # 20,
the family {6, (\)}7_; contains #(Z[€; (Xo), Ao]) functions such that 6,7 (Xo) = & (M) = 20.
]

r7q
For all functions from = taking the value zg in ¢ inequality (4.5) holds true in a neighbour-
hood of A\g. Therefore, for A\ in a neighbourhood of \q we have

2n 2 2n 2
L1600 =& TLE) = &7 (]
e | -

J H &) — &5 (V)]

T#J
2 [z0.0]) 2= [z0,00]) — (B (z0,00) 1)
o k(2 7)\ =1 20,70 20,70)—
‘)\ )\0’ (20,30 :Cl|)\_)\0| ; k(z0,M0) ,

k‘(zo,/\o)—l
|A _ )\0| k(zo,)\o)

where C is some constant. Inequality (4.9) implies 2£(=; [20, Ao]) > k(20, Ao) — 1. This proves
the statement.

(b) In the case Ay = oo the conclusion follows easily from Propositions 4.2 (d) and 4.3 (a).
Let X is finite and 6, = £} € Zf. Denote 2o = 64(Ag). By Proposition 4.2 (b), 6,(Xo) # 6,(No)
for r = n+1,...,2n, as in this case 6, € =~ and Ay # 0. There are exactly #(= [20, Ao]) — 1
functions with the property 6,.(\o) = 20 = ,(\o) among the functions {6, (\)}!_,. Therefore,

r#q
for A from a neighbourhood of \g
Im A Im A
2n ) <G 2(#(27 [20,20]) 1) -
1:[1 0-(X) — eq()‘>| Im gq(/\) IA— Ao k(z0,A0) | Im 6,(N)]
r#q
k(20,20)+1—24(E{ [z0,)0]) Im \
= C1|A — \o| k(z0,%0) k(zo,00)—1 ’

[A = Ao| Hzo-20) [ Tm G, ()]
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where () is some constant. By inequality (4.9) k(z9,\o) + 1 > 2£(=][20, Xo]). In the case
2o = 0,(Ao) € R we obtain the statement (b) from this and from Pl"OpOSlthl’l 4.3 (b). In the
case zo & R, k(29, A\o) = 1, the statement (b) is evident.
(c) We deal with the functions qu, n+1<j<2n.
If Xo ¢ {0,00} and 6,(Xo) # & (Ao), then the statement (c) follows from (a) and (b).
+
0 -G,
[€(A) = 0,(V)]
holds for all £(A) € 2\ {£,6,} in some neighbourhood of Ag, where C is a constant. This
inequality follows immediately from Proposition 4.2 (a),(c). Therefore, we get

Consider the case 0,(Xo) = & (Ao) = 20, Ao # co. Then the inequality

H 16,(0) — & (V)|

T#q | Im A|
By (M)] = NET
l:[1 10-(N) = (MI™ T1 €N = & (V)] [Tm 8, (V)]
:;éq ;Qj
| Tm |
<Gy k(z0,h0)—1 )

[A = Ao| FGoro) [Im 6,(A)]

with a constant Cy. As 6,(A\g) = 2o, Proposition 4.3 (b) implies that the function B;-; is bounded
in a neighbourhood of .

Consider the case \yg = co. Then the following inequality holds with some constant C} for
A big enough

(2n—1)
. o= Aol "B [Im \ B
| B,(M)] <
ja 2(2n—1) -
])\ o 2S5 A= N B [Im 0,(N)|
| Tm |

2n—1

A= o5 [Im, ()]

Now Proposition 4.3 proves the statement.

Consider the case g = 0, 04(0) = 21 # &(0) = 2. Here we use the assumption that
the polynomial p(t) is nonnegative. From this assumption it follows that any real root tq of
polynomial p(¢) has an even multiplicity and, by Lemma 1.5 (a),

— Lhtto 0. (4.10)

£(Z1 [to, 0]) = (21 [to, 0]) 5

It is not difficult to verify that £(0[zq,0]) = (=] [22,0]) + #(Z; [22,0]) = k(22,0). Indeed,
if zo € R it follows from (4.10). If z; ¢ R, for example z, € C,, this fact follows from the
equalities §(= [22,0]) = k(22,0), £(=] [22,0]) = 0. Thus, there exist exactly k(z;,0)—1 functions
with the property ,(0) = 6,(0) = z; among the functions {6,(X)}72,. Since & (0) = 2o # 0,(0),

