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J-selfadjoint ordinary differential operators similar to
selfadjoint operators∗

I. M. Karabash

Abstract

Some class of J-selfadjoint ordinary differential operators is investigated. A criterion
of similarity to selfadjoint operators is obtained for this class.

Consider the operator A = (sgnx)p
(
−i d

dx

)
in the Hilbert space L2(R), where

p(z) = z2n + a2n−1z
2n−1 + . . .+ a1z + a0 (0.1)

is a polynomial with real coefficients aj. Denote D = −i d
dx

. Then L = p(D) is a constant
coefficient differential operator in L2(R) defined on the Sobolev space W 2n

2 (R) (see [1]). It is
clear that L = L∗. Let J = J∗ = J−1 be the multiplication operator defined by (Jf) (x) =
(sgnx)f(x), x ∈ R. The operator A = JL, being a product of two selfadjoint noncommuting
operators, is a nonselfadjoint one.

If p(t) is nonnegative (i.e. p(t) ≥ 0 for all t ∈ R), then JA = L = L∗ ≥ 0 and the operator
A is a definitizable operator. The resolvent set ρ(A) is nonempty and therefore M. Krein-H.
Langer’s spectral theory can be applied. In particular, this spectral theory shows that A has
a spectral function defined on open intervals in R with the endpoints different from 0 and
∞. The positive (negative, respectively) spectral points are of positive (negative, respectively)
type. Hence 0 and ∞ are the only possible critical points. Starting with this fact B. Ćurgus
and B. Najman proved in [3] that (sgnx) d2

dx2 is similar to a selfadjoint operator in L2(R). Later
they extended this result to more general polynomials p. Namely, in [4] they proved, that the
operator A is similar to a selfadjoint operator if p(t) is a nonnegative polynomial with at
most one real root. In the paper [5] corresponding questions for partial differential operators
was studied. For more detailed references see [5]. We reproved the result of [3] in [7].

In this paper we obtain the following criterion for an operator A to be similar to a selfadjoint
one:

Theorem 0.1. Let p(z) = z2n + a2n−1z
2n−1 + . . .+ a1z + a0 be an even order polynomial with

real coefficients. Then the operator A = (sgnx)p(D) is similar to a selfadjoint operator if and
only if the polynomial p(t) is nonnegative.

Our approach is completely different. It is based on the following similarity criterion which
has been obtained by S. N. Naboko [10] and M. M. Malamud [9] (see also [2], where this criterion
has also been obtained under an additional assumption).

∗This is an English translation of the authors M.S. thesis. It differs in introduction, pagination, and ty-
pographic detail from the paper published in Methods of Functional Analysis and Topology 6 (2000) no.2,
22–49.
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Theorem 0.2 ([10],[9]). A closed operator A with real spectrum acting in a Hilbert space H is
similar to a selfadjoint one if and only if

ε

+∞∫
−∞

‖RA(µ+ iε)f‖2dµ ≤ m+‖f‖2 ∀ε > 0,∀f ∈ H, (0.2)

ε

+∞∫
−∞

‖RA∗(µ+ iε)f‖2dµ ≤ m∗+‖f‖2 ∀ε > 0,∀f ∈ H, (0.3)

where RA(λ) := (A− λI)−1 and m+, m∗+ are some constants independent of f ∈ H.

Thus, we have to find and estimate the resolvent of A. This problem leads to the investiga-
tion of roots of the equations p(ξ)± λ = 0.

1 The roots of the polynomials p(ξ)± λ
Let p(z) be polynomial (0.1). Denote Z0 := {z ∈ C : p′(z) = 0}, Λ0 := p(Z0), M0 := Λ0 ∩ R.
The sets Z0, Λ0, M0 are finite. Let {ε0, ε1, ..., ε2n−1} := {| Imλ0| : λ0 ∈ Λ0 ∩ C+} ∪ {0}, where
εj are arranged in ascending order, 0 = ε0 ≤ ε1 ≤ ... ≤ ε2n−1. Let ε2n := +∞. Denote
Λk

+ := {λ ∈ C : εk < Imλ < εk+1}, k = 0, ..., 2n − 1. Then Λj
+ ∩ Λk

+ = ∅ for j 6= k and

∪ΛN
+ = C+. Here G stands for the closure of G. Let Λ+ be one of the sets Λk

+, k = 0, ..., 2n−1.

We say that a family of functions {ξj(λ)}2n
1 is a complete solution, if for fixed λ numbers

{ξj(λ)}2n
1 present all the roots of the equation p (ξ)− λ = 0 counting their multiplicities.

Lemma 1.1. Let G0 and G be simply connected domains in C such that G0 ⊂ G, G ∩ Λ0 = ∅
and G0 \Λ0 ⊂ G. Then there exists a complete solution {ξj(λ)}2n

1 of the equation p(ξ)− λ = 0
such that functions ξj(λ) are holomorphic in G and continuous in G0.

Proof. Let λ0 ∈ C\Λ0 and let ξ0 be any solution of p(ξ)−λ0 = 0. Then ξ0 /∈ Z0, p′(ξ0) 6= 0 and
ξ0 is a simple root of the polynomial p(ξ)−λ0. By the theorem on local inversion of holomorphic
function there exist a neighborhood U(λ0) = {|λ− λ0| < r(λ0)} and a holomorphic function
ξ(λ) defined in U(λ0) such that ξ(λ0) = ξ0, p (ξ(λ)) = λ, ξ(λ) 6= ξ0 for λ ∈ U(λ0) \ {λ0}.

Choose an arbitrary point λ1 ∈ G. Since G ∩ Λ0 = ∅, we have λ1 /∈ Λ0. Thus, the equation
p(ξ)−λ1 = 0 has 2n simple roots ξ0

j , j = 1, ..., 2n. For each of them there exist a neighborhood
Uj(λ1) and a holomorphic function ξj(λ) defined in Uj(λ1) such that ξj(λ1) = ξ0

j , p (ξj(λ)) = λ.
The pair (Uj(λ1), ξj(λ)) is an analytical element. By virtue of the previous paragraph this
analytical element can be continued along any curve γ in the simply connected domain G such
that p (ξj(λ)) = λ. Then the monodromy theorem [12] implies that all the analytical functions
ξj(λ) are univalent in G. Since p (ξj(λ)) = λ and G∩Λ0 = ∅, we have p′ (ξj(λ)) 6= 0 for λ ∈ G.
Hence, ξj(λ) is a simple root of a polynomial p(ξ) − λ for all j = 1, ..., 2n. Thus, the family
{ξj(λ)}2n

1 of holomorphic functions is a complete solution.
The functions ξj(λ) are continuous in G0\Λ0 as they are holomorphic in G. Thus, it remains

to show that the functions ξj(λ) are continuous at the points λ ∈ G0 ∩ Λ0. Let λ0 ∈ G0 ∩ Λ0

and let z0 be a root of multiplicity k of the polynomial p(z) − λ0. Then the theorem on local
inversion of holomorphic function implies that for all r > 0 there exists µ0(r) > 0 such that
for all λ ∈ U(λ0) := {|λ− λ0| < µ0} the polynomial p(ξ) takes on value λ in exactly k distinct
points of the circle |ξ − z0| < r. If λ ∈ G ∩ U(λ0), these points belong to the set {ξj(λ)}2n

1 .
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Denote them by ξjq(λ), q = 1, ..., k. Define ξjq(λ0) := z0. If r → 0 then p(ξ) = λ → λ0 and
lim
λ→λ0

ξjq(λ) = z0. So we have continuously prolonged the functions ξjq(λ) to the point λ0. The

set G0 ∩Λ0 is finite. Arguing similarly for all the roots of p(z)−λ0 and for all λ0 ∈ G0 ∩Λ0 we
continuously prolong the functions ξj(λ) on G0.

Applying Lemma 1.1 to the domain G0 = Λ+, we conclude that the equations p(ξ)− λ = 0

and p(ξ) + λ = 0 have complete solutions Ξ+ =
{
ξ+
j (λ)

}2n

1
and Ξ− =

{
ξ−j (λ)

}2n

1
, respectively,

defined in Λ+.
By ωm,j(z) we denote the branch of the multifunction m

√
z defined in C with a cut along the

positive semiaxis R+ and fixed by ωm,j(−1) = e
i

(
π
m

+
2π(j−1)

m

)
.

Lemma 1.2. There exists a numbering of functions ξ+
j (λ), ξ−j (λ) such that

ξ+
j (λ)

ω2n,j(λ)
→ 1,

ξ−j (λ)

ω2n,2n−j+1(−λ)
→ 1

as λ→∞, λ ∈ Λ+, j = 1, . . . , 2n.

Proof. Clearly, 0 is a zero of multiplicity 2n of the function φ(ζ) := 1

p
(

1
ζ

) . Therefore φ(ζ) =

φ1(ζ)ζ2n, where φ1(ζ) = φ(ζ)
ζ2n =

1
ζ2n

p
(

1
ζ

) is holomorphic in a neighborhood of 0 and φ1(0) = 1. Let

U(0) be a neighborhood of 0 where φ1(ζ) 6= 0. Let ψ1(ζ) be the branch of the multifunction
2n
√
φ1(ζ) fixed by ψ1(0) = 1. The only zero of the function ψ(ζ) := ψ1(ζ) ζ in U(0) is the simple

zero 0. If p
(

1
ζ

)
= λ, φ(ζ) := ψ2n(ζ) = λ−1. By the theorem on local inversion of a holomorphic

function for each j = 1, ..., 2n and for all λ sufficiently large there exists the only function ζq(λ)
taking values in U(0) such that ψ1 (ζj(λ)) ζj(λ) = 1

ω2n,j(λ)
. Then ζj(λ)→ 0 as λ→∞ and

φ1 (ζj(λ)) ζ2n
j (λ) = φ (ζj(λ)) =

1

p
(

1
ζj(λ)

) =
1

λ
,

i.e., p
(

1
ζj(λ)

)
−λ = 0. Consequently, there exists a numbering of ξ+

j (λ) such that ξ+
j (λ) = 1

ζj(λ)
,

j = 1, ..., 2n. But
ξ+
j (λ)

ω2n,j(λ)
=

1

ζj(λ)ω2n,j(λ)
= ψ1 (ζj(λ))→ 1

as λ→∞. The proof for ξ−q (λ) is the same.

Assume that the functions ξ±j are enumerated as in the statement of Lemma 1.2. Now we
can introduce the following families of functions: Ξ := Ξ+ ∪ Ξ−, Ξ+

1 = {ξ+
j }n1 , Ξ+

2 = {ξ+
j }2n

n+1,
Ξ−1 = {ξ−j }n1 , Ξ−2 = {ξ−j }2n

n+1. For an arbitrary family Φ ⊂ Ξ, Φ[z0, λ0] denotes the family of

all functions ξ(λ) defined on Λ+ such that ξ ∈ Φ and ξ(λ0) = z0. Let ](Φ) be the number of
elements in a family Φ.

Let ξ ∈ Ξ, λ ∈ Λ+. Then, by virtue of Lemma 1.1, ξ(λ) is a continuous in Λ+ function.
Obviously, ξ(λ) /∈ R for all λ ∈ Λ+. Therefore, either ξ(λ) ∈ C+ for all λ ∈ Λ+ or ξ(λ) ∈ C− for
all λ ∈ Λ+. The polynomial equation z2n − λ = 0 has exactly n solutions ω2n,j(λ), j = 1, ..., n
in C+ and exactly n solutions ω2n,j(λ), j = n + 1, ..., 2n in C−. Analogously, the equation
z2n + λ = 0 has exactly n solutions ω2n,j(−λ), j = 1, ..., n in C− and exactly n solutions
ω2n,j(−λ), j = n+ 1, ..., 2n in C+. Therefore one derives from Lemma 1.2 the following lemma.
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Lemma 1.3. Each of the families Ξ+, Ξ− contains exactly n functions taking values in C+

and exactly n functions taking values in C−. Namely, the functions from Ξ+
1 ,Ξ−2 take values in

C+, the functions from Ξ+
2 ,Ξ−1 take values in C−.

If λ0 ∈ Λ+, then all the roots of polynomials p(z) ∓ λ0 are simple. If λ0 ∈ Λ+ and z0 is a
root of multiplicity k of the polynomial p(z)− λ0 (respectively p(z) + λ0), then by Lemma 1.1
](Ξ+[z0, λ0]) = k (respectively ](Ξ−[z0, λ0]) = k).

