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I'-CONVERGENCE OF INTEGRAL FUNCTIONALS WITH DEGENERATE
INTEGRANDS IN PERIODICALLY PERFORATED DOMAINS

We consider a sequence of integral functionals with degenerate integrands in perforated domains of
periodic structure. We establish the I'-convergence of the sequence under consideration to an integral
functional defined on a limit weighted Sobolev space. A representation formula for the integrand of the
I’-limit functional is given.

1. Introduction. In this article we consider a sequence of integral functionals with
degenerate integrands in perforated domains of periodic structure. We establish the I'-
convergence of the sequence under consideration to an integral functional defined on a
limit weighted Sobolev space. At the same time a representation formula for the integrand
of the I'-limit functional is given.

We note that the I'-convergence of functionals plays an important part in the study of
convergence of solutions to variational problems (see for instance [1], [3], [5], [8], [15] and
[16]). In particular, the questions related to the investigation of convergence of minimizers
and minimum values of functionals defined on variable weighted Sobolev spaces were
studied in [10]-[13].

The I'-convergence of quadratic integral functionals having periodic quickly oscillating
coefficients and defined on a fixed weighted Sobolev space was proved in [2].

In the nonweighted case the I'-convergence of integral functionals associated with
different kinds of periodically perforated domains was established for instance in [6] and
[9]. Moreover, in the nonweighted case representation formulae for coefficients of the
homogenized problem corresponding to the Neumann variational problems for quadratic
integral functionals in periodically perforated domains were given in [4].

Finally, we emphasize that the integral functionals under consideration in the present
article combine the following three features: their domains of definition depend on a
parameter; their integrands, having a quickly oscillating component, depend on the same
parameter; the integrands have a fixed weighted multiplier.

2. Preliminaries. Let 2 be a bounded domain of R™ (n > 2), p € (1,n), and let v
be a nonnegative function on 2 with the properties: v > 0 almost everywhere in 2 and

L\ V@)
ve LL(Q), () € LL.(). (2.1)

v

We denote by LP(v, ) the set of all measurable functions u : € — R such that the
function v|ulP is summable in Q. LP(v, Q) is a Banach space with the norm

1/p
el = ( / u|u|pdx) .
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We note that by virtue of Young’s inequality and the second inclusion of (2.1) we have
LP(v,Q) C L (Q).

loc

We denote by W1P(v, Q) the set of all functions u € LP(v,Q) such that for every
i € {1,...,n} there exists the weak derivative D;u, Diu € LP(v,Q). WYP(1,Q) is a
reflexive Banach space with the norm

n 1/p
ll1p = (/ V|u]pdx+2/ V|Diu\pda:) .
Q = /0

Due to the first inclusion of (2.1) we have C§°(2) C WP (1, Q). We denote by I/?/l’p(y, Q)
the closure of the set C§°(2) in WP (v, Q).

Next, let {25} be a sequence of domains of R™ which are contained in €.

By analogy with the spaces introduced above we define the functional spaces corres-
ponding to the domains €2;.

Let s € N. We denote by LP(v, Q) the set of all measurable functions v : Qs — R
such that the function v|ulP is summable in Q. LP(v, ;) is a Banach space with the

norm
1/p
il sy = ( [ vl dw) .

By virtue of the second inclusion of (2.1) we have LP(v, Q) C L (). We denote by

loc

WP (v, Q) the set of all functions u € LP(v, Q) such that for every i € {1,...,n} there
exists the weak derivative D;ju, Dyu € LP(v, ). WLP(v, Q) is a Banach space with the

norm
n 1/p
uuul,p,y,sz</ V\u]pdx—i—Z/ V]Diu|pdx> .
Q, ~ Ja,

We denote by 56’0 () the set of all restrictions on €2 of functions from C§°(£2). Due to
the first inclusion of (2.1) we have C§°(Qs) C WHP(v, Q). We denote by Wol’p(l/, Q) the
closure of the set C§°(€2,) in WP (v, ).

We observe that if u € W!P(r,Q) and s € N, then u|q, € /vaol’p(u, Q).

DEFINITION 2.1. If s € N, g4 is the mapping from WP (v, Q) into Wol’p(l/, Q) such
that for every function u € WiP(v,Q), qsu = ulq..
DEFINITION 2.2. Let for every s € N, I be a functional on Wol’p(u, Qs), and let I be

a functional on WP (v, Q). We say that the sequence {I;} T-converges to the functional
1 if the following conditions are satisfied:

(i) for every function u € WHP(v, Q) there exists a sequence ws € Wol’p(u, 5) such
that lim [lws — gsulrr(r,0,) =0 and  lim Is(ws) = I(u);
S§—00 S§— 00

[e] —~
(ii) for every function u € W1P(rv,Q) and every sequence u; € Wol’p(u, 5) such that
lim |lus — gsul[zr@,0,) =0 we have liminf Is(us) > I(u).
S§— 00 S§— 00
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The given definition was introduced in [10], and the corresponding I'-compactness
theorem for integral functionals was established in [10] and [13].