T#q
the family {6, (X)}?", contains exactly k(z,0) functions such that 6,(0) = &;(0) = z. Hence,
rq
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for A sufficiently close to zero one has

—1
2n  2(k(21,0)—-1)
[116:0) = 6,00 | < weor

r=1
T#q
2n 2k(zo 0)

6,(3) =& W] < A FCo)

r=1
r#q

with some constant C';. Therefore

\9 ) =& WP
’”7’5‘1 | Tm \|
By (M)] = <
: I116.00) — 8,002 17 (& () [ Im b, (1)
"4
2k(20,0)
<, AL | Im ) _

20k(z1,00-1)  k(z0,0)—1

IA| EGELO) ] R=0.0)  [Tm 6, (N)|

1 1
NI )
— 02 | )\| k(ZO’O) k(Zl,O) k(21 0) s

A F10) |1m9()|

where Cy is some constants.
Combining this inequality with Proposition 4.3 (b) one obtains the lemma. O

Remark 4.3. If the polynomial p(¢) changes sign, then some functions B;fz are not bounded in
any neighbourhood of zero.

Remark 4.4. The function BjE is not bounded in any neighbourhood of Ao if Ag € (A (Sji) UA(6,))\
{0}

Now we get integral estimations of form (0.2),(0.3) for some groups of summands from
(2.8),(2.9).

Let z; be an arbitrary root of one of the polynomials p(z) — A1, p(2) + A1. For such Ay, 2
we put

A(Xg,21) =N [E(N) — 2| <8 VE(N) € Elz1, Mo } -

We take 0 such that the following statements holds true. From Ao # A1, Ay # 0, k(20, Ag) > 1
k(z1,A1) > 1, {70, 21} C C\ R it follows that

A(s()\o, ZD) N AJ()\l, 2’1) = (Z), 0 g_ﬁ A§()\l’ Zl),
<lomn €] 6<% min [Ime e
- mm Zo — — min |Imzl .
5 €€E\E[z0 0 0/b 3 20€Z0\R 0
We can choose such 9, because the sets Z,, Ay are finite and the functions from the family =
are continuous. Note that the set A5()\0, 2p) is a bounded neighbourhood of A.
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We put
AJ()\()) = ﬂ Aé()\o,Z()) N
20 - E[Zo, )\0] 7é @
AL = Ap\ U A°(No) . Aj, = Ay U A°(Xo) |
Xo€A(ES)UA(04)\{0} Ao€A (€5 )UA(64)\{0}

forj=n+1,...2n,q=1,...,2n.
By [ g(\) du we understand the integral of the function g(p + ic) over the set of 4 € R

AeU
such that A = p + ie € U, while ¢ is fixed. We denote the residue of a holomorphic function

g(z) in zo by res g(z).
z=2zp

Lemma 4.2. For alle > 0 and f € L*(R) the following statements are valid.
(a) If the polynomial p(t) is nonnegative, then

: / o W) Zadp < m | ().

+
AEAS,

(b) Let 29 € Zo \ R, k(zp, X)) > 1, Ao # 0, Ao & A(6,), 1 < q < 2n, Z5[20, o] # 0. Then

2

e ST @) du < mE )| fx (@),

+ =t
AEAS(No,z0) |[§5 €E2 [20,A0] 2

(c) Let zg € Zo\R, Ao # 0, Ao ¢ A(&), n+1 < j <2n. Let k(zo, o) > 1 or k(z0, —Xo) > 1.

Then
2

e S yE@ )| du < mF o, 20) || f (@)
AEAS (Ag,z0) 119a€OLz0 M0l L2

(d) Let {Zo,Zl} € Z()\R, Ao 7é 0, k?(Zo,:t/\()) > 1, Eg:[Zo,)\()] 7£ 0. Let ]{?(21,/\0) > 1 or
k(z1,—Xo) > 1. Then

2

S B D SR SR E9 Y RS e NI

+ =+
AEAS(No) ||&5 €F2 [20,A0] 84€0]20,)0] L

Here m* m;t(ko, 20), m;E(AO, 20), m(Ao, 20, 21) are some constants independent of € and f.

