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Γ-CONVERGENCE OF INTEGRAL FUNCTIONALSWITH DEGENERATE
INTEGRANDS IN PERIODICALLY PERFORATED DOMAINS

We consider a sequence of integral functionals with degenerate integrands in perforated domains of
periodic structure. We establish the Γ-convergence of the sequence under consideration to an integral
functional defined on a limit weighted Sobolev space. A representation formula for the integrand of the
Γ-limit functional is given.

1. Introduction. In this article we consider a sequence of integral functionals with
degenerate integrands in perforated domains of periodic structure. We establish the Γ-
convergence of the sequence under consideration to an integral functional defined on a
limit weighted Sobolev space. At the same time a representation formula for the integrand
of the Γ-limit functional is given.

We note that the Γ-convergence of functionals plays an important part in the study of
convergence of solutions to variational problems (see for instance [1], [3], [5], [8], [15] and
[16]). In particular, the questions related to the investigation of convergence of minimizers
and minimum values of functionals defined on variable weighted Sobolev spaces were
studied in [10]–[13].

The Γ-convergence of quadratic integral functionals having periodic quickly oscillating
coefficients and defined on a fixed weighted Sobolev space was proved in [2].

In the nonweighted case the Γ-convergence of integral functionals associated with
different kinds of periodically perforated domains was established for instance in [6] and
[9]. Moreover, in the nonweighted case representation formulae for coefficients of the
homogenized problem corresponding to the Neumann variational problems for quadratic
integral functionals in periodically perforated domains were given in [4].

Finally, we emphasize that the integral functionals under consideration in the present
article combine the following three features: their domains of definition depend on a
parameter; their integrands, having a quickly oscillating component, depend on the same
parameter; the integrands have a fixed weighted multiplier.

2. Preliminaries. Let Ω be a bounded domain of Rn (n > 2), p ∈ (1, n), and let ν
be a nonnegative function on Ω with the properties: ν > 0 almost everywhere in Ω and

ν ∈ L1
loc(Ω),

(
1
ν

)1/(p−1)

∈ L1
loc(Ω). (2.1)

We denote by Lp(ν, Ω) the set of all measurable functions u : Ω → R such that the
function ν|u|p is summable in Ω. Lp(ν, Ω) is a Banach space with the norm

‖u‖Lp(ν,Ω) =
(∫

Ω
ν|u|p dx

)1/p

.
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We note that by virtue of Young’s inequality and the second inclusion of (2.1) we have
Lp(ν,Ω) ⊂ L1

loc(Ω).
We denote by W 1,p(ν, Ω) the set of all functions u ∈ Lp(ν, Ω) such that for every

i ∈ {1, . . . , n} there exists the weak derivative Diu, Diu ∈ Lp(ν, Ω). W 1,p(ν, Ω) is a
reflexive Banach space with the norm

‖u‖1,p,ν =
(∫

Ω
ν|u|p dx +

n∑

i=1

∫

Ω
ν|Diu|p dx

)1/p

.

Due to the first inclusion of (2.1) we have C∞
0 (Ω) ⊂ W 1,p(ν, Ω). We denote by

◦
W 1,p(ν, Ω)

the closure of the set C∞
0 (Ω) in W 1,p(ν,Ω).

Next, let {Ωs} be a sequence of domains of Rn which are contained in Ω.
By analogy with the spaces introduced above we define the functional spaces corres-

ponding to the domains Ωs.
Let s ∈ N. We denote by Lp(ν,Ωs) the set of all measurable functions u : Ωs → R

such that the function ν|u|p is summable in Ωs. Lp(ν, Ωs) is a Banach space with the
norm

‖u‖Lp(ν,Ωs) =
(∫

Ωs

ν|u|p dx

)1/p

.