Further, we shall use the following notation: for every i € {1,...,n}, € is the unit
vector of the i axis in R™; for every y € R” and p > 0, B(y,p) = {x € R" : |z —y| < p};
for every y € R" and t € N,

Qily) ={x eR" : |z; —yi| <1/(2t), 1 =1,...,n}.
For every i € {1,...,n} we set
Q" ={r€dQi(0):z; =-1/2}, Q) ={x € dQ(0): z; =1/2}.

Clearly, if i € {1,...,n} and x € Q", we have z + €' € Q',.

For every function v € C'(Q1(0)) we denote by v the unique continuous extension of

v on @Q1(0).
¥ Cper(Q1(0)) we denote the set of all functions v € C'(Q1(0)) such that for every
ie{l,....,n} and x € Q-, v(x +€') = v(x).

Next, we fix 7 € (0,1/2) and set II = @1(0) \ B(0,r). By Céer(l_[) we denote all
functions v € C'(II) such that v = wr, where w € C}.(Q1(0)). Finally, by WaZ(I1) we
denote the closure of the set CL.,(IT) in WP(II).

Let ¢é1, o >0, ¢ > 0, and let f :R™ x R™ — R be a Carathéodory function such that
the following conditions are satisfied:

for every £ € R™ the function f(, €) is 1-periodic; (2.2)

for almost every 2 € R” the function f(z,-) is convex in R"; (2.3)

for almost every z € R™ and every £ € R",

A~

alglf —e < fx,§) < &l +é. (2.4)

Let f : R™ — R be the function such that for every ¢ € R",

f(§) = inf / fx, €+ Vov)da.
(In Jm

1
vEWRE

From (2.4) it follows that for every £ € R™,

—cmeas Il < f(&) < (é2/€]P + ¢)meas]l. (2.5)

We also observe that owing to (2.3) the function f is convex in R™.
3. Statement of the main result. We shall assume that v € L'(Q). We define
b = ¢v and for every s € N we set 15 = b|q,. Moreover, we set

1
€= — e’.
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Now let for every s € N, fs : Qs x R® — R be the function such that for every
(z,€) € Qs x R™,

fs(x, &) =v(x)f(sz —¢€§).

Clearly, for every s € N and & € R” the function f,(-,£) is measurable in 5. Moreover,
owing to conditions (2.3) and (2.4) the following assertions hold true: for every s € N
and almost every x € Qg the function fs(z,-) is convex in R"; for every s € N, almost
every x € (s and every £ € R™ we have

e (@) [§)F — vs(x) < folw, ) < éav(a)[€]P + ¢s(2). (3.1)

Let for every s € N, J : Wol P(1,Q5) — R be the functional such that for every
u e Wy (v, Qy),

Js(u):/Q fs(z, Vu)dz.

We denote by F the set of all functions f : 2 x R™ — R satisfying the conditions: for
every & € R™ the function f(+, &) is measurable in §2; for almost every x € Q the function
f(x,-) is convex in R™; for almost every x € € and every £ € R™ we have

—b(z) < f(2,§) < éav()[¢) + b(x).
DEFINITION 3.1. If f € F, J/ - I/?/l’p(y, 2) — R is the functional such that for every
u€ Whr(v,Q),
J(u) = / f(z,Vu)dz.
Q

Let f:Q x R® — R be the function such that for every (y,£) € Q x R®,

F.©) =v(y) (9.

Observe that due to (2.5) and the convexity of the function f we have f € F.
In what follows we shall suppose that

Q={zeR":|z;|<1l,i=1,...,n}.

For every s € N we set Zs:{zEQ:szi—1/2€Z,i:1,...,n}. We have

vseN, |J Qiz) =09, (3.2)
2€7Z,
VseN,Vz, 2 €Zs, 2472, Qs(2)NQs(2) =0. (3.3)

We shall assume that the domains €25 have the following structure: for every s € N,

Qg =Q\ U B(z,r/s).

zEZS
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Theorem 3.2. Suppose that the function v is positive and continuous in €\ {0}.
Then the sequence {Js} T-converges to the functional J7.
4. Scheme of the proof of Theorem 3.2. Step 1. For every k£ € N we set

QF) = {z e R": |z;| <1—1/(2k),i=1,...,n}\ Qu(0).