749’
Proof. Let Ay = {\ € C:ey <Im\ < eni1} be one of the strips A%, AL, ..., A3*~'. We prove
the statements for € € (ey,eny1], 0 < N < 2n — 1. Then we combine estimations for all the
strips and obtain the proof of the lemma. It can be done because the number of strips is finite.
So we suppose henceforth that ¢ € [ey,eny1] and X € A_+

(a) We prove the statement for y]‘-z, n+1<j<2n. Fory;,, n+1<j<2n the proof is
the same.

As A} € {0,003 U (AL \ (A(E) NA(6,))) and, by conditions of the lemma, the polynomial
p(t) is nonnegative, we conclude from Lemma 4.1 (c) that the function B} ()) is bounded in a
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neighbourhood of each point of the set AJr Since the set AJr is compact in the topology of C,
the function B} ()) is bounded on A;fl, max B} (\) < oo. From this and from inequality 4.3 it
AEAT

Jjq
follows statement (a).

(b) Let zg € Zo N C_, k(Z(),)\()) > 1, Ao 7& 0, Ao ¢ A(Qq) Then E[Z(),)\()] = E+[Zo,>\0] =
=5 (20, Mo] # 0, =5 [20, Ao] = 0. The remaining cases may be considered similarly.
Let A € A%(\g, 29). Consider the sum (see [12, 1.1.25])

2n

16 -&) _
Z y/l(t) _ Z "a f+(€-]—:) 1
74 2n / o
&5 €= [20,)0] erezflzon [] (6, — 6,) (&) 0, —t
"
2n o
1 5 10~ ¢HFe ()
12_n[ (97’ _ eq)(gq _ t) 5;_653[2’0,)\0] p/(gj_)(eq - 5;_)
"
2n o
1 Z 1:[1(97* —w) fy(w)
~ res .
_ ) eremr o u=g o) (P(w) = A) (0 — w)
rl;llwr 04)(04 — 1) & €2f (20,00

By virtue of (4.11), only points {£; () : £ € 2520, Ag]} may be singular points of the function
2n

I1(6, — w)f; (w)

r=1

(p(w) = A) (0 — w)

in the domain {w : |w — z| < 26} C C_. Therefore

Z yh () =

T e=7 [z0,)0]
__ 1 1 % T1(0:(A) = w) fy (w) N
27” ﬁ(@m O )N) 1) s P TN )
"

here § denotes integral taken over one cycle.
Let A € A%()\g,20) and |wg — 2| = 25. Then, by virtue of (4.11), |£(\) — wo| > 26 for
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€ & Z[z0, Ao] and |£(N) — wg| > § for £ € E[zp, A\g]. Therefore

11 16.00 - wl
)-

Ci{:= max =
L M 000 [0,(N) — w][p(w) = A
w:lw—z0|=26

2n

[110-(A) —w)

r=1

= max <00

AeA®(Xo,20) 2n

ST S 18,8) = wl TT 165 ) ]

Moreover, since ﬁ(w) € H?*(C_) and, by virtue of (4.11), wy € C_, Imwy < —J, we have
| f(wo)| < | Tmwe| V2| f(w)]| g2 < 07Y2||f(2)]|z2 (see [8, vi. C]). Combining these estima-

tions, we get
/%

w—2zo|=20

-
< b oy @ sl <

|w—2z0|=26

<TG § el = 40T )

|w—2z0|=20

11 6.0 - )T (w)
OEDCOE A

Hence,

e / >yl du<

AEAS (Xo,20) & €E5 [20,)0]

L2
1 1|7
<c [ 6@k v I
AEAS (No,20) 1:[1 ‘GT(A) - eq(>‘)|2 ! b
r4
Im A
<ucn@i [ .
AEA (Mo,%0) H 16-(A) = 05 (N)[? 2 Tm 6, (M)]
T#q
According to (4.11) the sets A%(\g, zo) and A(6,)U{0} are disjoint, A%(Ag, 2z0)N(A(6,) U{0}) =0
I
as Ao # 0 and Ao ¢ A(f,). Then, by Lemma 4.1, the function —- m A is
L1 10-(A) = O3 (V)] T By (A)]
r#q

bounded in a neighbourhood of each point of the set A%(\g, z9)NA. Consequently, this function
is bounded on the set A%()\g, z9) N A,. This proves statement (b), since the set A°(\g, z) is
bounded.
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(C) Let zp € Zyp N (C_|_, (Z(),)\())
E[Zo,)\o] = @[Zo,)\o] = [Zo,)\o] # 0,
similarly.