By virtue of the second inclusion of (2.1) we have Lp(ν,Ωs) ⊂ L1
loc(Ωs). We denote by

W 1,p(ν, Ωs) the set of all functions u ∈ Lp(ν,Ωs) such that for every i ∈ {1, . . . , n} there
exists the weak derivative Diu, Diu ∈ Lp(ν, Ωs). W 1,p(ν, Ωs) is a Banach space with the
norm

‖u‖1,p,ν,s =
(∫

Ωs

ν|u|p dx +
n∑

i=1

∫

Ωs

ν|Diu|p dx

)1/p

.

We denote by C̃∞
0 (Ωs) the set of all restrictions on Ωs of functions from C∞

0 (Ω). Due to
the first inclusion of (2.1) we have C̃∞

0 (Ωs) ⊂ W 1,p(ν, Ωs). We denote by W̃ 1,p
0 (ν,Ωs) the

closure of the set C̃∞
0 (Ωs) in W 1,p(ν, Ωs).

We observe that if u ∈
◦

W 1,p(ν, Ω) and s ∈ N, then u|Ωs ∈ W̃ 1,p
0 (ν, Ωs).

Definition 2.1. If s ∈ N, qs is the mapping from
◦

W 1,p(ν, Ω) into W̃ 1,p
0 (ν,Ωs) such

that for every function u ∈
◦

W 1,p(ν, Ω), qsu = u|Ωs .

Definition 2.2. Let for every s ∈ N, Is be a functional on W̃ 1,p
0 (ν,Ωs), and let I be

a functional on
◦

W 1,p(ν,Ω). We say that the sequence {Is} Γ-converges to the functional
I if the following conditions are satisfied:

(i) for every function u ∈
◦

W 1,p(ν, Ω) there exists a sequence ws ∈ W̃ 1,p
0 (ν,Ωs) such

that lim
s→∞ ‖ws − qsu‖Lp(ν,Ωs) = 0 and lim

s→∞ Is(ws) = I(u);

(ii) for every function u ∈
◦

W 1,p(ν, Ω) and every sequence us ∈ W̃ 1,p
0 (ν,Ωs) such that

lim
s→∞ ‖us − qsu‖Lp(ν,Ωs) = 0 we have lim inf

s→∞ Is(us) > I(u).
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Γ-convergence of integral functionals

The given definition was introduced in [10], and the corresponding Γ-compactness
theorem for integral functionals was established in [10] and [13].

Further, we shall use the following notation: for every i ∈ {1, . . . , n}, ei is the unit
vector of the ith axis in Rn; for every y ∈ Rn and ρ > 0, B(y, ρ) = {x ∈ Rn : |x−y| < ρ};
for every y ∈ Rn and t ∈ N,

Qt(y) = {x ∈ Rn : |xi − yi| < 1/(2t), i = 1, . . . , n}.

For every i ∈ {1, . . . , n} we set

Qi
− = {x ∈ ∂Q1(0) : xi = −1/2}, Qi

+ = {x ∈ ∂Q1(0) : xi = 1/2}.

Clearly, if i ∈ {1, . . . , n} and x ∈ Qi−, we have x + ei ∈ Qi
+.

For every function v ∈ C1(Q1(0)) we denote by v̄ the unique continuous extension of
v on Q1(0).

By C1
per(Q1(0)) we denote the set of all functions v ∈ C1(Q1(0)) such that for every

i ∈ {1, . . . , n} and x ∈ Qi−, v̄(x + ei) = v̄(x).
Next, we fix r ∈ (0, 1/2) and set Π = Q1(0) \ B(0, r). By C1

per(Π) we denote all
functions v ∈ C1(Π) such that v = w|Π, where w ∈ C1

per(Q1(0)). Finally, by W 1,p
per(Π) we

denote the closure of the set C1
per(Π) in W 1,p(Π).

Let ĉ1, ĉ2 > 0, ĉ > 0, and let f̂ : Rn×Rn → R be a Carathéodory function such that
the following conditions are satisfied:

for every ξ ∈ Rn the function f̂(·, ξ) is 1-periodic; (2.2)
for almost every x ∈ Rn the function f̂(x, ·) is convex in Rn; (2.3)
for almost every x ∈ Rn and every ξ ∈ Rn,

ĉ1|ξ|p − ĉ 6 f̂(x, ξ) 6 ĉ2|ξ|p + ĉ. (2.4)

Let f̃ : Rn → R be the function such that for every ξ ∈ Rn,

f̃(ξ) = inf
v∈W 1,p

per (Π)

∫

Π
f̂(x, ξ +∇v)dx.