Lemma 1.4. Let λ0 ∈ Λ+ and let z0 be a root of multiplicity k of the polynomial p(z) − λ0

(respectively p(z) + λ0). Let Ξ+[z0, λ0] = {ξ̃+
q (λ)}k1 (respectively Ξ−[z0, λ0] = {ξ̃−q (λ)}k1). Then

for q = 1, . . . , k and for λ ∈ Λ+ sufficiently close to λ0

ξ̃+
q (λ)− z0 = γ

(
ξ̃+
q (λ)

)
ωk,q(λ− λ0)(

respectively ξ̃−q (λ)− z0 = γ
(
ξ̃−q (λ)

)
ωk,q(−λ+ λ0)

)
.

Here γ(z) is an arbitrary holomorphic in a neighborhood of z0 branch of the multifunction

1
k
√
p1(z)

, where p1(z) =
p(z)− λ0

(z − z0)k
(respectively p1(z) =

p(z) + λ0

(z − z0)k
).

Proof. By the conditions of the lemma we have p(z) − λ0 = (z − z0)kp1(z), p1(z0) 6= 0. Let
U(z0) be a neighbourhood of z0 such that p1(z) 6= 0 for z ∈ U(z0). Let us choose a branch of
the multifunction k

√
p1(z) in U(z0). In U(z0) the function φ(z) := k

√
p1(z)(z − z0) has the only

root z0, which is simple. Hence, for λ sufficiently close to λ0 and for each q = 1, ..., k there exists
the sole family of functions zq(λ) taking values in U (z0) with the property k

√
p1(zq)(zq − z0) =

ωk,q(λ−λ0). Indeed, p1(zq)(zq− z0)k = λ−λ0 and the last statement follows from the theorem
on local inversion of a holomorphic function. Consequently, p(zk)−λ = 0 and we can enumerate
ξ+
q (λ) so that ξ̃+

q (λ) = zq(λ). Then

ξ̃+
q (λ) =

1

k

√
p1

(
ξ̃+
q (λ)

)ωk,q(λ− λ0)

for λ sufficiently close to λ0.
The proof for ξ−q (λ) is completely similar.

Let k(z0, λ0) be the multiplicity of a root z0 of the polynomial p(z)−λ0. Lemma 1.1 implies
that ](Ξ±1 [z0, λ0]) + ](Ξ±2 [z0, λ0]) = k(z0,±λ0). Assume that z0 ∈ C+. Then ](Ξ+

2 [z0, λ0]) =
](Ξ−1 [z0, λ0]) = 0 and, therefore

](Ξ+
1 [z0, λ0]) = ](Ξ+[z0, λ0]) = k(z0, λ0) ,

](Ξ−2 [z0, λ0]) = ](Ξ−[z0, λ0]) = k(z0,−λ0) .
(1.1)

Analogously, if z0 ∈ C+, then

](Ξ+
2 [z0, λ0]) = ](Ξ+[z0, λ0]) = k(z0, λ0) ,

](Ξ−1 [z0, λ0]) = ](Ξ−[z0, λ0]) = k(z0,−λ0) .
(1.2)

Let ξ+(λ) ∈ Ξ+, then p (ξ+(λ)) − λ = 0 and p
(
ξ+(λ)

)
+ (−λ̄) = 0. It is equivalent to

ξ−(λ) := ξ+(−λ̄) ∈ Ξ−. Taking into account Lemma 1.2, we see that ξ−j (λ) = ξ+
j (−λ̄),

j = 1, ..., 2n, and therefore one arrives at once

](Ξ+
1 [z0,−λ0]) = ](Ξ−1 [z0, λ0]), ](Ξ+

2 [z0,−λ0]) = ](Ξ−2 [z0, λ0]). (1.3)
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If z0 ∈ R is a root of one of the polynomials p(z) ∓ λ0, then λ0 ∈ R. In this case the
distribution of roots among C+ and C− is provided by the following lemma.

Lemma 1.5. Let Λ+ = Λ+
0 . Let µ0 ∈ R ⊂ Λ+, t0 ∈ R.

(a) If k(t0, µ0) is an even number, then

](Ξ+
1 [t0, µ0]) = ](Ξ+

2 [t0, µ0]) = ](Ξ−1 [t0,−µ0]) =

= ](Ξ−2 [t0,−µ0]) =
1

2
k(t0, µ0). (1.4)

(b) If k(t0, µ0) = 2k1 + 1 is an odd number, then one of the following assertions is valid

(i) ](Ξ+
1 [t0, µ0]) = ](Ξ−1 [t0,−µ0]) = k1, (1.5)

](Ξ+
2 [t0, µ0]) = ](Ξ−2 [t0,−µ0]) = k1 + 1.

(ii) ](Ξ+
1 [t0, µ0]) = ](Ξ−1 [t0,−µ0]) = k1 + 1, (1.6)

](Ξ+
2 [t0, µ0]) = ](Ξ−2 [t0,−µ0]) = k1.

Proof. We set k = k(t0, µ0). In the case k ≤ 1 the lemma is trivial. Let Ξ+[t0, µ0] = {ξ̃+
q (λ)}k1,

where the functions ξ̃+
q (λ) are enumerated according to Lemma 1.4. Since t0 ∈ R and µ0 ∈ R,

the polynomial p1(z) = p(z)−µ0

(z−t0)k
has real coefficients and, therefore p1(t0) = p1

(
ξ̃+
q (µ0)

)
∈

R \ {0}. Choose γ(z) such that arg γ(z0) = 0 in the case p1(z0) > 0, and arg γ(z0) = π
k

in the
case p1(z0) < 0. In what follows we consider all angles modulo 2π. Note that if λ = µ0 + iε,
where ε > 0 is small enough, then

arg ξ̃+
q (λ) = argωk,q(λ− λ0) + arg γ

(
ξ̃+
q (λ)

)
,

argωk,q(λ− λ0) =
π

2k
+

2π

k
(q − 1) ,

and arg γ
(
ξ̃+
q (λ)

)
→ arg γ(z0) as ε→ 0.

Assume that k = 2k1 ≥ 2 is an even number. Then for any p1(t0)

∀α > 0 ∃δε : ε < δε =⇒ −α < arg γ
(
ξ̃+
q (λ)

)
<
π

k
+ α,

and, therefore

π

2k
− α < arg ξ̃+

q (λ) < π − π

2k
+ α, q = 1, ..., k1,

π +
π

2k
− α < arg ξ̃+

q (λ) < 2π − π

2k
+ α, q = k1 + 1, ..., 2k1.

Thus ξ̃+
q (λ) ∈ C+ for q = 1, ..., k1, ξ̃+

q (λ) ∈ C− for q = k1 + 1, ..., 2k1. This proves (a).
Assume that k = 2k1 + 1 ≥ 3 is an odd number. Then in the case p1(t0) > 0 we have

∀α > 0∃δε : ε < δε =⇒ π

2k
− α < arg ξ̃+

q (λ) < π − π

2k
+ α, q = 1, ..., k1 + 1,

π +
3π

2k
− α < arg ξ̃+

q (λ) < 2π − 3π

2k
+ α, q = k1 + 2, ..., 2k1 + 1,
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and, therefore assertion (ii) holds. In the case p1(t0) < 0 we have

∀α > 0∃δε : ε < δε =⇒ 3π

2k
− α < arg ξ̃+

q (λ) < π − 3π

2k
+ α, q = 1, ..., k1,

π +
π

2k
− α < arg ξ̃+

q (λ) < 2π − π

2k
+ α, q = k1 + 1, ..., 2k1 + 1,

and, therefore assertion (i) holds.

The statements for Ξ−[t0,−µ0] =
{
ξ̃−j (λ)

}k
1

follow from (1.3).

We need Lemma 1.6 to estimate some integrals.

Proposition 1.1. Let z = η(t) be a rectifiable curve lying in the circle U = {z : |z − z0| < R}.
Assume that sup

t1,t2∈T
| arg η′(t1) − arg η′(t2)| < π/2 for some set T such that [a, b] \ T is a set

of the zero Lebesgue measure. Then the length of the curve z = η(t) is less then 4R, that is
b∫
a

|η′(t)|dt < 4R.

Proof. By conditions we can choose z1 ∈ C such that

sup
t∈T
| arg η′(t)− arg z1| < π/4. (1.7)

Let l1 := {αz1 : α ∈ R}. Denote by z = η̃(t) the orthogonal projection of the curve z = η(t)
on the line l1. Since η(t) ∈ U for all t ∈ [a, b], the length of the curve z = η̃(t) is less then 2R,
b∫
a

|η̃′(t)|dt ≤ 2R. On the other hand, by virtue of (1.7), we have

b∫
a

|η̃′(t)|dt >
b∫

a

1

2
|η′(t)|dt.

The combination of these inequalities proves the proposition.

Lemma 1.6. Let λ = µ + iε, Imλ = ε, ξ ∈ Ξ, ξ(λ) ∈ C± for all λ ∈ Λ+. Then there exists a
constant MC such that for all ε > 0 and for any function F (z) from the Hardy space H2(C±)
the following inequality is valid:

+∞∫
−∞

|F (ξ(λ))|2 |dξ(λ)| :=
+∞∫
−∞

|F (ξ(λ))|2 |ξ′(λ)|dµ ≤MC‖F‖2
H2 . (1.8)

( Henceforth we take integrals along lines λ = µ+ iε, where ε is fixed.)

Proof. We establish inequality (1.8) for ξ ∈ Ξ+
1 . According to the well known Carleson embed-

ding theorem (see, for example, [8, viii E], [6],[11]) it is sufficient to prove that for all ε > 0,
R > 0 , z0 ∈ R there exists a constant M such that∫

|ξ(λ)−z0|<R

|ξ′(λ)| dµ ≤MR, (1.9)
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that is, the length of the part of the curve

{z = ξ(λ), λ = µ+ iε, µ ∈ (−∞,+∞)} ∩ {|z − z0| < R}

is less then MR.
By Lemmas 1.2 and 1.4 we obtain that for all λ0 ∈ C+ ∪ {∞} there exist a neighborhood

U(λ0) of λ0, a number k(λ0) ∈ {1, ..., 2n} and a holomorphic in a neighborhood of the point
ξ(λ0) function γλ0(z) such that γλ0 (ξ(λ0)) 6= 0 and one of the following equalities is valid for
λ ∈ U(λ0)

ξ(λ) = ξ(λ0) + γλ0 (ξ(λ))ωk(λ0),1(λ− λ0) for λ0 6=∞,
ξ(λ) = γ∞ (ξ(λ))ω2n,1(λ) for λ0 =∞.

(If λ0 =∞ we set for convenience ωk(λ0),1(λ− λ0) := ω2n,1(λ).) Now one derives

ξ′(λ) =
γλ0 (ξ(λ))

1− γ′λ0
(ξ(λ))ωk(λ0),1(λ− λ0)

(
ωk(λ0),1(λ− λ0)

)′
.

Therefore,

|ξ′(λ)| ≤ C(λ0)
∣∣∣(ωk(λ0),1(λ− λ0)

)′∣∣∣ (1.10)

for λ sufficiently close to λ0. Constricting U(λ0) we suppose that the last inequality is valid
there.

Since the set C+∪{∞} is compact with respect to the topology of C, we can extract a finite
subcovering

⋃
j∈I

U(λj) from the covering
⋃
λ0

U(λ0). By virtue of (1.10) the measure |ξ′(λ)| dµ is

less than or equals the measure C(λ0)
∣∣∣(ωk(λ0),1(λ− λ0)

)′∣∣∣ dµ on U(λ0). Therefore, it suffices to

prove inequality (1.9) for ξ(λ) = ξk(λ) = ωk,1(λ), k = 1, ..., 2n. For these curves, by Proposition
1.1, we have ∫

|ξ(λ)−z0|<R
µ<0

|ξ′(λ)| dµ < 4R,

∫
|ξ(λ)−z0|<R

µ>0

|ξ′(λ)| dµ < 4R,

so inequality (1.9) holds true for M = 8.
The proof for other functions from Ξ is the same. Choosing the greatest constant we obtain

MC .

2 The resolvents of the operators A, A∗

Since the operator L = p(D) = L∗ is closed and J is unitary, A = JL is closed too. Let us
define the restriction A0 = A |D(A0), where

D(A0) =
{
y(x) ∈ W 2n

2 (R−)⊕W 2n
2 (R+) :

(Djy)(−0) = (Djy)(+0) = 0, j = 0, ..., 2n− 1
}
.

