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Abstract. In this work a general class of nonlinear abstract equations
satisfying a generalized strong mazxzimum principle is considered in order
to show that any bounded component of positive solutions bifurcating
from the curve of trivial states (A,u) = (X,0) at a nonlinear eigenvalue
A = )Xo must meet the curve of trivial states (A,0) at another singu-
lar value A1 # Ao. Since the unilateral theorems of P. H. Rabinowitz
[13, Theorems 1.27 and 1.40] are not true as originally stated (c.f. the
counterexample of E. N. Dancer [6]), in order to get our main result the
unilateral theorem of J. Lépez-Gémez [11, Theorem 6.4.3| is required.
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1. Introduction

Throughout this work U stands for an ordered real Banach space
whose positive cone, P, is normal and it has nonempty interior, and we
consider the nonlinear abstract equation

S\ u) = LN)u+ RN\ u)=0, (Nu) e X :=RxU, (1.1)
where

(HL) The family 8(\) := Iy — £(\) € L(U), A € R, is compact and
real analytic, and 2(5\) is a linear topological isomorphism for some
) € R, where I; stands for the identity map of U and L(U) is the
space of linear continuous endomorphisms of U.
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(HR) R € C(Rx U, U) is compact on bounded sets and lim,, W =0
uniformly on compact intervals of R.

(HP) The solutions of (1.1) satisfy the strong mazimum principle in the
sense that

(Mu) e Rx (P\{0}) and F(A\u)=0 imply u€IntP,
where Int P stands for the interior of the cone P.

Subsequently, given w1, ug € U, we write uy > ug if uy —ug € P\ {0}, and
uy > ug if ug — ug € Int P. Also, it will be said that (A, u) is a positive
solution of (1.1), if (\,u) is a solution of (1.1) with u > 0. Thanks to
Assumption (HP), any positive solution (A, u) of (1.1) must be strongly
positive, in the sense that u > 0.

Under Assumptions (HL) and (HR), §(A,0) = 0 for each A € R. The
main result of this paper concerns the bounded components of positive
solutions of (1.1) emanating from (A, u) = (A, 0) at a nonlinear eigenvalue
Ao € R with geometric multiplicity one. By a component of positive
solutions of (1.1) it is meant a maximal (for the inclusion) relatively
closed and connected subset of the set of positive solutions of (1.1) (in
R x Int P). A value o € R is said to be an eigenvalue of the family £(\)
if dim N[£(o)] > 1. The set of eigenvalues of £(\) will be denoted by &.
Thanks to (HL), £()\) is Fredholm of index zero for any A € R and, hence,
S provides us with the set of singular values of the family £(A). In other
words, £(\) is a linear topological isomorphism if A € R\ &. Moreover,
it follows from [11, Theorem 4.4.4] that & is discrete and that it consists
of algebraic eigenvalues of £, i.e., for any ¢ € & there exist C > 0,
e > 0 and v > 1 such that for any A € (60 —e,0 +¢) \ {0} the operator
£71(A) is well defined and |71 (V)| gy < ﬁ if0 < |A—o| <e.
Thus, thanks to the abstract spectral theory developed in [11, Chapter
4], the algebraic multiplicity x[£; ] : & — N introduced by J. Esquinas
and J. Lopez-Gémez in [8] and [7] is well defined. Actually, x[£; o] =1
if Ao € 6 is a simple eigenvalue of £(\) as discussed by M. G. Crandall
and P. H. Rabinowitz [4], i.e., if

dim N[€o) =1 and £;(N[Lo]) ® R[] =U, (1.2)

where £ = £(\o), £1 = F(No) = —L¥(\o), and, for any T € L(U),
N|[T] and R[T] stand for the null space and the range of 7. A value o € &
is said to be a nonlinear eigenvalue of £(\) if (o,0) is a bifurcation point
of (1.1) from (A, 0), A € R, for any R(\, u) satisfying (HR). According to
[11, Theorem 4.3.4], x[£; o] € 2N+1 if ¢ is a nonlinear eigenvalue of £()\),
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and, thanks to [11, Theorem 6.6.2], for any 0 € & there is n € {—1,1}
such that

