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Let D be a bounded domain in Rn. Consider in D the quasilinear partial dirrefential
equation

Lu =
n∑

i=1

∂

∂xi

(
|∇u|p(x)−2 ∂u

∂xi

)
= 0 (1)

where p(x) is a measurable in D function and

1 < p1 ≤ p(x) ≤ p2 < ∞.

For strict definition of solution for equation (1) we introduce some classes of functions.
Let

V (D) =
{
ψ(x) : ψ ∈ W 1

1 (D) , |∇ψ|p ∈ L1 (D)
}

,

where by W 1
1 (D) denote the classical Sobolev space with the norm

‖ u ‖W 1
1 (D)=

∫

D

(|u|+ |∇u|) dx.

Under the class V0 (D) we shall understood the subset of V (D) such that for any
u ∈ V0 (D) exists a sequence of functions uj ∈ V (D) with compact supports in D
satisfying relations

lim
j→∞

‖uj − u‖W 1
1 (D) = 0, lim

j→∞

∫

D

|∇uj |p dx =
∫

D

|∇u|p dx. (2)
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A function u ∈ V (D) we shall call a solution of equation (1) if for every test function
ψ ∈ V0 (D) realized the integral identity

n∑

i=1

∫

D

|∇u|p(x)−2
uxi

ψxi
dx = 0.

The solution of class Vloc (D) may be define analogously.
The important question about density of smooth functions in V (D) was investigated

by Zhikov [1-4]. He proved that under assumption

|p(x)− p(y)| ≤ const

ln 1
|x−y|

, |x− y| ≤ 1/2. (3)

for any u ∈ V (D) exists a sequence uj ∈ C∞ (D) such that (2) holds.
The condition (3) is exact for this assertion. As showes the countrexample [3] the

previous is false for p(x) having the modulus of continuity |ln t|ε−1 for any ε ∈ (0, 1).
From countrexample [3] it follows that the solution of equation (1) may be not Hölder

continuous in D without condition (3). This result stimulated investigation of Hölder
continuity for solutions (1).

The next result was obtained by Xianling Fan [5] and author of present paper [6] by
different methods.

Theorem 1. If condition (3) satisfies then any solution u ∈ Vloc (D) of the equation
(1) is Hölder continuous in any compact subset of D.

The proof in [6] based on Trudinger’s weak Harnack inequality [7]. We shall formulate
it for supersolutions of equation (1): such functions u that Lu ≤ 0 in generalized sence.

Further will be make use of standard notation Bx0
r for open ball with radius r and

center x0, p0 = p(x0).
Theorem 2. (Weak Harnack inequality.) Let u ∈ V (Bx0

4r ) be a nonnegative bounded
supersolution of equaiton (1) in Bx0

4r and condition (3) satisfies. If p0 ≤ n and q > 0
such that q(n− p0) < n(p0 − 1) then for sufficiently small r ≤ r0(n, p)




∫

B
x0
2r

uq dx




1/q

≤ c(n, p, q, M)rn/q

(
inf
B

x0
r

u + r

)
,

where M = sup
B

x0
4r

u.

The weak Harnack inequality for supersolutions allowes to investigate a boundary
behavior of solutions of the Dirichlet problem. We shall return to this question just a
little later.

Now consider equation (1) with piecewise continuous function p(x).
Theorem 3. Let D1 and D2 are open subsets of D with common Lipschitz bound-

ary Σ and D = D1 ∪ D1. If condition (3) satisfies in every Di, i = 1, 2, and p(x)
have nonzero jump on Σ then any solution u ∈ Vloc (D) of the equation (1) is Hölder
continuous in any compact subset of D.

The piecewise constant exponents p(x) was investigated by Acerbi and Fusco [8].



Consider a question about the continuity at a boundary point x0 ∈ ∂D of solutions
of the equation (1). At first using the construction of Kondratiev and Landis [9] define
Wiener’s generalized solution of the problem

Luf = 0 in D, uf |∂D = f (4)

with continuous on the boundary ∂D function f .
The construction is based on the maximum principle and the solvability of the Dirich-

let problem
Lu = 0 in D, (u− h) ∈ V0 (D) , h ∈ V (D) . (5)

The function u ∈ V (D) satisfying the equation (1) in the sence of integral identity and
the boundary condition (u− h) ∈ V0 (D) is called the solution of the Dirichlet problem
(5). Unique solvability of this problem follows from the results of Zhikov [4]. The proof
based on the fact that integral identity is the Euler equation for the corresponding
variational problem.

Before to formulate a maximum principle we introduce the next notion. We shall say
that the function v ∈ V (D) is nonnegative in the sence of V (D) (notation: v ≥ 0) on
compact subset E ⊂ D, if for function u = inf(v, 0) exists a sequence uj ∈ V (D) such
that uj = 0 in a neghborhood of D ∩E and holds (2). If u, v ∈ V (D) and u− v ≥ 0 on
E in the sence of V (D) we shall say that u ≥ v on E in the sence of V (D).