A0 is a symmetric operator. The adjoint operator A∗0 has the domain D(A∗0) = W 2n
2 (R−) ⊕

W 2n
2 (R+) and is defined by the same differential expression. Lemma 1.3 implies that any λ /∈ R

is an eigenvalue of A∗0 of multiplicity 2n. If, in addition, λ ∈ C+\Λ0, the functions eiξ
+
j (λ)xχ+(x),

eiξ
−
j (λ)xχ−(x), j = 1, ..., n form a basis of ker(A∗0 − λI). If λ ∈ C− \ Λ0, then eiξ

−
j (−λ)xχ+(x),
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eiξ
+
j (−λ)xχ−(x), j = n + 1, ..., 2n form a basis of ker(A∗0 − λI). Here χ−(x), χ+(x) stands for

the indicator functions of R− and R+, respectively. Thus the deficiency index of A0 is (2n, 2n).
Let Ã = A∗0 |D(Ã), where

D(Ã) =
{
y(x) ∈ W 2n

2 (R−)⊕W 2n
2 (R+) :

(Djy)(−0) = (Djy)(+0) = 0, j = 0, ..., n− 1
}
. (2.1)

Then Ã is a selfadjoint extension of A0. The operators A and A∗ are proper nonselfadjoint
extensions of A0 with the domains

D(A) =
{
y(x) ∈ W 2n

2 (R−)⊕W 2n
2 (R+) :

(Djy)(−0) = (Djy)(+0), j = 0, ..., 2n− 1
}
, (2.2)

D(A∗) =
{
y(x) ∈ W 2n

2 (R−)⊕W 2n
2 (R+) :

(Djy)(−0) = −(Djy)(+0), j = 0, ..., 2n− 1
}
. (2.3)

Clearly, A0 ⊂ A ⊂ A∗0, A0 ⊂ A∗ ⊂ A∗0.
The following lemma is known [4, Theorem 2.2]. We present the proof for the sake of

completeness.

Lemma 2.1 ([4]). The operators A, A∗ have the real spectrums, σ(A) ⊂ R, σ(A∗) ⊂ R.

Proof. Let λ /∈ R. By Lemma 1.3 the polynomial equation p(z) − λ = 0 has exactly n roots
{z+

j }n1 in C+ (counting their multiplicities). These roots lead to the standard system of lin-
early independent solutions {φ+

j }n1 of the homogenous equation p(D)y − λy = 0 such that
φ+
j (x)χ+(x) ∈ W 2n

2 (R+) are eigenfunctions of A∗0. Analogously, the equation p(z) + λ = 0
has exactly n roots {z−j }n1 in C−. There exists the corresponding system {φ−j }n1 of solutions of
p(D)y + λy = 0 such that φ−j (x)χ−(x) ∈ W 2n

2 (R−) are eigenfunctions of A∗0. Since z+
j 6= z−q

for all j,q, the system {φ+
j , φ

−
j }n1 is linearly independent. Moreover, it is a basis of solutions of

the homogenous equation q(D)y = 0, where q(t) =
n∏
j=1

(t − z+
j )(t − z−j ). Therefore its Wron-

skian does not have zeros. The functions φ+
j (x)χ+(x), φ−j (x)χ−(x), j = 1, ..., n form a basis of

ker(A∗0 − λI).
Since the operator Ã is selfadjoint, we have σ(Ã) ⊂ R and therefore for any f(x) ∈ L2(R)

there exists the only function ỹ(x) ∈ D(Ã) such that Ãỹ − λỹ = f . Then

A∗0y − λy = f ⇐⇒ y(x) = ỹ(x) +
n∑
j=1

c+
j φ

+
j +

n∑
j=1

c−j φ
−
j ,

where c±j are arbitrary numbers. Suppose that y ∈ D(A). Then the coefficients c±j clearly
satisfy the system

n∑
j=1

c+
j

(
Dqφ+

j

)
(+0) + (Dqỹ) (+0) =

n∑
j=1

c−j
(
Dqφ−j

)
(−0) + (Dqỹ) (−0),

q = 0, ..., 2n− 1. It follows from the continuity of the functions φ±j and its derivatives that the
determinant of the system is the Wronskian of the functions {φ+

j , φ
−
j }n1 evaluated at 0. Hence,

the determinant differs from 0. Therefore, for any f(x) ∈ L2(R) there exists the only y ∈ D(A)
such that Ay − λy = f , i. e., λ /∈ σ(A).

Thus, we obtain the inclusion σ(A) ⊂ R. The identity σ(A∗) = σ(A) implies σ(A∗) ⊂ R.
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Setting w = {wj}m1 , we put

M(w) =


1 1 . . . 1
w1 w2 . . . wm
· · · · · · · · · · · ·
wm−1

1 wm−1
2 . . . wm−1

m

 .

Denote by V (w) the Vandermonde determinant, V (w) := detM(w) =
∏

1≤q<j≤m
(wj − wq). The

minor of V (w) obtained by excluding the j-th column and the last row is denoted by Vj(w).
We denote the vector-column (wj)

m
1 by col(wj)

m
1 .

Let λ ∈ Λ+. Then the system of functions eiξ
+
j (λ)xχ+(x), eiξ

−
j (λ)xχ−(x), j = 1, ..., n form a

basis in ker(A∗0 − λI). Let us introduce the family of functions

Θ = {θj(λ)}2n
1 := {ξ+

1 (λ), . . . , ξ+
n (λ), ξ−1 (λ), . . . , ξ−n (λ)} = Ξ+

1 ∪ Ξ−1 .

For a family of functions Φ = {φj(•)}j∈I and for fixed λ, Φ(λ) denotes the family of numbers
{φj(λ)}j∈I . We shall sometimes abbreviate M (Φ(λ)), V (Φ(λ)) as M(Φ), V (Φ).

As usual we denote the Fourier transform of f(x) ∈ L2(R) by

f̂(x) = Ff(x) :=
1√
2π

l.i.m.
N→∞

+N∫
−N

e−ixtf(t) dt .

Here l.i.m. means limit in quadratic mean. We also write f̂(z) := 1√
2π

+∞∫
−∞

e−iztf(t) dt for z ∈ C,

if the integral converges. Let f±(x) := f(x)χ±(x). Then f̂+(z) is in the Hardy space H2(C−),

f̂−(z) ∈ H2(C+). If u(z) ∈ H2(C±) and u(t) = u(z) |R, we shall write u(t) ∈ H2(C±). Let

Hf(x) :=
1

π
v.p.-

+∞∫
−∞

f(t)

x− t
dt be the Hilbert transform of f(t) ∈ L2(R), where v.p.-

∫
means the

principal value integral.
It is known ([8, vi. D]) that

f(t) ∈ H2(C+) ⇒ Hf(t) = −if(t), f(t) ∈ H2(C−) ⇒ Hf(t) = if(t).

According to Paley-Wiener theorem (see, for example, [13, vi. 4]) ‖f̂+(z)‖H2 = ‖f+(x)‖L2 ,

‖f̂−(z)‖H2 = ‖f−(x)‖L2 .
At first, we find the resolvent for the function eiαxχ+(x). Let λ ∈ Λ+, fα(x) = eiαxχ+(x),

where α ∈ C+ and α 6= θj(λ) for all j ∈ {1, ..., 2n}. Evidently, fα(x) ∈ L2(R). Since A∗0fα =
p(α)fα, then y1(x) = 1

p(α)−λfα(x) ∈ W 2n
2 (R+) is a particular solution of the equation (A∗0 −

λI)y = fα. Then the general solution is

y(x) = y1(x) +
n∑
j=1

c+
j e

iξ+
j xχ+(x) +

n∑
j=1

c−j e
iξ−j xχ−(x).

In order to find yα(x) = RA(λ)fα, we have to use condition (2.2). Taking equalities

(Dqy)(−0) =
n∑
j=1

c−j D
q
(
eiξ

−
j xχ−(x)

)
x=−0

=
n∑
j=1

c−j (ξ−j )q,

(Dqy)(+0) =
1

p(α)− λ
αq +

n∑
j=1

c+
j (ξ+

j )q,
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into account one arrives at the system
n∑
j=1

(−c+
j )(ξ+

j )q +
n∑
j=1

c−j (ξ−j )q =
1

p(α)− λ
αq , q = 0, ..., 2n− 1.

We rewrite the system as
1 . . . 1 1 . . . 1
ξ+

1 . . . ξ+
n ξ−1 . . . ξ−n

(ξ+
1 )2 . . . (ξ+

n )2 (ξ−1 )2 . . . (ξ−n )2

. . . . . . . . . . . . . . . . . .
(ξ+

1 )2n−1 . . . (ξ+
n )2n−1 (ξ−1 )2n−1 . . . (ξ−n )2n−1




−c+

1

. . .
−c+

n

c−1
. . .
c−n

 =

= M (Θ(λ))


−c+

1

. . .
−c+

n

c−1
. . .
c−n

 =
1

p(α)− λ


1
α
α2

. . .
α2n−1

 .

Since all the numbers ξ±j , j = 1, ..., n are different, the determinant of the system is V (Θ) =
V (ξ+

1 , ..., ξ
+
n , ξ

−
1 , ..., ξ

−
n ) 6= 0 and, therefore there exists the only solution:

c+
j = −

(−1)j−1Vj(Θ)
2n∏
q=1
q 6=j

(θq − α)

(p(α)− λ)V (Θ)
, c−j =

(−1)n+j−1Vn+j(Θ)
2n∏
q=1
q 6=j

(θq − α)

(p(α)− λ)V (Θ)
,

j = 1, ..., n.

Lemma 2.2. Let λ ∈ Λ+, fα(x) = eiαxχ+(x), with α ∈ C+ and α 6= θj(λ), for j = 1, ..., 2n.
Then the Fourier transform of yα(x, λ) := RA(λ)fα is

ŷα(t, λ) =
1

i
√

2π

2n∏
j=1

(θj(λ)− α)

(p(α)− λ) (t− α)
2n∏
j=1

(θj(λ)− t)
.

Proof. Using the expressions for c±j , we have

ŷα(t) = − 1

p(α)− λ
1

i
√

2π(α− t)
−

n∑
j=1

c+
j

1

i
√

2π(ξ+
j − t)

+
n∑
j=1

c−j
1

i
√

2π(ξ−j − t)
=

=
1

i
√

2π (p(α)− λ)


1

(t− α)
+

2n∑
j=1

(−1)j−1Vj(Θ)
2n∏
q=1
q 6=j

(θq − α)

V (Θ)

1

θj − t

 =

=

V (Θ)
2n∏
j=1

(θj − t) +
2n∑
j=1

(−1)j−1Vj(Θ)(t− α)
2n∏
q=1
q 6=j

[(θq − α)(θq − t)]

i
√

2π (p(α)− λ) (t− α)V (Θ)
2n∏
j=1

(θj − t)
.
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The numerator of the last fraction is a polynomial p1(t) of degree 2n. It is clear that p1(α) =

p1(θ1) = p1(θ2) = · · · = p1(θ2n) = V (Θ)
2n∏
j=1

(θj − α). So

p1(t) ≡ V (Θ)
2n∏
j=1

(θj − α). (2.4)

Finally, we have

ŷ(t) =

2n∏
j=1

(θj − α)

i
√

2π(p(α)− λ)(t− α)
2n∏
j=1

(θj − t)
.

Let us find the resolvents (A− λI)−1 and (A∗ − λI)−1. Since p(D) = F−1p(t)F , we have

y+
1 (x) := (p(D)− λI)−1 f+(x) = F−1 1

p(x)− λ
Ff+(x),

y−1 (x) := (−p(D)− λI)−1 f−(x) = F−1 1

−p(x)− λ
Ff−(x).

Since y+
1 (x)χ+(x) ∈ D(A∗0), y−1 (x)χ−(x) ∈ D(A∗0), then (A∗0−λI)(y+

1 χ++y−1 χ−) = f . Therefore

yf (x) := (A− λI)−1f(x) =

= y+
1 (x)χ+(x) + y−1 (x)χ−(x) +

n∑
j=1

c+
j e

iξ+
j xχ+(x) +

n∑
j=1

c−j e
iξ−j xχ−(x),

y∗f (x) := (A∗ − λI)−1f(x) =

= y+
1 (x)χ+(x) + y−1 (x)χ−(x) +

n∑
j=1

c∗+j eiξ
+
j xχ+(x) +

n∑
j=1

c∗−j eiξ
−
j xχ−(x).