Ind (0, 8(\)) = nsign(A —o)X59 | X~o, Ao,

where Ind (0, &())) is the local index of R(A) at zero (the topological de-
gree of £(\) in any open bounded set containing zero). Thus, Ind (0, R()))
changes as A crosses o if, and only if, x[£;0] € 2N + 1. Consequently,
thanks to [11, Theorem 6.2.1], 0 € & is a nonlinear eigenvalue of £(\) if
x[£;0] € 2N + 1, and, therefore, o € & is a nonlinear eigenvalue of £(\)
if, and only if, x[£;0] € 2N + 1. The main result of this paper can be
stated as follows.

Theorem 1.1. Suppose A9 € G is a nonlinear eigenvalue of £(\) such
that

N[£(Ao)] = span [po] , ¢o € P\ {0}, (1.3)

and R(\g) is strongly positive, i.e.,
K(Ao)(P\{0}) CInt P. (1.4)

Then, there exists a component Cfo of the set of positive solutions of
§(A,u) = 0 emanating from (A, u) = (A,0) at A = Ag. Moreover, there
exists A\; € &\ {Ao} such that (A;,0) € QJ;O if Qﬁfo is bounded in X :=
RxU.

Note that, thanks to (HL) and (1.4),
R(Ao)po =0 > 0. (1.5)

Thus, the existence of @P follows by adapting some of the unilateral
results of P. H. Rablnovvltz [13]; in Section 2 complete details will be
provided.

The distribution of this paper is as follows. In Section 2 we show
the existence of Qfo, in Section 3 we complete the proof of Theorem 1.1,
and in Section 4 we derive from Theorem 1.1 a celebrated unilateral the-
orem attributable to E. N. Dancer [5]. Finally, in Section 5 we give an
application of Theorem 1.1, and in Section 6 we construct an example
showing the necessity of condition x[£;Ag] € 2N + 1 for the validity of
Theorem 1.1. Throughout the remaining of this paper it will be assumed
that A\g € G satisfies all the requirements of Theorem 1.1.
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2. Unilateral Bifurcation. The Existence of ¢}

The set of non-trivial solutions of (1.1) is defined through
S=F 0\ [(R\ &) x {0}] .

Note that (A\,u) € S if either u # 0, or else u = 0 and A € &. Since
X[£€; Mo] € 2N+1, thanks to [11, Corollary 6.3.2| there exists a component
of §, subsequently denoted by €,,, such that (Ag,0) € €y,. Subsequently,
we suppose that ¢g has been normalized so that

N[£(Ao)] = span [po] , lpoll =1, o >0. (2.1)

Thanks to (1.5), ¢g > 0. Now, let Y be a closed subspace of U such
that U = N[£(X\o)] ®Y . Thanks to Hahn-Banach’s theorem, there exists
@y € U’ such that

V={uel: (ppu) =0},  (p0,%0) =1,

where (-,-) stands for the duality between U and U’. Now, for each
n € (0,1) and sufficiently small £ > 0 we set

Qe i={(Au) e X = |A= Xl <&, Ko, w) >nllull'}

Since the mapping u — [(pg, )| — 1 |Ju|| is continuous, Q. , is an open
subset of X consisting of the two disjoint components Q;n and Q; "
defined though

Oy ={(\u) €X  [A=o| <e, (¢5u)>nlull},

O, ={(Nu) e X : |A=Xo|l <e, (pp,u) <—nllul}.
The following result collects the main consequences from [11, Theorem
6.2.1, Proposition 6.4.2|, which are consequences from the reflection ar-

gument of P. H. Rabinowitz [13]. Subsequently, we denote by Br(z) the
open ball of radius R > 0 centered at x € X.