Evidently, {Q(k)} is a sequence of nonempty open sets of R™, and the following assertions
hold true: for every k € N, Q*) ¢ Q1) < Q; meas(Q\ QF)) — 0; for every k € N the
functions v and b are bounded in Q).

These assertions along with the properties of the functions b, ¥s and fs provide the
fulfilment of all the conditions under which in [13] Theorem 2 on the I'-compactness of
a sequence of integral functionals was proved. Thus, some necessary constructions given
in the proof of this theorem may be utilized. These ones are as follows.

A.Foreveryt e Nweset Vi={yeR":ty; €Z, i=1,...,n}. Observe that

vieN, |J Q) =R

yeYy

VteN, Vy,y €Y, y#y., Quly)NQuy)=0.

For every t € N we define Y/ = {y € Y} : Q¢(y) C Q}. Obviously, there exists typ € N
such that for every ¢t € N, t > tg, the set Y/ is nonempty.
Let for every t e N, t > tg, s € Nand y € Y/,

Vis(y) = {u € Wol’p(l/, Q) : /

viulP dr < t_"_3p}.
Qt(¥)NQs

Now for every t € N, t > tg, s € N, y € Y/ and £ € R™ we set

Fis(y,§) =t" inf / fs(@, &+ Vu)da.
uth,s(y) Qt(y)ﬂQs

B. Let {5;} C N be an arbitrary increasing sequence. From (3.1) and the convexity
of the functions fs(x,) for almost every x € € it follows that there exist an increasing
sequence {s;} C {5;} and a sequence of functions ®; : R” x R” — R such that for every
teN, t >ty y€Y/ and £ € R" we have

jli_{go Frs;(y,€) = P4(y, 6). (3.4)

C. Let for every t € N and y €  such that Qi(y) C Q, x¢y : @ — R be the
characteristic function of the set Q:(y).

For every k, t e Nweset Y, ={y €Y : Qi(y) C QR

Let us give the following definition: if k, ¢ € N and Yy, # 0, Ht(k) is the function on
2 x R™ such that for every pair (z,£) € Q x R™,

HP(@,6) = 3 xey(@)®i(y, €);

YyEYL ¢
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if k, t € N and Yy, = 0, Ht(k) is the function on ©Q x R™ such that for every pair
(z,6) € Ax R, HP(z,£) = 0.
D. In accordance with the considerations given within steps 4-11 of the proof of

Theorem 2 in [13]| there exist an increasing sequence {t;} C N and a Carathéodory
function f: Q) x R™ — R such that f € F and the following assertions hold:

keEN, £€R", p € L™(Q) = lim HP (., &)pdr = (Opdz;  (3.5)
1—00 Jq(k) Q(k)
the sequence {J,;} I'-converges to the functional J 7 (3.6)

Now the aim is to prove that for almost every = € Q and every £ € R", f(x,§) = f(z,£).
Step 2. Taking into account the inclusions v € L'(Q2) and f € F, we establish that
there exists a set £ C ) with measure zero such that

for every z € Q\ E and £ € R", T”/Q ( )f(-,ﬁ)da: — f(z,¢). (3.7)

Step 3. We fix zp € Q\ (FU{0}) and ¢ € R™. Clearly, there exists 7o € N such that
0 ¢ Qr(20) and Q. (20) C Q. Then there exists k € N such that Q,,(z0) € Q*). Since
the function v is positive and continuous in Q \ {0}, there exists My > 0 such that

vee QW 1/M;, < v(z) < M. (3.8)
We fix € > 0. Due to the continuity of v in ©\ {0} there exists § > 0 such that

/

for every o/, 2" € QW) |2’ — 2"| <6, we have |v(2') — v(z")| < e. (3.9)

Let 7 € N, 7 > 79+ 1+ n/d. We fix t € N such that ¢ > max{tg, 27(7 — 1)} and

define X; ={y €Y : Qi(y) N Q-(20) # 0}. It is easy to see that X; # (.
Step 4. We fix y € X; and take a function w € Wp(II) such that

fe) = /H f(, € + Vw)de. (3.10)
The existence of such a function follows from (2.3), (2.4) and the known results on the

existence of minimizers of functionals (see for instance [14]).
Finally, we fix sg € N such that

2”351’M;€/ |w|P dr < 3P,
s

and after that fix s € N, s > max{so, 2t}.
Let wy : Q5 — R be a function such that

we(x) = s w(s(x — 2)) if z€ Z, and z € Qq(2)\ B(z,7/5s).
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Taking into account assertions (3.2) and (3.3) and the inclusion w € Wi(II), we establish
that ws € WHP(Qy). Then involving into consideration the function wsp;, where ¢; is a
function in C§°(12) such that ¢; =1 in Q¢(y), we obtain the inequality