Using (2.2) we have

Dq

(
y+

1 (x) +
n∑
j=1

c+
j e

iξ+
j x

)
x=0

= Dq

(
y−1 (x) +

n∑
j=1

c−j e
iξ−j x

)
x=0

,

q = 0, ..., 2n− 1. Thus, we obtain the system

(Dqy+
1 )(0) +

n∑
j=1

c+
j (ξ+

j )q = (Dqy−1 )(0) +
n∑
j=1

c−j (ξ−j )q, q = 0, ..., 2n− 1. (2.5)

From

Dqy+
1 (x) = DqF−1 1

p(x)− λ
Ff+(x) = F−1xq

1

p(x)− λ
Ff+(x),

one derives

(Dqy+
1 )(0) =

 1√
2π

+∞∫
−∞

eixt tq
1

p(t)− λ
f̂+(t) dt


x=0

=
1√
2π

+∞∫
−∞

tqf̂+(t)

p(t)− λ
dt.
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Analogously, (Dqy−1 )(0) =
1√
2π

+∞∫
−∞

tqf̂−(t)

−p(t)− λ
dt. Substituting these equalities into (2.5), we

obtain the system

M(Θ(λ)) col(c+
1 , ..., c

+
n ,−c−1 , ...,−c−n ) =

= col

 1√
2π

+∞∫
−∞

τ q

(
− f̂+(τ)

p(τ)− λ
+

f̂−(τ)

−p(τ)− λ

)
dτ

2n−1

q=0

.

The solution is given by

c+
j =

1√
2π

+∞∫
−∞

2n∏
q=1
q 6=j

(θq − τ)

2n∏
q=1
q 6=j

(θq − θj)

(
− f̂+(τ)

p(τ)− λ
+

f̂−(τ)

−p(τ)− λ

)
dτ, j = 1, ..., n,

c−j−n =
−1√
2π

+∞∫
−∞

2n∏
q=1
q 6=j

(θq − τ)

2n∏
q=1
q 6=j

(θq − θj)

(
− f̂+(τ)

p(τ)− λ
+

f̂−(τ)

−p(τ)− λ

)
dτ, j = n+ 1, ..., 2n.

Lemma 2.3. Let λ ∈ C+ \ Λ0 and f ∈ L2(R). Then the resolvents yf (x, λ) = RA(λ)f(x) and
y∗f (x, λ) = RA∗(λ)f(x) are given by the following formulas:

yf = y+
1 χ+ + y−1 χ− + y+

0 + y−0 , (2.6)

y∗f = y+
1 χ+ + y−1 χ− + y+

0 χ+ − y+
0 χ− − y−0 χ− + y−0 χ− , (2.7)

where the functions y±1 , y±0 are defined by their Fourier transforms:

ŷ+
1 (t) =

f̂+(t)

p(t)− λ
, ŷ+

0 (t) = −
2n∑

j=n+1

2n∑
q=1

2n∏
r=1
r 6=q

(θr − ξ+
j )

2n∏
r=1
r 6=q

(θr − θq)

1

θq − t
f̂+(ξ+

j )

p′(ξ+
j )

, (2.8)

ŷ−1 (t) =
f̂−(t)

−p(t)− λ
, ŷ−0 (t) =

2n∑
j=n+1

2n∑
q=1

2n∏
r=1
r 6=q

(θr − ξ−j )

2n∏
r=1
r 6=q

(θr − θq)

1

θq − t
f̂−(ξ−j )

p′(ξ−j )
. (2.9)

Proof. We have shown that yf = y+
1 χ+ + y−1 χ− + y0, where

y0(x) :=
n∑
j=1

c+
j e

iξ+
j xχ+(x) +

n∑
j=1

c−j e
iξ−j xχ−(x).
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Substituting c±j , we have

ŷ0(t) =
n∑
j=1

c+
j

−1

i
√

2π(ξ+
j − t)

+
n∑
j=1

c−j
1

i
√

2π(ξ−j − t)
=

=
2n∑
j=1

1√
2π

+∞∫
−∞

2n∏
q=1
q 6=j

(θq − τ)

2n∏
q=1
q 6=j

(θq − θj)

(
f̂+(τ)

p(τ)− λ
− f̂−(τ)

−p(τ)− λ

)
dτ

1

i
√

2π(θj − t)
=

=

+∞∫
−∞


2n∑
j=1

(−1)j−1Vj(Θ)(t− τ)
2n∏
q=1
q 6=j

[(θq − τ)(θq − t)] + V (Θ)
2n∏
j=1

(θj − t)

2πiV (Θ)
2n∏
j=1

(θj − t)(t− τ)

−

−
V (Θ)

2n∏
j=1

(θj − t)

2πiV (Θ)
2n∏
j=1

(θj − t)(t− τ)


(

f̂+(τ)

p(τ)− λ
− f̂−(τ)

−p(τ)− λ

)
dτ =

=

+∞∫
−∞

V (Θ)
2n∏
j=1

(θj − τ)− V (Θ)
2n∏
j=1

(θj − t)

2πiV (Θ)
2n∏
j=1

(θj − t)(t− τ)

(
f̂+(τ)

p(τ)− λ
− f̂−(τ)

−p(τ)− λ

)
dτ =

=
1

2πi

+∞∫
−∞

2n∏
j=1

(θj − τ)−
2n∏
j=1

(θj − t)

(t− τ)
2n∏
j=1

(θj − t)

(
f̂+(τ)

p(τ)− λ
− f̂−(τ)

−p(τ)− λ

)
dτ.

Here we used the relation (compare (2.4) )

2n∑
j=1

(−1)j−1Vj(Θ)(t− τ)
2n∏
q=1
q 6=j

[(θq − τ)(θq − t)] = V (Θ)
2n∏
j=1

(θj − τ)− V (Θ)
2n∏
j=1

(θj − t). (2.10)

Let us denote

ŷ±0 (t) =
1

2πi

+∞∫
−∞

2n∏
j=1

(θj − τ)−
2n∏
j=1

(θj − t)

(t− τ)
2n∏
j=1

(θj − t)

f̂±(τ)

p(τ)∓ λ
dτ.
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It is easy to see that

ŷ+
0 (t) =

1

2πi

1
2n∏
j=1

(θj − t)
v.p.-

+∞∫
−∞

2n∏
j=1

(θj − τ)f̂+(τ)

(t− τ)(p(τ)− λ)
dτ − 1

2πi
v.p.-

+∞∫
−∞

f̂+(τ)

(t− τ)(p(τ)− λ)
dτ =

=
1

2i

1
2n∏
j=1

(θj − t)
H

2n∏
j=1

(θj − t)f̂+(t)

p(t)− λ
− 1

2i
H f̂+(t)

p(t)− λ
.

Since f̂+(t) ∈ H2(C−), we have

f̂+(t)
2n∏
j=1

(t− ξ+
j )

−
2n∑

j=n+1

f̂+(ξ+
j )

2n∏
q=1
q 6=j

(ξ+
j − ξ+

q )(t− ξ+
j )

∈ H2(C−),

2n∑
j=n+1

f̂+(ξ+
j )

2n∏
q=1
q 6=j

(ξ+
j − ξ+

q )(t− ξ+
j )

∈ H2(C+).

Therefore,

H f̂+(t)

p(t)− λ
= H f̂+(t)

2n∏
j=1

(t− ξ+
j )

=

= H


f̂+(t)

2n∏
j=1

(t− ξ+
j )

−
2n∑

j=n+1

f̂+(ξ+
j )

2n∏
q=1
q 6=j

(ξ+
j − ξ+

q )(t− ξ+
j )

+H
2n∑

j=n+1

f̂+(ξ+
j )

2n∏
q=1
q 6=j

(ξ+
j − ξ+

q )(t− ξ+
j )

=

= i


f̂+(t)

2n∏
j=1

(t− ξ+
j )

−
2n∑

j=n+1

f̂+(ξ+
j )

2n∏
q=1
q 6=j

(ξ+
j − ξ+

q )(t− ξ+
j )

+ (−i)
2n∑

j=n+1

f̂+(ξ+
j )

2n∏
q=1
q 6=j

(ξ+
j − ξ+

q )(t− ξ+
j )

=

= i
f̂+(t)

p(t)− λ
− 2i

2n∑
j=n+1

f̂+(ξ+
j )

p′(ξ+
j )(t− ξ+

j )
.
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Analogously,

H

2n∏
q=1

(θq − t)f̂+(t)

p(t)− λ
=

= H


2n∏
q=1

(θq − t)f̂+(t)

p(t)− λ
−

2n∑
j=n+1

2n∏
q=1

(θq − ξ+
j )f̂+(ξ+

j )

p′(ξ+
j )(t− ξ+

j )

+H
2n∑

j=n+1

2n∏
q=1

(θq − ξ+
j )f̂+(ξ+

j )

p′(ξ+
j )(t− ξ+

j )
=

= i

2n∏
q=1

(θq − t)f̂+(t)

p(t)− λ
− 2i

2n∑
j=n+1

2n∏
q=1

(θq − ξ+
j )f̂+(ξ+

j )

p′(ξ+
j )(t− ξ+

j )
.

Thus,

ŷ+
0 (t) = − 1

2i

(
i
f̂+(t)

p(t)− λ
− 2i

2n∑
j=n+1

f̂+(ξ+
j )

p′(ξ+
j )(t− ξ+

j )

)
+

+
1

2i

1
2n∏
j=1

(θj − t)

i
2n∏
q=1

(θq − t)f̂+(t)

p(t)− λ
− 2i

2n∑
j=n+1

2n∏
q=1

(θq − ξ+
j )f̂+(ξ+

j )

p′(ξ+
j )(t− ξ+

j )

 =

= −
2n∑

j=n+1

2n∏
q=1

(θq − ξ+
j )−

2n∏
j=1

(θj − t)

2n∏
j=1

(θj − t) (t− ξ+
j )

f̂+(ξ+
j )

p′(ξ+
j )

.

Taking (2.10) into account, we have

ŷ+
0 (t) = −

2n∑
j=n+1

2n∑
q=1

(−1)q−1Vq(Θ)(t− ξ+
j )

2n∏
r=1
r 6=q

[(
θr − ξ+

j

)
(θr − t)

]
V (Θ)

2n∏
q=1

(θq − t) (t− ξ+
j )

f̂+(ξ+
j )

p′(ξ+
j )

=

= −
2n∑

j=n+1

2n∑
q=1

2n∏
r=1
r 6=q

(θr − ξ+
j )

2n∏
r=1
r 6=q

(θr − θq)(θq − t)

f̂+(ξ+
j )

p′(ξ+
j )

.
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In just the same way one derives

ŷ−0 (t) :=
1

2πi

+∞∫
−∞

2n∏
j=1

(θj − τ)−
2n∏
j=1

(θj − t)

(t− τ)
2n∏
j=1

(θj − t)

f̂−(τ)

p(τ) + λ
dτ =

=
2n∑

j=n+1

2n∏
q=1

(θq − ξ−j )−
2n∏
j=1

(θj − t)

2n∏
j=1

(θj − t) (t− ξ−j )

f̂−(ξ−j )

p′(ξ−j )
=

=
2n∑

j=n+1

2n∑
q=1

2n∏
r=1
r 6=q

(θr − ξ−j )

2n∏
r=1
r 6=q

(θr − θq)(θq − t)

f̂−(ξ−j )

p′(ξ−j )
.

Since ŷ0 = ŷ+
0 + ŷ−0 , we conclude (2.6).

We can obtain (2.7) similarly. On the other hand, note that the functions y+
0 χ+ , y+

0 χ− ,
y−0 χ+ , y−0 χ− belong to ker(A∗0 − λI) and

y∗ := y+
1 χ+ + y−1 χ− + y+

0 χ+ − y+
0 χ− − y−0 χ− + y−0 χ− ∈ D(A∗).

It follows that

(A∗ − λI)y∗ = (A∗0 − λI)y∗ = (A∗0 − λI)(y+
1 χ+ + y−1 χ−) = f+ + f− = f ,

and, therefore y∗f = y∗.

3 Necessary conditions for similarity

Consider the case when the polynomial p(t) changes sign. Then the polynomial has real roots
of odd multiplicity. If λ = 0, then the equation p(ξ) − λ = 0 coincides with the equation
p(ξ) + λ = 0. For this reason we investigate the behavior of the resolvent (A − λI)−1 for λ
small enough.

Recal that Ξ± = {ξ±j (λ)}2n
1 are the complete solutions (see Section 1) of the equations

p(ξ) ∓ λ = 0 enumerated as in the statement of Lemma 1.2, Ξ := Ξ+ ∪ Ξ−, Ξ+
1 = {ξ+

j }n1 ,
Ξ+

2 = {ξ+
j }2n

n+1, Ξ−1 = {ξ−j }n1 , Ξ−2 = {ξ−j }2n
n+1. For an arbitrary family Φ ⊂ Ξ, Φ[z0, λ0] denotes

the family of all functions ξ(λ) defined on Λ+ such that ξ ∈ Φ and ξ(λ0) = z0. The notation
](Φ) means the number of elements in a family Φ.