Let A € A%()g, zp). Consider the sum

>yt =

04 GG[ZO,)\Q]

0 #0, X & Agf), n+1 <5< 2n

> 1, 0,
=1 [0, @.T

Then
he remaining cases may be considered

]

1. -7 1
(f;r) Z res

z=04(\) 21

0= [20,M0] [106, —2)(z =& )(z—1)

r=1
2n —

. Tl;ll(Gr(/\) — &) N) ]4 1 1
5 (et 2n —
i Gy aiees TLB:00 = 2)(z = €F (V) ‘

The last equality holds true, because only points {6,()\)

(A 0, € Ef[20, \o]} may be singular
points of the integrand function in the domain {z : |z — 2o < 2d}
By virtue of (4.11)

tdz . (4.12)

1
Ci = max < 00 .
)\EA )\0 Zo

b H 16:(A) = 2|z = &7 (M)

Moreover, if |z — zo| = 20 then, by virtue of (4.11), Imz > §. Therefore

1 1
j{ o — tdz

e TLO0) = 2)(z — € () :

L2
1 1
< $ 5 ] <

|z—z0|=26 1;[1 "97"<)\) - Z||Z - 5]+(>\)| H ot

IA

L2

1
<C — _|dz| <27 C6Y? . 4.13
>~ U1 % 2|Im2|1/2’ Z’— Tl ( )
|z—z0|=26

From Ao ¢ A(&]) it follows A°(Xg, 20) NA(E]) = 0. Taking Lemma 4.1 (a) into account, one
has

[T 16,(%) — £ (VP2
02 — r=1

sup < Q.
)\EAé(Ao,Zo)ﬂA+ ‘p/(gj()\)”

Furthermore, the set A%()g, z9) is bounded, hence Cs :=

sup € = sup

ImA < oc.
)\GA‘S()\(),ZQ) /\€A6()\0,Zo)



31

Therefore, combining (4.12) and (4.13), one obtains

2

S B D SEACY) (R

AEAS(Ag,z0) ||09EOE0:A0] L2
2n
I1 [0 - W o de (i
< 20y / RG] 7o) dg; <§M )| s <

)\EA‘;()\(),Z())

<ciees [ [F G O] 1dg i)

wAEAS (No,z0)

Applying Lemma 1.6, we finish the proof of the statement.

(d) Under the conditions of the lemma we have zg # z;. Indeed, \g # 0 and, by Proposition
4.2 (b),
{z: 25z, M) #0} N {z:EF[z, ] £ 0} = 0.
If 2 ¢ R and 5[z, \o] # 0, then =52, \g] = 0, as values of the functions from =3 and =}
belong to different half-planes. Therefore

{225z, M) #0} N {z: 0]z, A\g] # 0} = 0.

Since zp € {z: Z5[z, \o] # 0} and 2, € {z: O[z, \o] # 0}, we conclude that z # 2.

Let 2o € ZoNC_, z1 € ZygN C,. The remaining cases may be considered similarly. Then
=20, o] = Z5 [20, Mo, E[21, Aol = ET [21, Ao]-

Let A € A%(X\g), A # Ao. Then A € A%(\g, z9) N A°(Ng, 21). Consider the sum

> oY vw-=

E;r EE; [z0,M0] 04€0[z0,)0]

2n

5 116 =€ F(&) > )
= E—r Le8 ) I =
¢ €25 [z0,M0] 4C 04€EY [20, 0] e 12;11(@ —z)(z - fj)(z —t)

2n

o R E(er—f;)ﬁ(sj)d )
o 2mi 7{ 2n 2 PEHE-¢&)

|z—z1]=28 H (97‘ - Z) 5;653[20)\0]
r=1
2n o
1 1 1 Hl(er - w)f+(w)
=— - res —— dz =
27”z—zi26 [ (er - Z) 2ot 5+€$ZV0,A0] w7 ) (p(w) B /\)(Z B w)
r=1

o~

1 6.0 - ) Ftw
(p

() = Nz = w) dw dz .