Maximum principle. If u and v are two solutions belonging to V (D) of the equa-
tion (1) in D and u ≥ v on ∂D in the sence of V (D), then u ≥ v almost everywhere in
D.

For construction of the Wiener solution for the Dirichlet problem (4) we shall continue
the boundary function f on Rn continuously. Continued function as before denote by
f . By {fj} denote a sequence of infinitely differentiable functions such that restrictions
of {fj} on D converges uniformly to f in D. Let us solve the Dirichlet problem

Luj = 0 in D, (uj − fj) ∈ V0 (D) .

By maximum principle the sequence {uj} converges uniformly in compact subsets of
the domain D to some function uf . This function does not depend on the methods of
approximation and continuation of f and is called the Wiener solution of the Dirichlet
problem (4). It is not difficult to show that uf ∈ Vloc (D) satisfies equation (1). If
h ∈ V (D) ∩ C

(
D

)
then the Wiener solution uf ∈ Vloc (D) of the problem (4) with the

boundary function f = h|∂D coincides with the solution of the problem (5).
Definition 1. The boundary point x0 ∈ ∂D is called regular if for any continuous

on ∂D function f the Wiener solution uf of the problem (4) is continuous at x0.
The criterion of regularity of a boundary point for Laplace equation was proved by

Wiener [10]. This criterion is characterized by so call Wiener test. In the fundamental
work Littman, Stampacchia, and Weinberger [11] showed that the same Wiener test
identifies the regular boundary points whenever a uniformly elliptic linear operator with
bounded measurable coefficients. The sufficient condition of regularity of the boundary
point for p - Laplace equation (equation (1) with p = const) was estsblished by Maz’ya
[12]. He also received the estimate of modulus of continuity for solution near a regular
boundary point. Later Gariepy and Ziemer [13] extended this result to a very general
equation. For these equations some necessary condition of reqularity close to sufficient
one was proved by Skrypnik [13]. The criterion of regularity of a boundary point for p
- Laplace equation was obtained by Kilpeläinen and Malý [14].



Let us define a notion of Vp - capasity. Further we assume that p(x) = p(x0) = p0 in
Rn \D.

Definition 2. Let E be a compact subset of Br. The number

Cp (E, Br) = inf
∫

Br

|∇ψ|p(x)
dx,

where ψ runs through all ψ ∈ V0 (Rr) with ψ ≥ 1 on E in the sence of V (Rr) is called
Vp - capasity of the set E with respect to Br.

Put
γ

V
(t) = Cp

(
B̄x0

t \D,Bx0
2t

)
tp0−n.

Theorem 4. If condition (3) satisfies and p0 ≤ n then for regularity of a boundary
point x0 ∈ ∂D it is necessary and sufficiently to have

∫

0

[γ
V
(t)]1/(p0−1)

t−1 dt = ∞. (6)

Let us give the estimate of modulus of continuity for solution (5) near a boundary point
x0 ∈ ∂D.

Theorem 5. Let condition (3) satisfies and uf be the Wiener solution of the Dirichlet
problem (5). Then for ρ ≤ ρ0(n, p), r ≤ ρ/4

osc
D∩B

x0
r

uf ≤ c osc
D∩B

x0
ρ

f + c osc
∂D

f exp
(−θ

ρ∫

r

[γ
V
(t)]1/(p0−1)

t−1 dt
)
,

if p0 ≤ n, or
osc

D∩B
x0
r

uf ≤ c osc
D∩B

x0
ρ

f + c osc
∂D

f (r/ρ)1−n/p0 ,

if p0 > n. Here c and θ are positive constants dependent only on n,p and max
∂D

|f |.
Let us formulate a geometric conditions of regularity of a boundary point. We shall

assume that x0 ∈ ∂D is coincides with the origin O and the exterior of D in the
neighborhood of O contain the domain



0 < xn < a,

n−1∑

i=j+1

x2
i < g2(xn), |xi| < a, i = 1, ..., j



 ,

where g(t) is a continuous increasing function such that tα < g(t) < t.
Theorem 6. The condition (6) is satisfied if

∫

0

(
g(t)
t

)n−1−j−p0
p0−1

t−1 dt = ∞,



for p0 < n− 1− j, and if ∫

0

|ln g(t)|−1
t−1 dt = ∞,

for p0 = n− 1− j. In the case p0 > n− 1− j condition (6) is always satisfied.
Earlier the analogous result for p - Laplace equation was proved in [12].
Theorem 7. Let condition (3) satisfies and f be a Hölder continuous at x0 ∈ ∂D.

If the exterior of D contain a cone with the vertex at x0 then the generalized by Wiener
solution of the Dirichlet problem (5) is Hölder continuous at x0.

All results of the present paper are correct for equations

n∑

i,j=1

∂

∂xi

(
aij(x)|∇u|p(x)−2 ∂u

∂xj

)
= 0,

where aij(x) are measurable and bounded in D functions such that for x ∈ D, ξ ∈ Rn

λ−1 |ξ|2 ≤
n∑

i,j=1

aij(x)ξiξj ≤ λ |ξ|2 , λ = const > 0.
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