Proposition 3.1. Assume that p(t) takes both positive and negative values for t ∈ R. Then
there exists t0 ∈ R such that

](Ξ+
1 [t0, 0]) = ](Ξ−1 [t0, 0]) = k1 + 1, ](Ξ+

2 [t0, 0]) = ](Ξ−2 [t0, 0]) = k1.

where k1 = 1
2

(k(t0, 0)− 1) and k(t0, 0) is an odd number.
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Proof. By definition,
∑
z∈C

](Ξ±1 [z, 0]) = n =
∑
z∈C

](Ξ±2 [z, 0]). Since p(z) has real coefficients,

](Ξ±1 [z, 0]) = ](Ξ±2 [z, 0]) for z /∈ R. According to (1.3), we have∑
z /∈R

](Ξ+
1 [z, 0]) =

∑
z /∈R

](Ξ+
2 [z, 0]) =

∑
z /∈R

](Ξ−2 [z, 0]) =
∑
z /∈R

](Ξ−1 [z, 0]).

This implies ∑
z∈R

](Ξ+
1 [z, 0]) =

∑
z∈R

](Ξ+
2 [z, 0]) =

∑
z∈R

](Ξ−2 [z, 0]) =
∑
z∈R

](Ξ−1 [z, 0]). (3.1)

Because p(t) changes sign, there exist real roots of odd multiplicity. By Lemma 1.5 one of the
assertions (i) or (ii) is valid for such roots. By virtue of (3.1), the both cases are realized.

Theorem 3.1. If the polynomial p(t) takes both positive and negative values for t ∈ R, then
the operator A = (sgnx)p(D) is not similar to selfadjoint operator.

Proof. Assume that p(t) takes both positive and negative values for t ∈ R. By Proposition 3.1
there exists t0 ∈ R such that

](Ξ+
1 [t0, 0]) = ](Ξ−1 [t0, 0]) = k1 + 1, ](Ξ+

2 [t0, 0]) = ](Ξ−2 [t0, 0]) = k1,

where k1 = 1
2

(k(t0, 0)− 1). In this proof we abbreviate k(t0, 0) as k(t0) and ](Θ[t0, 0]) as nΘ(t0).
According to the definition of Θ, we have

nΘ(t0) = ](Ξ+
1 [t0, 0]) + ](Ξ−1 [t0, 0]) = 2k1 + 2 ≥ 2k1 + 1 = k(t0). (3.2)

Let λ = µ + iε, Imλ = ε. In what follows we fix some ε ∈ (0, ε1) and take integrals along
the line λ = µ+ iε, µ ∈ R.

Lemma 2.2 and Parseval equality yield the following relation:

ε

+∞∫
−∞

‖yα(x, λ)‖2
L2dµ = ε

+∞∫
−∞

‖ŷα(t, λ)‖2
L2dµ =

=
ε

2π

+∞∫
−∞

+∞∫
−∞

∣∣∣∣∣∣∣∣∣
2n∏
j=1

(θj(λ)− α)

(p(α)− λ) (t− α)
2n∏
j=1

(θj(λ)− t)

∣∣∣∣∣∣∣∣∣
2

dt dµ ≥

≥ ε

2π

+∞∫
−∞

+∞∫
−∞

∣∣∣∣∣
2n∏
j=1

(θj(λ)− α)

(p(α)− λ) (t− α)

∣∣∣∣∣
2 ∣∣∣∣∣ 1

2n∏
j=1

(|θj(λ)− t0|+ |t− t0|)

∣∣∣∣∣
2

dt dµ.

Let T := [t0, t0 + δt) be a neighborhood of t0 which does not contain other roots of the
equation p(t). By Lemmas 1.1 and 1.4 there exists a neighborhood of zero B0 := {λ : 0 <
Imλ < δε, 0 < Reλ < δµ} such that

|θ(λ)− t0| <C1|λ|
1

k(t0) for all θ ∈ Θ[t0, 0],

|θ(λ)− t0| <C2 for all θ ∈ Θ \Θ[t0, 0],
(3.3)
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here C1, C2 are some constants.
We choose α ∈ C+ such that

∣∣∣∣∣
2n∏
j=1

(θj(λ)− α)

(p(α)− λ) (t− α)

∣∣∣∣∣ ≥ C3 = const > 0 (3.4)

for all λ ∈ B0, t ∈ T , here C3 is some constant.
By virtue of (3.4) we have

ε

+∞∫
−∞

‖yα(x, λ)‖2
L2dµ ≥

≥ ε

2π

δµ∫
0

t0+δt∫
t0

∣∣∣∣∣
2n∏
j=1

(θj(λ)− α)

(p(α)− λ) (t− α)

∣∣∣∣∣
2 ∣∣∣∣∣ 1

2n∏
j=1

(|θj(λ)− t0|+ |t− t0|)

∣∣∣∣∣
2

dt dµ ≥

≥ C4ε

δµ∫
0

t0+δt∫
t0

∣∣∣∣∣ 1∏
θj /∈Θ[t0,0]

(|θj(λ)− t0|+ |t− t0|)
∏

θj∈Θ[t0,0]

(|θj(λ)− t0|+ |t− t0|)

∣∣∣∣∣
2

dt dµ,

with some constant C4 > 0. Accounting (3.3), for some positive constant C5, one derives

ε

+∞∫
−∞

‖yα(x, λ)‖2
L2dµ ≥

≥ C4ε

δµ∫
0

t0+δt∫
t0

1

(C2 + |t− t0|)2(2n−nΘ(t0))
(
C1|λ|

1
k(t0) + |t− t0|

)2nΘ(t0)
dt dµ ≥

≥ C5ε

δµ∫
0

t0+δt∫
t0

1(
(t− t0) + C1|λ|

1
k(t0)

)2nΘ(t0)
dt dµ =

= C5ε
2nΘ(t0)−1

δµ∫
0

 1

(C1|λ|)
2nΘ(t0)−1
k(t0)

− 1(
δt + C1|λ|

1
k(t0)

)2nΘ(t0)−1

 dµ. (3.5)

It is clear that

lim
ε→0

ε

δµ∫
0

1(
δt + C1|λ|

1
k(t0)

)2nΘ(t0)−1
dµ = 0. (3.6)
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Further, one has

ε

δµ∫
0

1

|λ|
2nΘ(t0)−1
k(t0)

dµ =

δµ∫
0

ε

(µ2 + ε2)
nΘ(t0)−1/2

k(t0)

dµ =

= ε
2

(
1−

nΘ(t0)−1/2
k(t0)

) δµ∫
0

1((
µ
ε

)2
+ 1
)nΘ(t0)−1/2

k(t0)

d
(µ
ε

)
=

= ε
2

(
1−

nΘ(t0)−1/2
k(t0)

) δµ/ε∫
0

1

(µ2
1 + 1)

nΘ(t0)−1/2
k(t0)

dµ1. (3.7)

Besides,

lim
ε→0

δµ/ε∫
0

1

(µ2
1 + 1)

nΘ(t0)−1/2
k(t0)

dµ1 =

+∞∫
0

1

(µ2
1 + 1)

nΘ(t0)−1/2
k(t0)

dµ1 > 0. (3.8)

By virtue of (3.2) it easy to see that
nΘ(t0)− 1/2

k(t0)
=

2k1 + 3/2

2k1 + 1
> 1 and, consequently,

ε
2

(
1−

nΘ(t0)−1/2
k(t0)

)
→ +∞ as ε→ 0. Therefore, it follows from (3.7), (3.8) that

lim
ε→0

ε

δµ∫
0

1

|λ|
2nΘ(t0)−1
k(t0)

dµ = +∞. (3.9)

Now, the relation lim
ε→0

ε
+∞∫
−∞
‖RA(λ)fα‖2

L2dµ = +∞ is implied by (3.5), (3.6), (3.9). Thus,

it is shown that inequality (0.2) of Theorem 0.2 is not valid for fα(x) = eiαxχ+(x) ∈ L2(R).
Hence the operator A is not similar to a selfadjoint operator.

Remark 3.1. Let p(z) be an odd order polynomial. It is easy to see that the spectrum of A
is the whole complex plane, σ(A) = C. Therefore, the operator A = Jp(D) is not similar to
selfadjoint one.

4 Sufficient conditions for similarity

In Section 2 we have shown, that the operator A is closed and the spectrum of A is real. To
prove that A is similar to a selfadjoint operator we have to check expressions (0.2), (0.3). The
formulas for the resolvents of A and A∗ are provided in Lemma 2.3.
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There follows from (2.8) and from Parseval equality that

ε

+∞∫
−∞

‖y+
1 (x, λ)χ+(x)‖2

L2dµ ≤ ε

+∞∫
−∞

‖ŷ+
1 (t, λ)‖2

L2dµ =

= ε

+∞∫
−∞

+∞∫
−∞

∣∣∣∣∣ f̂+(t)

p(t)− λ

∣∣∣∣∣
2

dt dµ = ε

+∞∫
−∞

|f̂+(t)|2
+∞∫
−∞

1

(p(t)− µ)2 + ε2
dµ dt =

= π‖f̂+(t)‖2
L2 = π‖f+(x)‖2

L2 . (4.1)

In the same way one obtains

ε

+∞∫
−∞

‖y−1 (x, λ)‖2
L2dµ ≤ π‖f−(x)‖2

L2 . (4.2)

Remark 4.1. On the other hand

y+
1 (x, λ) = Rp(D)(λ) f(x), y−1 (x, λ) = R−p(D)(λ) f(x).

Since p(D) is a selfadjoint operator, estimates (4.1), (4.2) are consequences of Theorem 0.2.

For n+ 1 ≤ j ≤ 2n, 1 ≤ q ≤ 2n we define functions y±(x, λ) by their Fourier transforms:

ŷ±jq(t, λ) := ∓

2n∏
r=1
r 6=q

(θr − ξ±j )

2n∏
r=1
r 6=q

(θr − θq)

f̂+(ξ±j )

p′(ξ±j )

1

θq − t
.

Then ŷ±0 =
2n∑

j=n+1

2n∑
q=1

ŷ±jq.

Proposition 4.1. Let M be a measurable subset of the real line, λ = µ+ iε. Then

ε

∫
M

‖y±jq(x, λ)‖2
L2dµ ≤ πMC sup

µ∈M
B±jq(µ+ iε) ‖f±(x)‖2

L2 , (4.3)

where

B±jq(λ) :=

Imλ
2n∏
r=1
r 6=q

|θr(λ)− ξ±j (λ)|2

2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2
∣∣p′ (ξ±j (λ)

)∣∣ 1

| Im θq(λ)|
.

(The constant MC was defined in Lemma 1.6.)

Proof. We prove the proposition for y+
jq. The other case is analogous.
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By definition

ε

∫
M

‖ŷ+
jq(t, λ)‖2

L2dµ = ε

∫
M

2n∏
r=1
r 6=q

|θr(λ)− ξ+
j (λ)|2

2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2
∣∣p′ (ξ+

j (λ)
)∣∣2
∥∥∥∥ 1

θq(λ)− t

∥∥∥∥2

L2

∣∣∣f̂+

(
ξ+
j (λ)

)∣∣∣2 dµ.

Since
(
ξ+
j (λ)

)′
=

1

p′
(
ξ+
j (λ)

) , we have

ε

∫
M

‖ŷ+
jq(t, λ)‖2

L2dµ =

= π

∫
M

Imλ
2n∏
r=1
r 6=q

|θr(λ)− ξ+
j (λ)|2

2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2
∣∣p′ (ξ+

j (λ)
)∣∣ 1

| Im θq(λ)|

∣∣∣f̂+

(
ξ+
j (λ)

)∣∣∣2 ∣∣∣dξ+
j (µ+iε)

dµ

∣∣∣ dµ =

≤ π sup
µ∈M

B+
jq(µ+ iε)

∫
µ∈R

∣∣∣f̂+

(
ξ+
j (λ)

)∣∣∣2 |dξ+
j (µ+ iε)| .

By Lemma 1.6 we arrive at inequality (4.3).

To estimate the functions B±jq(λ) we derive several propositions from lemmas of Section 1.

Let ω1(λ), ω2(λ) be arbitrary different functions from the family {ωk,j(λ), ωk,k−j+1(−λ)}kj=1.