1 7{ 1 1 7{
T A2 2n z—t
lmaj=2s 1] (0-(A) = 2) o 20| =26

=1
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Here we use the fact that, by virtue of (4.11), the circles {z : |z—21| = 20} and {z : |z—2¢| = 20}

are disjoint, min |z —w| > 0. Therefore, the function
zi|z—2z1|=20 Z— W
w:|w—2zo|=26

{w : |w — 2] < 260}.
Arguing as in the proofs of (b) and (c), we conclude that A € A%(\g) N A, implies

7{ v

|lw—2z0|=26

is holomorphic in the circle

[
S

[(6:(2) = w)fy(w)
o0 =N —w) | S Callf+ @)l

—

—

for z : |z — 21| = 26 and

1 1

5 H |dZ| S 05 5
n z — L2
e-ail=2s 11 10-(A) = 2|
r=1
where Cy, Cj are some constants. The combination of these estimates proves (d). O]

Let p(t) be a nonnegative polynomial. Combining the estimates from Lemma 4.2 we get

2 / lyg (2, M Z2dpn = € / 1y — v x ) (@, Mzadpe < mg || £+ ()72,

€ / lyo (@, )] 72dp =€ / 1(wo X — ¥o X ) (@, N[ 72dp < mg || f- () ||7--

for all £ > 0 and for all f € L*(R), where mg, m, are some constants.

Taking (4.1) and (4.2) into account, we get inequalities (0.2),(0.3) with some constants m.,
m’, independent of € and f.

Thus, it follows from Theorem 0.2 that if the polynomial p(t) is nonnegative then the
operator A = Jp(D) is similar to a selfadjoint one. Remembering Theorem 3.1 we obtain
Theorem 0.1.

Corollary 4.1. The operator sgn(z — xo) p(D) is similar to a selfadjoint one if and only if the
polynomial p(t) is nonnegative.

Proof. Let S,, be a translation operator, (S, f)(x) = f(x — x¢). Note that S_,, = S;! = SZ .

Then sgn(z — xo) p(D) = S4,JS;.'p(D) = S4 Jp(D)S,,!. Hence the operators sgn(z — xo) p(D)
and sgn x p(D) are similar. Therefore, the corollary follows at once from Theorem 0.1. [

Acknowledgments. The author express his gratitude to M. M. Malamud for stating the problem,
guidance in the work and numerous useful discussions.
References

[1] Berezansky Yu. M., Uss G. F., Cheftel’ Z. G. Functional analysis.—Kiev: Vysha Chkola,
1990. 600 p. (Russian)



[10]

[11]

[12]
[13]

33

Casteren J. A. van Operators similar to unitary or selfadjoint ones// Pacific J. Math.-
1983.-104, no.1.-P.241-255.

Curgus B., Najman B. The operator (sgn x)% is similar to a selfadjoint operator in
L*(R)// Proc. Amer. Math. Soc.-1995.-123.-P.1125-1128.

Curgus B., Najman B. Positive differential operator in Krein space L%(R)// Oper. Theory
Adv. Appl., Birkhauser, Basel.-1996.-87. P.95-104.

Curgus B., Najman B. Positive differential operator in Krein space L2(R"™)// Oper.
Theory Adv. Appl., Birkhauser, Basel.-1998.-106. P.113-130.

Garnett J. Bounded Analytic Functions.—Academic Press, New York, 1980. —478 p.

Karabash I. M. The operator —(sgnz)-L5 is similar to a selfadjoint operator in L2(R) //

dx?
Spectral and evolutionary problems, Proc. of the Eighth Crimean Autumn Math. School-
Symposium, Simferopol.- 1998.-8.-P.23-26.
Koosis P. Introduction to H? Spaces.—Moscow: Mir, 1984. -368 p. (Russian)

Malamud M. M. A criterion of similarity a closed operator to a selfadjoint operator //
Ukrainian Math. J.-1985.-37, no.1.-P.49-56. (Russian)

Naboko S. N. On some conditions of similarity to unitary and selfadjoint operators //
Func. anal. and its applic.-1984.-18, no.1.-P.16-27. (Russian)

Nikol’sky N. K. Lectures on the translation operator.—Moscow: Nauka, 1980. —376 p.
(Russian)

Shabat B. V. Introduction to complex analysis.—Moscow: Nauka, 1969. 576 p. (Russian)

Yosida K. Functional analysis.—Moscow: Mir, 1967. -624 p. (Russian)