From (2.4) it follows that for every ξ ∈ Rn,

−ĉmeasΠ 6 f̃(ξ) 6 (ĉ2|ξ|p + ĉ)measΠ. (2.5)

We also observe that owing to (2.3) the function f̃ is convex in Rn.
3. Statement of the main result. We shall assume that ν ∈ L1(Ω). We define

b = ĉν and for every s ∈ N we set ψs = b|Ωs . Moreover, we set

ē =
1
2

n∑

i=1

ei.
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Now let for every s ∈ N, fs : Ωs × Rn → R be the function such that for every
(x, ξ) ∈ Ωs × Rn,

fs(x, ξ) = ν(x)f̂(sx− ē, ξ).

Clearly, for every s ∈ N and ξ ∈ Rn the function fs(·, ξ) is measurable in Ωs. Moreover,
owing to conditions (2.3) and (2.4) the following assertions hold true: for every s ∈ N
and almost every x ∈ Ωs the function fs(x, ·) is convex in Rn; for every s ∈ N, almost
every x ∈ Ωs and every ξ ∈ Rn we have

ĉ1ν(x)|ξ|p − ψs(x) 6 fs(x, ξ) 6 ĉ2ν(x)|ξ|p + ψs(x). (3.1)

Let for every s ∈ N, Js : W̃ 1,p
0 (ν, Ωs) → R be the functional such that for every

u ∈ W̃ 1,p
0 (ν,Ωs),

Js(u) =
∫

Ωs

fs(x,∇u)dx.

We denote by F the set of all functions f : Ω×Rn → R satisfying the conditions: for
every ξ ∈ Rn the function f(·, ξ) is measurable in Ω; for almost every x ∈ Ω the function
f(x, ·) is convex in Rn; for almost every x ∈ Ω and every ξ ∈ Rn we have

−b(x) 6 f(x, ξ) 6 ĉ2ν(x)|ξ|p + b(x).

Definition 3.1. If f ∈ F , Jf :
◦

W 1,p(ν, Ω) → R is the functional such that for every

u ∈
◦

W 1,p(ν,Ω),

Jf (u) =
∫

Ω
f(x,∇u)dx.

Let f̄ : Ω× Rn → R be the function such that for every (y, ξ) ∈ Ω× Rn,

f̄(y, ξ) = ν(y)f̃(ξ).

Observe that due to (2.5) and the convexity of the function f̃ we have f̄ ∈ F .
In what follows we shall suppose that

Ω = {x ∈ Rn : |xi| < 1, i = 1, . . . , n}.

For every s ∈ N we set Z̃s = {z ∈ Ω : szi − 1/2 ∈ Z, i = 1, . . . , n}. We have

∀ s ∈ N,
⋃

z∈Z̃s

Qs(z) = Ω, (3.2)

∀ s ∈ N, ∀ z, z′ ∈ Z̃s, z 6= z′, Qs(z) ∩Qs(z′) = ∅. (3.3)

We shall assume that the domains Ωs have the following structure: for every s ∈ N,

Ωs = Ω \
⋃

z∈Z̃s

B(z, r/s).
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Γ-convergence of integral functionals

Theorem 3.2. Suppose that the function ν is positive and continuous in Ω \ {0}.
Then the sequence {Js} Γ-converges to the functional J f̄ .

4. Scheme of the proof of Theorem 3.2. Step 1. For every k ∈ N we set

Ω(k) = {x ∈ Rn : |xi| < 1− 1/(2k), i = 1, . . . , n} \Q2k(0).

Evidently, {Ω(k)} is a sequence of nonempty open sets of Rn, and the following assertions
hold true: for every k ∈ N, Ω(k) ⊂ Ω(k+1) ⊂ Ω; meas(Ω \ Ω(k)) → 0; for every k ∈ N the
functions ν and b are bounded in Ω(k).