Then |ω1(λ)| = |ω2(λ)| = |λ| 1k . Since the angle α := argω1(λ)− argω2(λ) 6= 0 is constant and
is a multiple of π/k, we have

|ω1(λ)− ω2(λ)| = 2 sin
α

2
|λ|

1
k . (4.4)

Proposition 4.2. (a) Let z0 be a root of the polynomial p(ξ)∓λ0 of multiplicity k = k(z0,±λ0) ≥
2 and

{
ξ̃±q (λ)

}k
1

= Ξ±[z0, λ0]. Then, for λ sufficiently close to λ0 and for some positive con-

stants M1(λ0), M2(λ0) the following inequality holds:

M1(λ0) |λ− λ0|
1
k <

∣∣∣ξ̃±j (λ)− ξ̃±q (λ)
∣∣∣ < M2(λ0) |λ− λ0|

1
k , j 6= q . (4.5)

(b) If λ0 6= 0, ξ+(λ) ∈ Ξ+ and ξ−(λ) ∈ Ξ−, then ξ+(λ0) 6= ξ−(λ0).
(c) Let z0 be a root of the polynomial p(ξ) of multiplicity k = k(z0, 0). Then

](Ξ+[z0, 0]) = ](Ξ−[z0, 0]) = k, ](Ξ[z0, 0]) = ](Ξ+[z0, 0]) + ](Ξ−[z0, 0]) = 2k.

For any different functions ξ1(λ), ξ2(λ) from Ξ[z0, 0] and for λ sufficiently close to λ0 the
following inequality holds:

M1(0) |λ|
1
k < |ξ1(λ)− ξ2(λ)| < M2(0) |λ|

1
k , (4.6)

where M1(0), M2(0) are some positive constants.
(d) Let ξ1(λ), ξ2(λ) be arbitrary different functions from the family Ξ. Then, for λ large

enough and for some positive constants M1(∞), M2(∞) the following inequality holds:

M1(∞) |λ|
1

2n < |ξ1(λ)− ξ2(λ)| < M2(∞) |λ|
1

2n . (4.7)
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Remark 4.2. Assume ξ1(λ) ∈ Ξ+, ξ2(λ) ∈ Ξ−. Then the equlity ξ1(0) = ξ2(0) is possible. So
we need item (c) of Proposition 4.2 to estimate the difference ξ1(λ)− ξ2(λ) for λ small enough.

Proof. The statement (a) follows at once from (4.4) and Lemma 1.4.
(b) Since p (ξ+(λ0))− λ0 = p (ξ−(λ0)) + λ0 = 0, ξ+(λ0) = ξ−(λ0) implies λ0 = −λ0 = 0.
(c) Let λ0 = 0. Then we can choose the function γ(z) in Lemma 1.4 such that the both

equalities

ξ̃+
q (λ)− z0 = γ

(
ξ̃+
q (λ)

)
ωk,q(λ− λ0), ξ̃−q (λ)− z0 = γ

(
ξ̃−q (λ)

)
ωk,q(−λ+ λ0)

hold in a neighborhood of λ0. Accounting (4.4), we obtain (c).
The statement (d) follows at once from (4.4) and Lemma 1.2.

Proposition 4.3. Let ξ(λ) ∈ Ξ.

(a) The function
Imλ

Im ξ(λ) |λ| 2n−1
2n

is bounded in a neighborhood of λ0 =∞.

(b) If λ0 ∈ R and ξ(λ0) = z0 ∈ R, then the function
Imλ

Im ξ(λ) |λ− λ0|
k(z0,λ0)−1
k(z0,λ0)

is bounded in

a neighborhood of λ0.

Proof. Let ξ(λ) ∈ Ξ+. The case ξ(λ) ∈ Ξ− is considered analogously.

(a) Since p (ξ(λ)) =
2n∑
j=0

aj (ξ(λ))j = λ and aj ∈ R, we have

Imλ = Im
2n∑
j=0

aj (ξ(λ))j =
2n∑
j=1

aj Im (Re ξ(λ) + i Im ξ(λ))j .

Removing the parentheses, one obtains

Im (Re ξ(λ) + i Im ξ(λ))j = Im ξ(λ) pj−1 (Re ξ(λ), Im ξ(λ)) ,

where pj−1 is a polynomial of degree j − 1 in two variables. So we have

Imλ = Im ξ(λ)
2n∑
j=1

aj pj−1 (Re ξ(λ), Im ξ(λ)) = Im ξ(λ) P2n−1 (Re ξ(λ), Im ξ(λ)) ,

where P2n−1 is a polynomial of degree 2n− 1 in two variables.
According to Lemma 1.2, the inequalities |Re ξ(λ)| < |ξ(λ)| < C|λ|1/2n, | Im ξ(λ)| <

|ξ(λ)| < C|λ|1/2n are valid for λ large enough and for some constant C > 0. Consequently, the

function
Imλ

Im ξ(λ)|λ| 2n−1
2n

=
P2n−1 (Re ξ(λ), Im ξ(λ))

|λ| 2n−1
2n

is bounded in a neighbourhood of λ0 =∞.

(b) Since z0 is a real root of multiplicity k = k(z0, λ0) of the polynomial p(ξ)− λ0, we can
write p(ξ)−λ0 = (ξ−z0)kp̃(ξ), where p̃(ξ) is a polynomial of degree 2n−k with real coefficients.
Then

0 = p (ξ(λ))− λ0 − (λ− λ0) = (ξ(λ)− z0)k p̃ (ξ(λ))− (λ− λ0).

Since λ0 ∈ R, we have

Imλ = Im(λ− λ0) = Im (ξ(λ)− z0)k Re p̃ (ξ(λ)) + Re (ξ(λ)− z0)k Im p̃ (ξ(λ)) .
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Note that

Im (ξ(λ)− z0)k = Im
(

Re (ξ(λ)− z0) + i Im ξ(λ)
)k

=

= Im ξ(λ)Pk−1

(
Re (ξ(λ)− z0) , i Im ξ(λ)

)
, (4.8)

where Pk−1 is a polynomial in two variables with monomials of degree k − 1. According to
Lemma 1.4, the inequalities

|Re (ξ(λ)− z0) | < |ξ(λ)− z0| < C|λ− λ0|1/k ,
| Im ξ(λ)| = | Im (ξ(λ)− z0) | < |ξ(λ)− z0| < C|λ− λ0|1/k

hold for λ in a neighborhood of λ0 and for some constant C > 0. Therefore, bearing in mind
(4.8), the function

b1(λ) :=
Im (ξ(λ)− z0)k Re p̃ (ξ(λ))

Im ξ(λ)|λ− λ0|
k−1
k

=
Pk−1

(
Re (ξ(λ)− z0) , i Im ξ(λ)

)
Re p̃ (ξ(λ))

|λ− λ0|
k−1
k

is bounded in a neighborhood of λ0.
Besides,

Re (ξ(λ)− z0)k Im p̃ (ξ(λ)) = Re (ξ(λ)− z0)k Im ξ(λ) q̃
(

Re (ξ(λ)− z0) , Im ξ(λ)
)
,

where q̃ is a polynomial in two variables. Since the inequalities

|Re (ξ(λ)− z0)k | < |ξ(λ)− z0|k < C|λ− λ0|k/k = C|λ− λ0|

are valid for λ in a neighborhood of λ0, we have lim
λ→λ0

b2(λ) = 0 for the function

b2(λ) :=
Re (ξ(λ)− z0)k Im p̃ (ξ(λ))

Im ξ(λ)|λ− λ0|
k−1
k

=
Re (ξ(λ)− z0)k q̃

(
Re (ξ(λ)− z0) , Im ξ(λ)

)
|λ− λ0|

k−1
k

.

Hence, the function b1(λ) + b2(λ) =
Imλ

Im ξ(λ)|λ− λ0|
k−1
k

is bounded in a neighborhood of

λ0.

For all ξ±j ∈ Ξ we define the sets

Λ(ξ+
j ) =

{
λ0 ∈ Λ0 ∩ (C)+ : k

(
ξ+
j (λ0), λ0

)
> 1, ξ+

j (λ0) /∈ R
}
, j = 1, ..., 2n,

Λ(ξ−j ) =
{
λ0 ∈ Λ0 ∩ (C)+ : k

(
ξ−j (λ0),−λ0

)
> 1, ξ+

j (λ0) /∈ R
}
, j = 1, ..., 2n.

If 1 ≤ j ≤ n then θj = ξ+
j , therefore Λ(θj) = Λ(ξ+

j ). If n+1 ≤ j ≤ 2n, then θj = ξ−j−n, therefore
Λ(θj) = Λ(ξ−j−n).

Lemma 4.1. (a) Let ξ(λ) ∈ Ξ+
2 ∪ Ξ−2 , λ0 ∈ Λ+ \ Λ(ξ) and λ0 6= ∞. If θq(λ0) 6= ξ(λ0), the

function

2n∏
r=1
r 6=q

|θr(λ)− ξ(λ)|2

p′ (ξ(λ))
is bounded in a neighbourhood of λ0.
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(b) Let λ0 =∞ or λ0 ∈ Λ+ \ Λ(θq), λ0 6= 0. Then the function
Imλ

2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2 Im θq(λ)

is bounded in a neighbourhood of λ0.
(c) Let the polynomial p(t) be nonnegative. Let λ0 ∈ {0,∞} or λ0 ∈ Λ+ \

(
Λ(θq) ∪ Λ(ξ±j )

)
,

n+ 1 ≤ j ≤ 2n, 1 ≤ q ≤ 2n. Then the function B±jq(λ) is bounded in a neighbourhood of λ0.

Proof. We prove statement (a) for ξ ∈ Ξ+
2 , statement (b) for θq ∈ Ξ+

1 , statement (c) for a
function B+

jq. The remaining cases are considered analogously.

If λ0 ∈ Λ+ \ Λ(ξ+
j ), then either z0 := ξ+

j (λ0) is a simple root of the equation p(z)− λ0 = 0,
or z0 ∈ R and, consequently, λ0 ∈ R. Hence the following inequalities hold

1

2
(k(z0, λ0)− 1) ≤ ](Ξ+

1 [z0, λ0]) ≤ 1

2
(k(z0, λ0) + 1) . (4.9)

In the case k(z0, λ0) = 1 the inequalities are obvious, in the case z0 ∈ R they follow from
Lemma 1.5.

(a) Let ξ(λ) = ξ+
j (λ), n + 1 ≤ j ≤ 2n. By Lemma 1.1 the family of functions {ξ+

r (λ)}2n
r=1
r 6=q

contains exactly k
(
ξ+
j (λ0), λ0

)
−1 functions such that ξ+

r (λ0) = ξ+
j (λ0) =: z0. Since θq(λ0) 6= z0,

the family {θ+
r (λ)}nr=1

r 6=q
contains ](Ξ+

1 [ξ+
j (λ0), λ0]) functions such that θ+

r (λ0) = ξ+
j (λ0) = z0.

For all functions from Ξ taking the value z0 in λ0 inequality (4.5) holds true in a neighbour-
hood of λ0. Therefore, for λ in a neighbourhood of λ0 we have∣∣∣∣∣∣∣∣∣∣∣

2n∏
r=1
r 6=q

∣∣θr(λ)− ξ+
j (λ)

∣∣2
p′
(
ξ+
j (λ)

)
∣∣∣∣∣∣∣∣∣∣∣

=

2n∏
r=1
r 6=q

∣∣θr(λ)− ξ+
j (λ)

∣∣2
2n∏
r=1
r 6=j

∣∣ξ+
r (λ)− ξ+

j (λ)
∣∣ ≤

≤ C1
|λ− λ0|

2](Ξ+
1 [z0,λ0])

k(z0,λ0)

|λ− λ0|
k(z0,λ0)−1
k(z0,λ0)

= C1|λ− λ0|
2](Ξ+

1 [z0,λ0])−(k(z0,λ0)−1)

k(z0,λ0) ,

where C1 is some constant. Inequality (4.9) implies 2](Ξ+
1 [z0, λ0]) ≥ k(z0, λ0)− 1. This proves

the statement.
(b) In the case λ0 =∞ the conclusion follows easily from Propositions 4.2 (d) and 4.3 (a).