Ft,s(%f) < tn/ fs(maf + sz)dl'. (3'11)
Q+(y)NQs

Using the definitions of the functions ws, fs and f along with (2.2), (2.4) and (3.8)—(3.11),
we get

Frs(y,6) = f(y,€) < 2'n(é2/er + D) (IF ()] + &) My(e + ts7"). (3.12)

Step 5. With the use of the definition of F; 4(y, &), properties of the function fs and
(3.8) we establish that there exists a function vs € C§°(25) such that vg = 0 in Qg \ Q+(y)
and

/Q o fs(@, &+ Vog)de < t7"F (y, €) + é3(1 + [¢[P) Mt (3.13)
t\Y MNE2s

where ¢3 is a positive constant depending only on n, p, ¢1, éo and ¢.

Step 6. By means of the function v, we construct a function belonging to CJ (II).
We need this in order to obtain a suitable estimate from below for the left-hand side of
inequality (3.13).

First, we observe that due to the inclusion vy € 6’8"(95) there exists a function
v € C1(R") such that suppv C Q and vs = v|q,.

We define Z! = {z € Zs : Qs(2) N Qy(y) # 0}. Owing to (3.2) the set Z/, is nonempty.
We denote by n/, the number of elements of the set Z.

For every z € Z! we define the function g5, : Il — R by gs.(z) = sv(s™'z + 2),
x € I, and after that we set

gs = % Z 9s,z-

s 2€Z!

With the use of considerations analogous to those given in the proof of Lemma 2.2.1 of
[7] we establish that g5 € CL.(II). Therefore, g5 € W& (IT). Then, taking into account

the definitions of the functions f and g, and (2.3), we get

~ ~ 1 “
f§) < / &+ Vga)de < — > / f(@, €+ Vgs.)dz. (3.14)
. s 2€7! =
Moreover, using (2.2), (2.4), (3.8) and (3.9), we obtain that for every z € Z/,
2)\B(z,r/s)

V(y)/l_[f(x7€+ v.gs,z)dx < SH/Q ( fs(ﬁ,f-f- Vvs)da:

+ 862Mks"/ V|€ + Vug|P do + eeME.  (3.15)
Qs(2)\B(z,r/s)
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From (3.13)-(3.15), taking into account (3.1), (3.8) and the definitions of f and
Fi s(y,€), we get the inequality

F(y.6) = Frs(y,€) < ea(L+ [€P)ME (e + 7" +ts71), (3.16)

where ¢4 is a positive constant depending only on n, p, ¢1, éo and ¢.
Step 7. From (2.5), (3.12) and (3.16) we deduce that

Foa(9.6) — F(0, ©)] < 51+ [€P) MR+ 4157,

where ¢5 is a positive constant depending only on n, p, ¢1, ¢o and ¢.
Hence, taking into account that s is an arbitrary natural number greater than or
equal to max{sp,2t} and using (3.4), we infer that for every y € Xy,

|Pu(y, &) — F(y, )] < &s(1+ €)M (e + 7). (3.17)

Step 8. Taking into account the definition of the function Ht(k) and the equality

> meas[Q-(20) N Qu(y)] =77, (3.18)

yGXt

we obtain that

‘ / (20) H® (-, &)dw — F(z0,6)7"

<Y 1Pu(y,€) = Fly, €)lmeas[Qr(20) N Qu(y)]

yeXy

+ > 1, = f(z0,&)|meas[Q- (z0) N Qu(y)]-

yeXy

Hence, taking into account (3.17), (3.18), (3.9), the inequality 7 > 1+ n/d and the
definition of the function f, we derive that for every t € N, ¢t > max{to,27(7 — 1)},

‘/ < )Hf’“)c,g)dx—f(zO,s)T" < (E5 4+ 1)(1+ [P + |F(€))ME(z + 7)™,

This and (3.5) imply that for every 7 € N, 7 > 79 + 1 + n/0,

Hence, using (3.7) and after that taking into account the arbitrariness of € > 0, we

obtain f(ZOa §) = f(ZOa g) _
Thus, for almost every x € Q and every £ € R™ we have f(z,£) = f(x,&). Therefore,
JI = J/. From this and (3.6) it follows that the sequence {Js;} T-converges to the

functional Jf.
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Step 9. The result obtained allows us to affirm that the following assertion holds true:

for every increasing sequence {55} C N there exists an increasing sequence {s;} C {5}

such that the sequence {Js,} I'-converges to the functional JI. Hence we deduce the
conclusion of the theorem.
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