These assertions along with the properties of the functions b, ψs and fs provide the
fulfilment of all the conditions under which in [13] Theorem 2 on the Γ-compactness of
a sequence of integral functionals was proved. Thus, some necessary constructions given
in the proof of this theorem may be utilized. These ones are as follows.

A. For every t ∈ N we set Yt = {y ∈ Rn : tyi ∈ Z, i = 1, . . . , n}. Observe that

∀ t ∈ N,
⋃

y∈Yt

Qt(y) = Rn;

∀ t ∈ N, ∀ y, y′ ∈ Yt, y 6= y′, Qt(y) ∩Qt(y′) = ∅.
For every t ∈ N we define Y ′

t = {y ∈ Yt : Qt(y) ⊂ Ω}. Obviously, there exists t0 ∈ N
such that for every t ∈ N, t > t0, the set Y ′

t is nonempty.
Let for every t ∈ N, t > t0, s ∈ N and y ∈ Y ′

t ,

Vt,s(y) =
{

u ∈ W̃ 1,p
0 (ν, Ωs) :

∫

Qt(y)∩Ωs

ν|u|p dx 6 t−n−3p
}

.

Now for every t ∈ N, t > t0, s ∈ N, y ∈ Y ′
t and ξ ∈ Rn we set

Ft,s(y, ξ) = tn inf
u∈Vt,s(y)

∫

Qt(y)∩Ωs

fs(x, ξ +∇u)dx.

B. Let {s̄k} ⊂ N be an arbitrary increasing sequence. From (3.1) and the convexity
of the functions fs(x, ·) for almost every x ∈ Ωs it follows that there exist an increasing
sequence {sj} ⊂ {s̄k} and a sequence of functions Φt : Rn ×Rn → R such that for every
t ∈ N, t > t0, y ∈ Y ′

t and ξ ∈ Rn we have

lim
j→∞

Ft,sj (y, ξ) = Φt(y, ξ). (3.4)

C. Let for every t ∈ N and y ∈ Ω such that Qt(y) ⊂ Ω, χt,y : Ω → R be the
characteristic function of the set Qt(y).

For every k, t ∈ N we set Yk,t = {y ∈ Yt : Qt(y) ⊂ Ω(k)}.
Let us give the following definition: if k, t ∈ N and Yk,t 6= ∅, H

(k)
t is the function on

Ω× Rn such that for every pair (x, ξ) ∈ Ω× Rn,

H
(k)
t (x, ξ) =

∑

y∈Yk,t

χt,y(x)Φt(y, ξ);
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if k, t ∈ N and Yk,t = ∅, H
(k)
t is the function on Ω × Rn such that for every pair

(x, ξ) ∈ Ω× Rn, H
(k)
t (x, ξ) = 0.

D. In accordance with the considerations given within steps 4–11 of the proof of
Theorem 2 in [13] there exist an increasing sequence {ti} ⊂ N and a Carathéodory
function f : Ω× Rn → R such that f ∈ F and the following assertions hold:

k ∈ N, ξ ∈Rn, ϕ ∈ L∞(Ω) ⇒ lim
i→∞

∫

Ω(k)

H
(k)
ti

(·, ξ)ϕ dx =
∫

Ω(k)

f(·, ξ)ϕdx; (3.5)

the sequence {Jsj} Γ-converges to the functional Jf . (3.6)

Now the aim is to prove that for almost every x ∈ Ω and every ξ ∈ Rn, f(x, ξ) = f̄(x, ξ).
Step 2. Taking into account the inclusions ν ∈ L1(Ω) and f ∈ F , we establish that

there exists a set E ⊂ Ω with measure zero such that

for every z ∈ Ω \E and ξ ∈ Rn, τn

∫

Qτ (z)
f(·, ξ)dx → f(z, ξ). (3.7)