(2.2)

Theorem 2.1. For each sufficiently small § > 0,

Q:)\o N Bg(/\o,()) C Qs,n U {()\0, 0)}

and each of the sets S\ [Qz, N Bs(Xo,0)] and S\ [QF, N Bs5(Xo,0)]
contains a component, denoted by Qf;\“o and (‘l)_\o, respectively, such that
(Xo,0) € Ql;\ro N, and

€y, N Bs(Xo,0) = (ejo U o:;o) N Bs(Xo,0). (2.3)

Moreover, for each (A, u) € (€x, \ {(X0,0)}) N Bs(Ao,0), there exists a
unique pair (s,y) € R x Y such that u = sy + y and [s| > n||u].
Furthermore, A = Ao + o(1) and y = o(s) as s — 0.
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It should be noted that if (A, u) € (’ZIO N Bs(Ao,0), u # 0, then u =
spo +y with s > n|ul| > 0, and, hence, ¥ = ¢o + . Thus, since
lims_.o < = 0, for sufficiently small s > 0, ¥ € Int P and, consequently,
u € Int P. Therefore, for any sufficiently small § > 0, we have that

G\ {(AO,O)}} A Bs(Ao,0) C R x Int P. (2.4)

This shows the existence of the component Cfﬂ of R x Int P containing
(X0,0) (cf. the statement of Theorem1.1). Actually, (’lfo is the maximal
sub-continuum of C‘;O in R x Int P.

The following result, which is [11, Theorem 6.4.3], provides us with
an updated version of the unilateral theorem of P.H. Rabinowitz |13,
Theorem 1.27|, which is not true as originally stated (cf. E. N. Dancer

[6])-

Theorem 2.2. For each * € {—,+}, the component €5 satisfies some
of the following alternatives:

1. &, is unbounded in X.
2. There exists A\; € &\ {Ao} such that (A1,0) € €5 .
3. &, contains a point (A,y) € R x (Y"\ {0}).

Thanks to (HL), (1.4) and (1.5), the theorem of M. G. Krein and M.
A. Rutman [10] (cf. H. Amann [1, Theorem 3.2|) as well), shows the
validity of the following result, which is needed to conclude the proof of
Theorem 1.1.

Theorem 2.3. Let Spr(£()\g)) denote the spectral radius of £(\p).
Then,

(a) Spr(R(Ag)) = 1is an algebraically simple eigenvalue of R(\g) and,
hence,
N[go] = N[£]] = span i) . (2.5)

Thus, 0 is an algebraically simple eigenvalue of £g, i.e.,
U= N[L] D R[Lo]. (2.6)

Moreover, no other eigenvalue of £()\¢) admits a positive eigenvec-
tor.

(b) For every y € Int P, the equation u — £(\g)u = y cannot admit a
positive solution.
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Proof. As Spr (8(\o)) is the unique eigenvalue of (o) associated with it
there is a positive eigenvector, and 1 is an eigenvalue to the eigenfunction
©p, we have that Spr (R(\g)) = 1. Moreover, 1 is algebraically simple,
i.e.,

NIy — &(20)] = N[(Iy — (X))’

and, hence, due to (HL), (2.5) holds. Now, since £g is Fredholm of index
zero, to prove (2.6) it suffices to show that g & R[£p]. On the contrary,
suppose that ¢g € R[£]. Then, there exists u € U \ N[£o] such that
£ou = o, and, hence, £3u = Lopp = 0. Thus, u € N[£3] \ N[£o], which
contradicts (2.5) and concludes the proof of (2.6). This completes the
proof of Part (a). Part (b) is an straightforward consequence from H.
Amann [1, Theorem 3.2]. O

As a consequence from (2.6) we can make the choice
Y = Rig) (2.7)

which will be maintained throughout the remaining of the proof of The-
orem1.1.