Let λ0 is finite and θq = ξ+
q ∈ Ξ+

1 . Denote z0 = θq(λ0). By Proposition 4.2 (b), θq(λ0) 6= θr(λ0)
for r = n + 1, ..., 2n, as in this case θr ∈ Ξ− and λ0 6= 0. There are exactly ](Ξ+

1 [z0, λ0]) − 1
functions with the property θr(λ0) = z0 = θq(λ0) among the functions {θr(λ)}nr=1

r 6=q
. Therefore,

for λ from a neighbourhood of λ0∣∣∣∣∣∣∣∣∣∣∣
Imλ

2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2 Im θq(λ)

∣∣∣∣∣∣∣∣∣∣∣
≤ C1

Imλ

|λ− λ0|
2(](Ξ+

1 [z0,λ0])−1)
k(z0,λ0) | Im θq(λ)|

=

= C1|λ− λ0|
k(z0,λ0)+1−2](Ξ+

1 [z0,λ0])

k(z0,λ0)
Imλ

|λ− λ0|
k(z0,λ0)−1
k(z0,λ0) | Im θq(λ)|

,
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where C1 is some constant. By inequality (4.9) k(z0, λ0) + 1 ≥ 2 ](Ξ+
1 [z0, λ0]). In the case

z0 = θq(λ0) ∈ R we obtain the statement (b) from this and from Proposition 4.3 (b). In the
case z0 /∈ R, k(z0, λ0) = 1, the statement (b) is evident.

(c) We deal with the functions B+
jq, n+ 1 ≤ j ≤ 2n.

If λ0 /∈ {0,∞} and θq(λ0) 6= ξ+
j (λ0), then the statement (c) follows from (a) and (b).

Consider the case θq(λ0) = ξ+
j (λ0) = z0, λ0 6=∞. Then the inequality

|ξ(λ)− ξ+
j (λ)|

|ξ(λ)− θq(λ)|
< C1

holds for all ξ(λ) ∈ Ξ \ {ξ+
j , θq} in some neighbourhood of λ0, where C1 is a constant. This

inequality follows immediately from Proposition 4.2 (a),(c). Therefore, we get

|B+
jq(λ)| =

2n∏
r=1
r 6=q

∣∣θr(λ)− ξ+
j (λ)

∣∣2
2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2
| Imλ|

2n∏
r=1
r 6=j

∣∣ξ+
r (λ)− ξ+

j (λ)
∣∣ |Im θq(λ)|

≤ C2
| Imλ|

|λ− λ0|
k(z0,λ0)−1
k(z0,λ0) |Im θq(λ)|

,

with a constant C2. As θq(λ0) = z0, Proposition 4.3 (b) implies that the function B+
jq is bounded

in a neighbourhood of λ0.
Consider the case λ0 = ∞. Then the following inequality holds with some constant C1 for

λ big enough

|B+
jq(λ)| ≤ C1

|λ− λ0|
2(2n−1)

2n

|λ− λ0|
2(2n−1)

2n

| Imλ|
|λ− λ0|

2n−1
2n |Im θq(λ)|

=

= C1
| Imλ|

|λ− λ0|
2n−1

2n |Im θq(λ)|
.

Now Proposition 4.3 proves the statement.
Consider the case λ0 = 0, θq(0) = z1 6= ξ+

j (0) = z0. Here we use the assumption that
the polynomial p(t) is nonnegative. From this assumption it follows that any real root t0 of
polynomial p(t) has an even multiplicity and, by Lemma 1.5 (a),

](Ξ+
1 [t0, 0]) = ](Ξ−1 [t0, 0]) =

1

2
k(t0, 0) . (4.10)

It is not difficult to verify that ](Θ[z2, 0]) = ](Ξ+
1 [z2, 0]) + ](Ξ−1 [z2, 0]) = k(z2, 0). Indeed,

if z2 ∈ R it follows from (4.10). If z2 /∈ R, for example z2 ∈ C+, this fact follows from the
equalities ](Ξ+

1 [z2, 0]) = k(z2, 0), ](Ξ−1 [z2, 0]) = 0. Thus, there exist exactly k(z1, 0)−1 functions
with the property θr(0) = θq(0) = z1 among the functions {θr(λ)}2n

r=1
r 6=q

. Since ξ+
j (0) = z0 6= θq(0),

the family {θr(λ)}2n
r=1
r 6=q

contains exactly k(z0, 0) functions such that θr(0) = ξ+
j (0) = z0. Hence,
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for λ sufficiently close to zero one has 2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2


−1

≤ C1|λ|
−

2(k(z1,0)−1)
k(z1,0) ,

2n∏
r=1
r 6=q

∣∣θr(λ)− ξ+
j (λ)

∣∣2 ≤ C1|λ|
2k(z0,0)
k(z0,0)

with some constant C1. Therefore

|B+
jq(λ)| =

2n∏
r=1
r 6=q

∣∣θr(λ)− ξ+
j (λ)

∣∣2
2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2
| Imλ|∣∣p′ (ξ+

j (λ)
)∣∣ |Im θq(λ)|

≤

≤ C2
|λ|

2k(z0,0)
k(z0,0)

|λ|
2(k(z1,0)−1)
k(z1,0)

| Imλ|

|λ|
k(z0,0)−1
k(z0,0) |Im θq(λ)|

=

= C2|λ|
1

k(z0,0)
+

1
k(z1,0)

| Imλ|

|λ|
k(z1,0)−1
k(z1,0) |Im θq(λ)|

,

where C2 is some constants.
Combining this inequality with Proposition 4.3 (b) one obtains the lemma.

Remark 4.3. If the polynomial p(t) changes sign, then some functions B±jq are not bounded in
any neighbourhood of zero.

Remark 4.4. The functionB±jq is not bounded in any neighbourhood of λ0 if λ0 ∈
(
Λ(ξ±j ) ∪ Λ(θq)

)
\

{0} .

Now we get integral estimations of form (0.2),(0.3) for some groups of summands from
(2.8),(2.9).

Let z1 be an arbitrary root of one of the polynomials p(z)− λ1, p(z) + λ1. For such λ1, z1

we put
Λδ(λ0, z1) := {λ : |ξ(λ)− z1| < δ ∀ξ(λ) ∈ Ξ[z1, λ0] } .

We take δ such that the following statements holds true. From λ0 6= λ1, λ1 6= 0, k(z0, λ0) > 1,
k(z1, λ1) ≥ 1, {z0, z1} ⊂ C \ R it follows that

Λδ(λ0, z0) ∩ Λδ(λ1, z1) = ∅, 0 /∈ Λδ(λ1, z1),

δ <
1

5
min

ξ∈Ξ\Ξ[z0,λ0]
|z0 − ξ(λ0)|, δ < 1

3
min

z0∈Z0\R
| Im z0| .

(4.11)

We can choose such δ, because the sets Z0, Λ0 are finite and the functions from the family Ξ
are continuous. Note that the set Λδ(λ0, z0) is a bounded neighbourhood of λ0.
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We put

Λδ(λ0) :=
⋂

z0 : Ξ[z0, λ0] 6= ∅
Λδ(λ0, z0) ,

Λ+
jq := Λ+ \

⋃
λ0∈Λ(ξ+

j )∪Λ(θq)\{0}

Λδ(λ0) , Λ−jq := Λ+ \
⋃

λ0∈Λ(ξ−j )∪Λ(θq)\{0}

Λδ(λ0) ,

for j = n+ 1, ..., 2n, q = 1, ..., 2n.
By

∫
λ∈U

g(λ) dµ we understand the integral of the function g(µ + iε) over the set of µ ∈ R

such that λ = µ + iε ∈ U , while ε is fixed. We denote the residue of a holomorphic function
g(z) in z0 by res

z=z0
g(z).

Lemma 4.2. For all ε > 0 and f ∈ L2(R) the following statements are valid.
(a) If the polynomial p(t) is nonnegative, then

ε

∫
λ∈Λ±jq

‖y±jq(x, λ)‖2
L2dµ ≤ m±jq‖f±(x)‖2

L2 .

(b) Let z0 ∈ Z0 \ R, k(z0,±λ0) > 1, λ0 6= 0, λ0 /∈ Λ(θq), 1 ≤ q ≤ 2n, Ξ±2 [z0, λ0] 6= ∅. Then

ε

∫
λ∈Λδ(λ0,z0)

∥∥∥∥∥∥∥
∑

ξ±j ∈Ξ±2 [z0,λ0]

y±jq(x, λ)

∥∥∥∥∥∥∥
2

L2

dµ ≤ m±q (λ0, z0)‖f±(x)‖2
L2 .

(c) Let z0 ∈ Z0\R, λ0 6= 0, λ0 /∈ Λ(ξ±j ), n+1 ≤ j ≤ 2n. Let k(z0, λ0) > 1 or k(z0,−λ0) > 1.
Then

ε

∫
λ∈Λδ(λ0,z0)

∥∥∥∥∥∥
∑

θq∈Θ[z0,λ0]

y±jq(x, λ)

∥∥∥∥∥∥
2

L2

dµ ≤ m±j (λ0, z0)‖f±(x)‖2
L2 .

(d) Let {z0, z1} ∈ Z0 \ R, λ0 6= 0, k(z0,±λ0) > 1, Ξ±2 [z0, λ0] 6= ∅. Let k(z1, λ0) > 1 or
k(z1,−λ0) > 1. Then

ε

∫
λ∈Λδ(λ0)

∥∥∥∥∥∥∥
∑

ξ±j ∈Ξ±2 [z0,λ0]

∑
θq∈Θ[z0,λ0]

y±jq(x, λ)

∥∥∥∥∥∥∥
2

L2

dµ ≤ m±(λ0, z0, z1)‖f±(x)‖2
L2 .

Here m±jq, m
±
q (λ0, z0), m±j (λ0, z0), m(λ0, z0, z1) are some constants independent of ε and f .

Proof. Let Λ+ = {λ ∈ C : εN < Imλ < εN+1} be one of the strips Λ0
+, Λ1

+, ..., Λ2n−1
+ . We prove

the statements for ε ∈ (εN , εN+1], 0 ≤ N ≤ 2n − 1. Then we combine estimations for all the
strips and obtain the proof of the lemma. It can be done because the number of strips is finite.
So we suppose henceforth that ε ∈ [εN , εN+1] and λ ∈ Λ+.

(a) We prove the statement for y+
jq, n + 1 ≤ j ≤ 2n. For y−jq, n + 1 ≤ j ≤ 2n the proof is

the same.
As Λ+

jq ⊂ {0,∞}∪
(
Λ+ \

(
Λ(ξ+

j ) ∩ Λ(θq)
))

and, by conditions of the lemma, the polynomial
p(t) is nonnegative, we conclude from Lemma 4.1 (c) that the function B+

jq(λ) is bounded in a
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neighbourhood of each point of the set Λ+
jq. Since the set Λ+

jq is compact in the topology of C,

the function B+
jq(λ) is bounded on Λ+

jq, max
λ∈Λ+

jq

B+
jq(λ) <∞. From this and from inequality 4.3 it

follows statement (a).

(b) Let z0 ∈ Z0 ∩ C−, k(z0, λ0) > 1, λ0 6= 0, λ0 /∈ Λ(θq). Then Ξ[z0, λ0] = Ξ+[z0, λ0] =
Ξ+

2 [z0, λ0] 6= ∅, Ξ−2 [z0, λ0] = ∅. The remaining cases may be considered similarly.
Let λ ∈ Λδ(λ0, z0). Consider the sum (see [12, I.I.25])

∑
ξ+
j ∈Ξ+

2 [z0,λ0]

ŷ+
jq(t) = −

∑
ξ+
j ∈Ξ+

2 [z0,λ0]

2n∏
r=1
r 6=q

(θr − ξ+
j )

2n∏
r=1
r 6=q

(θr − θq)

f̂+(ξ+
j )

p′(ξ+
j )

1

θq − t
=

= − 1
2n∏
r=1
r 6=q

(θr − θq)(θq − t)

∑
ξ+
j ∈Ξ+

2 [z0,λ0]

2n∏
r=1

(θr − ξ+
j )f̂+(ξ+

j )

p′(ξ+
j )(θq − ξ+

j )
=

= − 1
2n∏
r=1
r 6=q

(θr − θq)(θq − t)

∑
ξ+
j ∈Ξ+

2 [z0,λ0]

res
w=ξ+

j (λ)

2n∏
r=1

(θr − w)f̂+(w)

(p(w)− λ)(θq − w)
.