Step 3. We fix z0 ∈ Ω \ (E ∪ {0}) and ξ ∈ Rn. Clearly, there exists τ0 ∈ N such that
0 /∈ Qτ0(z0) and Qτ0(z0) ⊂ Ω. Then there exists k ∈ N such that Qτ0(z0) ⊂ Ω(k). Since
the function ν is positive and continuous in Ω \ {0}, there exists Mk > 0 such that

∀x ∈ Ω(k), 1/Mk 6 ν(x) 6 Mk. (3.8)

We fix ε > 0. Due to the continuity of ν in Ω \ {0} there exists δ > 0 such that

for every x′, x′′ ∈ Ω(k), |x′ − x′′| 6 δ, we have |ν(x′)− ν(x′′)| 6 ε. (3.9)

Let τ ∈ N, τ > τ0 + 1 + n/δ. We fix t ∈ N such that t > max{t0, 2τ(τ − 1)} and
define Xt = {y ∈ Yt : Qt(y) ∩Qτ (z0) 6= ∅}. It is easy to see that Xt 6= ∅.

Step 4. We fix y ∈ Xt and take a function w ∈ W 1,p
per(Π) such that

f̃(ξ) =
∫

Π
f̂(x, ξ +∇w)dx. (3.10)

The existence of such a function follows from (2.3), (2.4) and the known results on the
existence of minimizers of functionals (see for instance [14]).

Finally, we fix s0 ∈ N such that

2ns−p
0 Mk

∫

Π
|w|p dx 6 t−n−3p,

and after that fix s ∈ N, s > max{s0, 2t}.
Let ws : Ωs → R be a function such that

ws(x) = s−1w(s(x− z)) if z ∈ Z̃s and x ∈ Qs(z) \B(z, r/s).
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Γ-convergence of integral functionals

Taking into account assertions (3.2) and (3.3) and the inclusion w ∈ W 1,p
per(Π), we establish

that ws ∈ W 1,p(Ωs). Then involving into consideration the function wsϕt, where ϕt is a
function in C∞

0 (Ω) such that ϕt = 1 in Qt(y), we obtain the inequality

Ft,s(y, ξ) 6 tn
∫

Qt(y)∩Ωs

fs(x, ξ +∇ws)dx. (3.11)

Using the definitions of the functions ws, fs and f̄ along with (2.2), (2.4) and (3.8)–(3.11),
we get

Ft,s(y, ξ)− f̄(y, ξ) 6 2nn(ĉ2/ĉ1 + 1)(|f̃(ξ)|+ ĉ)Mk(ε + ts−1). (3.12)

Step 5. With the use of the definition of Ft,s(y, ξ), properties of the function fs and
(3.8) we establish that there exists a function vs ∈ C̃∞

0 (Ωs) such that vs = 0 in Ωs \Qt(y)
and ∫

Qt(y)∩Ωs

fs(x, ξ +∇vs)dx 6 t−nFt,s(y, ξ) + ĉ3(1 + |ξ|p)Mkt
−n−1, (3.13)

where ĉ3 is a positive constant depending only on n, p, ĉ1, ĉ2 and ĉ.
Step 6. By means of the function vs we construct a function belonging to C1

per(Π).
We need this in order to obtain a suitable estimate from below for the left-hand side of
inequality (3.13).

First, we observe that due to the inclusion vs ∈ C̃∞
0 (Ωs) there exists a function

v ∈ C1(Rn) such that supp v ⊂ Ω and vs = v|Ωs .
We define Z̃ ′s = {z ∈ Z̃s : Qs(z)∩Qt(y) 6= ∅}. Owing to (3.2) the set Z̃ ′s is nonempty.

We denote by n′s the number of elements of the set Z̃ ′s.
For every z ∈ Z̃ ′s we define the function gs,z : Π → R by gs,z(x) = sv(s−1x + z),

x ∈ Π, and after that we set

gs =
1
n′s

∑

z∈Z̃′s

gs,z.