3. Completion of the Proof of Theorem 1.1

Assume Qfo is bounded. Since Cfo C €+0, some of the following
alternatives occurs. Either

el =¢L \{(%,0)}, (3.1)

or else
Qfo is a proper subset of Qﬁ;fo \ {(X0,0)}. (3.2)

Suppose (3.1). Then, @fo = Q;\FO satisfies some of the alternatives of
Theorem 2.2. Alternative 1 cannot be satisfied, since @fo is compact.
Suppose Alternative 3 occurs. Then, thanks to the choice (2.7), there
exists (A, y) € R x R[£o], y # 0, such that (\,y) € @fo C R x P. Since
y # 0, necessarily y € Int P, by (HP). Thus, there exists u € U such that

Lou=u—KN)u=1y.

Since g € Int P, for each sufficiently large o« > 0 we have that u, :=
u + apg > 0. Moreover,

Ue — JZ€(>\0)Uoz =Y,
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because R(Ag)po = o, which contradicts Theorem 2.3(b). Therefore,
Alternative 2 of Theorem 2.2 must be satisfied. This concludes the proof
of Theorem 1.1 in case (3.1).

Now, suppose (3.2). Then, since C;\FO N Bs(Ao,0) = [Qﬁfo N Bs(Ao,0)] U
{(X0,0)} for each sufficiently small 6 > 0, fixing one of these d’s, there
exists (A1,u) € Bs(Ao,0) such that

(A1, u) € €5 N (R x IP)NIELY, .

Let {(n, un)}n>1 be any subsequence of (’Sfo such that limy,—co (tn, upn) =
(A1,u). Then,
FA,u) =0 and uecP.

If w > 0, then, thanks to (HP), u € Int P, which contradicts u € 9P.
Thus, v = 0, and, hence, (A\,0) € éfo. Moreover, A1 # Ag, since
(A1,u) = (A1,0) € Bs(Mo,0), which concludes the proof of Theorem 1.1.
Note that, thanks to [11, Lemma 6.1.2], \; € &, since these are the
unique possible bifurcation values from (A, 0) for (1.1).

4. Improving Dancer’s Unilateral Theorem

As an immediate consequence from Theorem 1.1, the following uni-
lateral result holds.

Theorem 4.1. Suppose A\g € S is a nonlinear eigenvalue of £(\) satis-
fying (1.3) and (1.4), and, in addition, no other 0 € & \ {\¢} admits an
eigenfunction in P\ {0}. Then, the component Qifo is unbounded in X.

Proof. On the contrary, suppose that €§0 is bounded. Then, thanks
to Theorem 1.1, there exists A\; € &\ {A\og} such that (A1,0) € @f\jo. Let
{(ttn, un)}n>1 be any sequence of Qifo such that limy, oo (fn, un) = (A1,0)
and set v, := HZ_Z,II’ n > 1. Then,

m(:uTU u’fl)

) nZl,
[

U = R(n) vy —

and, hence, by (HL) and (HR), there exists a subsequence of {v,}n>1,
again labeled by n, such that lim,,_.o, v, = ¥. Necessarily 1) > 0. More-
over, passing to the limit as n — oo gives ¥ = K(\1)v, or, equivalently,
£(A1)1 = 0, which is impossible, since we are assuming that A\ is the
unique element of & to a positive eigenvector. This contradiction shows
that Qlfo is unbounded and concludes the proof. O
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In the special case when K(\) = AK, A € R, for some linear strongly
positive compact operator K € L(U), necessarily \g := Spﬁ is the
unique element of & associated with it there is a positive eigenvector, and,
therefore, thanks to Theorem 4.1, Qfo must be unbounded. Consequently,
Theorem 4.1 is a substantial improvement of [11, Theorem 6.5.5], which
is a well known result attributable to E. N. Dancer [5].