By virtue of (4.11), only points {ξ+
j (λ) : ξ+

j ∈ Ξ+
2 [z0, λ0]} may be singular points of the function

2n∏
r=1

(θr − w)f̂+(w)

(p(w)− λ)(θq − w)
in the domain {w : |w − z0| < 2δ} ⊂ C−. Therefore

∑
ξ+
j ∈Ξ+

2 [z0,λ0]

ŷ+
jq(t, λ) =

= − 1

2πi

1
2n∏
r=1
r 6=q

(θr(λ)− θq(λ))(θq(λ)− t)

∮
|w−z0|=2δ

2n∏
r=1

(θr(λ)− w)f̂+(w)

(p(w)− λ)(θq(λ)− w)
dw ,

here
∮

denotes integral taken over one cycle.
Let λ ∈ Λδ(λ0, z0) and |w0 − z0| = 2δ. Then, by virtue of (4.11), |ξ(λ) − w0| > 2δ for
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ξ /∈ Ξ[z0, λ0] and |ξ(λ)− w0| > δ for ξ ∈ Ξ[z0, λ0]. Therefore

C1 := max
λ∈Λδ(λ0,z0)
w:|w−z0|=2δ

2n∏
r=1

|θr(λ)− w|

|θq(λ)− w||p(w)− λ|
=

= max
λ∈Λδ(λ0,z0)
w:|w−z0|=2δ

2n∏
r=1

|θr(λ)− w|

|θq(λ)− w|
2n∏
r=1

|ξ+
r (λ)− w|

<∞ .

Moreover, since f̂+(w) ∈ H2(C−) and, by virtue of (4.11), w0 ∈ C−, Imw0 < −δ, we have

|f+(w0)| ≤ | Imw0|−1/2‖f̂+(w)‖H2 ≤ δ−1/2‖f+(x)‖L2 (see [8, vi. C]). Combining these estima-
tions, we get ∣∣∣∣∣∣∣∣

∮
|w−z0|=2δ

2n∏
r=1

(θr(λ)− w)f̂+(w)

(p(w)− λ)(θq(λ)− w)
dw

∣∣∣∣∣∣∣∣ ≤

≤
∮

|w−z0|=2δ

2n∏
r=1

|θr(λ)− w|

|p(w)− λ||θq(λ)− w|
δ−1/2‖f+(x)‖L2|dw| ≤

≤ δ−1/2‖f+(x)‖L2C1

∮
|w−z0|=2δ

|dw| = 4C1πδ
1/2‖f+(x)‖L2 .

Hence,

ε

∫
λ∈Λδ(λ0,z0)

∥∥∥∥∥∥∥
∑

ξ+
j ∈Ξ+

2 [z0,λ0]

y+
jq(x, λ)

∥∥∥∥∥∥∥
2

L2

dµ ≤

≤ ε

∫
λ∈Λδ(λ0,z0)

4δC2
1‖f+(x)‖2

L2

1
2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2

∥∥∥∥ 1

θq(λ)− t

∥∥∥∥2

L2

dµ ≤

≤ 4δC2
1‖f+(x)‖2

L2

∫
λ∈Λδ(λ0,z0)

Imλ
2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2 2| Im θq(λ)|
dµ .

According to (4.11) the sets Λδ(λ0, z0) and Λ(θq)∪{0} are disjoint, Λδ(λ0, z0)∩(Λ(θq) ∪ {0}) = ∅,

as λ0 6= 0 and λ0 /∈ Λ(θq). Then, by Lemma 4.1, the function
Imλ

2n∏
r=1
r 6=q

|θr(λ)− θq(λ)|2| Im θq(λ)|
is

bounded in a neighbourhood of each point of the set Λδ(λ0, z0)∩Λ+. Consequently, this function
is bounded on the set Λδ(λ0, z0) ∩ Λ+. This proves statement (b), since the set Λδ(λ0, z0) is
bounded.
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(c) Let z0 ∈ Z0 ∩ C+, k(z0, λ0) > 1, λ0 6= 0, λ0 /∈ Λ(ξ+
j ), n + 1 ≤ j ≤ 2n. Then

Ξ[z0, λ0] = Θ[z0, λ0] = Ξ+
1 [z0, λ0] 6= ∅, Ξ−1 [z0, λ0] = ∅. The remaining cases may be considered

similarly.
Let λ ∈ Λδ(λ0, z0). Consider the sum ∑

θq∈Θ[z0,λ0]

ŷ+
jq(t) =

= −

2n∏
r=1

(θr − ξ+
j )f̂+(ξ+

j )

p′(ξ+
j )

∑
θq∈Ξ+

1 [z0,λ0]

res
z=θq(λ)

1
2n∏
r=1

(θr − z)(z − ξ+
j )(z − t)

=

= − 1

2πi

2n∏
r=1

(θr(λ)− ξ+
j (λ))f̂+(ξ+

j (λ))

p′(ξ+
j (λ))

∮
|z−z0|=2δ

1
2n∏
r=1

(θr(λ)− z)(z − ξ+
j (λ))

1

z − t
dz . (4.12)

The last equality holds true, because only points {θq(λ) : θq ∈ Ξ+
1 [z0, λ0]} may be singular

points of the integrand function in the domain {z : |z − z0| < 2δ}.
By virtue of (4.11)

C1 := max
λ∈Λδ(λ0,z0)
z:|z−z0|=2δ

1
2n∏
r=1

|θr(λ)− z||z − ξ+
j (λ)|

<∞ .

Moreover, if |z − z0| = 2δ then, by virtue of (4.11), Im z > δ. Therefore∥∥∥∥∥∥∥∥
∮

|z−z0|=2δ

1
2n∏
r=1

(θr(λ)− z)(z − ξ+
j (λ))

1

z − t
dz

∥∥∥∥∥∥∥∥
L2

≤

≤
∮

|z−z0|=2δ

1
2n∏
r=1

|θr(λ)− z||z − ξ+
j (λ)|

∥∥∥∥ 1

z − t

∥∥∥∥
L2

|dz| ≤

≤ C1

∮
|z−z0|=2δ

1

2| Im z|1/2
|dz| ≤ 2πC1δ

1/2 . (4.13)

From λ0 /∈ Λ(ξ+
j ) it follows Λδ(λ0, z0)∩Λ(ξ+

j ) = ∅. Taking Lemma 4.1 (a) into account, one
has

C2 := sup
λ∈Λδ(λ0,z0)∩Λ+

2n∏
r=1

|θr(λ)− ξ+
j (λ)|2

|p′(ξ+
j (λ))|

<∞.

Furthermore, the set Λδ(λ0, z0) is bounded, hence C3 := sup
λ∈Λδ(λ0,z0)

ε = sup
λ∈Λδ(λ0,z0)

Imλ < ∞.
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Therefore, combining (4.12) and (4.13), one obtains

ε

∫
λ∈Λδ(λ0,z0)

∥∥∥∥∥∥
∑

θq∈Θ[z0,λ0]

y+
jq(x, λ)

∥∥∥∥∥∥
2

L2

dµ ≤

≤ C2
1C3δ

∫
λ∈Λδ(λ0,z0)

2n∏
r=1

∣∣θr(λ)− ξ+
j (λ)

∣∣2∣∣p′ (ξ+
j (λ)

)∣∣ ∣∣∣f̂+

(
ξ+
j (λ)

)∣∣∣2 ∣∣∣∣∣dξ+
j (µ+ iε)

dµ

∣∣∣∣∣ dµ ≤
≤ C2

1C2C3δ

∫
µ:λ∈Λδ(λ0,z0)

∣∣∣f̂+

(
ξ+
j (λ)

)∣∣∣2 ∣∣dξ+
j (µ+ iε)

∣∣ .
Applying Lemma 1.6, we finish the proof of the statement.

(d) Under the conditions of the lemma we have z0 6= z1. Indeed, λ0 6= 0 and, by Proposition
4.2 (b), {

z : Ξ±2 [z, λ0] 6= ∅
}
∩
{
z : Ξ∓1 [z, λ0] 6= ∅

}
= ∅.

If z /∈ R and Ξ±2 [z, λ0] 6= ∅, then Ξ±1 [z, λ0] = ∅, as values of the functions from Ξ±2 and Ξ±1
belong to different half-planes. Therefore{

z : Ξ±2 [z, λ0] 6= ∅
}
∩ {z : Θ[z, λ0] 6= ∅} = ∅.

Since z0 ∈ {z : Ξ±2 [z, λ0] 6= ∅} and z1 ∈ {z : Θ[z, λ0] 6= ∅}, we conclude that z0 6= z1.
Let z0 ∈ Z0 ∩ C−, z1 ∈ Z0 ∩ C+. The remaining cases may be considered similarly. Then

Ξ[z0, λ0] = Ξ+
2 [z0, λ0], Ξ[z1, λ0] = Ξ+

1 [z1, λ0].
Let λ ∈ Λδ(λ0), λ 6= λ0. Then λ ∈ Λδ(λ0, z0) ∩ Λδ(λ0, z1). Consider the sum∑

ξ+
j ∈Ξ+

2 [z0,λ0]

∑
θq∈Θ[z0,λ0]

ŷ+
jq(t) =

= −
∑

ξ+
j ∈Ξ+

2 [z0,λ0]

2n∏
r=1

(θr − ξ+
j )f̂+(ξ+

j )

p′(ξ+
j )

∑
θq∈Ξ+

1 [z0,λ0]

res
z=θq(λ)

1
2n∏
r=1

(θr − z)(z − ξ+
j )(z − t)

=

= − 1

2πi

∮
|z−z1|=2δ

1
2n∏
r=1

(θr − z)

1

z − t
∑

ξ+
j ∈Ξ+

2 [z0,λ0]

2n∏
r=1

(θr − ξ+
j )f̂+(ξ+

j )

p′(ξ+
j )(z − ξ+

j )
dz =

= − 1

2πi

∮
|z−z1|=2δ

1
2n∏
r=1

(θr − z)

1

z − t
∑

ξ+
j ∈Ξ+

2 [z0,λ0]

res
w=ξ+

j (λ)

2n∏
r=1

(θr − w)f̂+(w)

(p(w)− λ)(z − w)
dz =

=
1

4π2

∮
|z−z1|=2δ

1
2n∏
r=1

(θr(λ)− z)

1

z − t

∮
|w−z0|=2δ

2n∏
r=1

(θr(λ)− w)f̂+(w)

(p(w)− λ)(z − w)
dw dz .
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Here we use the fact that, by virtue of (4.11), the circles {z : |z−z1| = 2δ} and {z : |z−z0| = 2δ}
are disjoint, min

z:|z−z1|=2δ
w:|w−z0|=2δ

|z − w| > δ. Therefore, the function
1

z − w
is holomorphic in the circle

{w : |w − z0| ≤ 2δ}.
Arguing as in the proofs of (b) and (c), we conclude that λ ∈ Λδ(λ0) ∩ Λ+ implies∣∣∣∣∣∣∣∣

∮
|w−z0|=2δ

2n∏
r=1

(θr(λ)− w)f̂+(w)

(p(w)− λ)(z − w)
dw

∣∣∣∣∣∣∣∣ ≤ C4‖f+(x)‖L2

for z : |z − z1| = 2δ and ∮
|z−z1|=2δ

1
2n∏
r=1

|θr(λ)− z|

∥∥∥∥ 1

z − t

∥∥∥∥
L2

|dz| ≤ C5 ,

where C4, C5 are some constants. The combination of these estimates proves (d).

Let p(t) be a nonnegative polynomial. Combining the estimates from Lemma 4.2 we get

ε

∞∫
−∞

‖y+
0 (x, λ)‖2

L2dµ = ε

∞∫
−∞

‖(y+
0 χ+ − y+

0 χ−)(x, λ)‖2
L2dµ ≤ m+

0 ‖f+(x)‖2
L2 ,

ε

∞∫
−∞

‖y−0 (x, λ)‖2
L2dµ = ε

∞∫
−∞

‖(y−0 χ+ − y−0 χ−)(x, λ)‖2
L2dµ ≤ m−0 ‖f−(x)‖2

L2 .

for all ε > 0 and for all f ∈ L2(R), where m+
0 , m−0 are some constants.

Taking (4.1) and (4.2) into account, we get inequalities (0.2),(0.3) with some constants m+,
m∗+ independent of ε and f .

Thus, it follows from Theorem 0.2 that if the polynomial p(t) is nonnegative then the
operator A = Jp(D) is similar to a selfadjoint one. Remembering Theorem 3.1 we obtain
Theorem 0.1.

Corollary 4.1. The operator sgn(x− x0) p(D) is similar to a selfadjoint one if and only if the
polynomial p(t) is nonnegative.

Proof. Let Sx0 be a translation operator, (Sx0f)(x) = f(x− x0). Note that S−x0 = S−1
x0

= S∗x0
.

Then sgn(x− x0) p(D) = Sx0JS
−1
x0
p(D) = Sx0Jp(D)S−1

x0
. Hence the operators sgn(x− x0) p(D)

and sgn x p(D) are similar. Therefore, the corollary follows at once from Theorem 0.1.
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[3] Ćurgus B., Najman B. The operator (sgnx) d2

dx2 is similar to a selfadjoint operator in
L2(R)// Proc. Amer. Math. Soc.-1995.-123.-P.1125–1128.
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