With the use of considerations analogous to those given in the proof of Lemma 2.2.1 of
[7] we establish that gs ∈ C1

per(Π). Therefore, gs ∈ W 1,p
per(Π). Then, taking into account

the definitions of the functions f̃ and gs and (2.3), we get

f̃(ξ) 6
∫

Π
f̂(x, ξ +∇gs)dx 6 1

n′s

∑

z∈Z̃′s

∫

Π
f̂(x, ξ +∇gs,z)dx. (3.14)

Moreover, using (2.2), (2.4), (3.8) and (3.9), we obtain that for every z ∈ Z̃ ′s,

ν(y)
∫

Π
f̂(x, ξ +∇gs,z)dx 6 sn

∫

Qs(z)\B(z,r/s)
fs(x, ξ +∇vs)dx

+ εĉ2Mks
n

∫

Qs(z)\B(z,r/s)
ν|ξ +∇vs|p dx + εĉM2

k . (3.15)
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From (3.13)–(3.15), taking into account (3.1), (3.8) and the definitions of f̄ and
Ft,s(y, ξ), we get the inequality

f̄(y, ξ)− Ft,s(y, ξ) 6 ĉ4(1 + |ξ|p)M2
k (ε + t−1 + ts−1), (3.16)

where ĉ4 is a positive constant depending only on n, p, ĉ1, ĉ2 and ĉ.
Step 7. From (2.5), (3.12) and (3.16) we deduce that

|Ft,s(y, ξ)− f̄(y, ξ)| 6 ĉ5(1 + |ξ|p)M2
k (ε + t−1 + ts−1),

where ĉ5 is a positive constant depending only on n, p, ĉ1, ĉ2 and ĉ.
Hence, taking into account that s is an arbitrary natural number greater than or

equal to max{s0, 2t} and using (3.4), we infer that for every y ∈ Xt,

|Φt(y, ξ)− f̄(y, ξ)| 6 ĉ5(1 + |ξ|p)M2
k (ε + t−1). (3.17)

Step 8. Taking into account the definition of the function H
(k)
t and the equality

∑

y∈Xt

meas[Qτ (z0) ∩Qt(y)] = τ−n, (3.18)

we obtain that
∣∣∣∣
∫

Qτ (z0)
H

(k)
t (·, ξ)dx− f̄(z0, ξ)τ−n

∣∣∣∣

6
∑

y∈Xt

|Φt(y, ξ)− f̄(y, ξ)|meas[Qτ (z0) ∩Qt(y)]

+
∑

y∈Xt

|f̄(y, ξ)− f̄(z0, ξ)|meas[Qτ (z0) ∩Qt(y)].

Hence, taking into account (3.17), (3.18), (3.9), the inequality τ > 1 + n/δ and the
definition of the function f̄ , we derive that for every t ∈ N, t > max{t0, 2τ(τ − 1)},

∣∣∣∣
∫

Qτ (z0)
H

(k)
t (·, ξ)dx− f̄(z0, ξ)τ−n

∣∣∣∣ 6 (ĉ5 + 1)(1 + |ξ|p + |f̃(ξ)|)M2
k (ε + t−1)τ−n.

This and (3.5) imply that for every τ ∈ N, τ > τ0 + 1 + n/δ,
∣∣∣∣τn

∫

Qτ (z0)
f(·, ξ)dx− f̄(z0, ξ)

∣∣∣∣ 6 (ĉ5 + 1)(1 + |ξ|p + |f̃(ξ)|)M2
kε.

Hence, using (3.7) and after that taking into account the arbitrariness of ε > 0, we
obtain f(z0, ξ) = f̄(z0, ξ).

Thus, for almost every x ∈ Ω and every ξ ∈ Rn we have f(x, ξ) = f̄(x, ξ). Therefore,
Jf = J f̄ . From this and (3.6) it follows that the sequence {Jsj} Γ-converges to the
functional J f̄ .
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Γ-convergence of integral functionals

Step 9. The result obtained allows us to affirm that the following assertion holds true:
for every increasing sequence {s̄k} ⊂ N there exists an increasing sequence {sj} ⊂ {s̄k}
such that the sequence {Jsj} Γ-converges to the functional J f̄ . Hence we deduce the
conclusion of the theorem.
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