Ya. A. Roitberg, Z. G. Sheftel'. On approximation of a function on a manifold by solutions of elliptic boundary value problems // Nelinejnye granichnye zadachi (Nonlinear Boundary Value Problems). – 1989. – 1. – p. 86-90.

In a bounded *n*-dimensional domain G the following elliptic problem is considered: Lu = f, $B_j u|_{\partial G} = \varphi_j$ (j = 1, ..., m); boundary conditions are not assumed to be normal. For any solution u of this problem we set $v_r u = (u |_{\Gamma}, ..., D_v^{r-1} u|_{\Gamma})$; here $\Gamma \subset G$ is an open subset of (n - 1)-dimensional smooth manifold without edge; D_v is a normal derivative to Γ . Let us arbitrarily change the function f in an arbitrarily small fixed sub-domain G (or arbitrarily change $\{\varphi_j\}$ on an arbitrarily small piece of ∂G). The question is investigated on the possibility of approximation of any function $\varphi = (\varphi_1, ..., \varphi_r)$ defined on Γ by the vectors $v_r u$ obtained under such a change.