5. An Application of Theorem 1.1

In this section we consider the semi-linear weighted boundary value
problem

{Eu:AWWM—amwrﬁlﬁa (5.1)

u=0 on 0N,

where Q is a bounded domain of R with boundary 9% of class C?>*" for
some v € (0,1), 7 € (1,00), A € Ris regarded as a bifurcation parameter,
FE is a second order uniformly elliptic operator of the form

N 82 N 9
FE = Z Oéljm‘FZOéla—xl‘i‘ao

ij=1 i=1
with a5 = ay; € C*(Q), aj, ap €C¥(Q), 1 <i,5 < N, and

(Ha) a € C¥(Q2) and, setting
at := max{a, 0}, a” =a" —a,
Qng = Q \ suppat, Qg_ :=Q \ suppa,

Qg+ and Qg_ are two proper open subsets of Q of class C>** with
a finite number of well separated components. Moreover, either
N € {1,2}, or else N > 3 and for some constant v > 0 the following
is satisfied

[dist (-, 0Q0_)]"a” €C (suppa~, (0,00)),

{N+2_N+1+7}
r < max .

N-2" N-1
(Hw) W € C¥(Q) changes of sign in Q, and

maxo[E — AW;Q] >0, (5.2)
AER
where, for any elliptic operator L in a bounded domain D, o[L; D]
stands for the principal eigenvalue of L in D under homogeneous
Dirichlet boundary conditions.
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Thanks to (5.2), for each D € {Qg+,Q} the weighted boundary value
problem
{ Ep=\Wyp in D, (5.3)

p=0 on 0D,

possesses two principal eigenvalues, )\{3 < )\QD . By a principal eigenvalue
of (5.3) it is meant a value of A for which (5.3) possesses an eigenfunction
¢ > 0. It should be noted that, necessarily, o[E — )\jD W; D] = 0 for each
(D,j) € {Qg+,ﬂ} x {1,2}. Moreover, by the monotonicity of ol-; D]

0 0

with respect to D, )\?” < )\? < )\g < )\;2”, and, thanks to a celebrated
result by P. Hess and T. Kato [9], setting X(\) := o[E — AW;Q], X € R,
one has that ¥'(A\{) > 0 and ¥'(\$) < 0, where ' = dif\. Set Ao := A{
and denote by ¢ the principal eigenfunction associated to (o) = 0,
normalized so that ||¢g|| = 1. Then, since X(\) is a simple eigenvalue,
there is an analytic mapping A +— @(\) € C27 () such that ©(A\g) = @o
and

(B = AW)p(A) = Z(A)p(A).
Now, differentiating with respect to A and particularizing at A = Ag gives
(B = XW)¢'(Ao) = Weo + ' (o) o
and, hence, X'(A\g) = —(¢§, Weo), where N[E* — AW = span[pfj] with
(ph, w0) = 1. Therefore, since ¥'(X\g) > 0, we find that
Weo & RIE — MNW]. (5.4)

Now, suppose u is a positive solution of (5.1). Then, u|aQo+ > (0 and

(E—-—XMW)u=—au"=a u" >0 in Q7.

Thus, thanks to characterization of the maximum principle of J. Lépez-
Goémez and M. Molina-Meyer [12], it is apparent that o[E—AW; Qg+] > 0,

Qo 0o

and, therefore, A € (A;“",A\,*"), by the strict concavity of A — X()).
Thus, by the a priori bounds found by S. Cano-Casanova [2], there exists
a constant C' > 0 such that for any positive solution (A, uy) of (5.1),
[urllev@@) < C. Now, let M > 0 be sufficiently large so that o[E +
M;Q] > 0 and AW (z) + M > 0 for each z € Q. By elliptic regularity,
the positive solutions of (5.1) are given by the zeroes in U := C§(Q2) of
the equation

SN+ R\ u) =0, (5.5)

where, for each (A\,u) € R x U, we have denoted

LNu=u— (E+ M) HOW + M)y,
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and
R\, w) = (E+ M) (au").

It should be noted that the inverse operator (E + M)~ € £L(U) is com-
pact, by elliptic regularity and Ascoli-Arzela’s theorem, and strongly or-
der preserving, by the strong maximum principle; the space U being
ordered by the cone of point-wise non-negative functions. Thus, (5.5) fits
into the abstract setting of Section 1 with

AN u = (B + M)W + M), ueU.

By the choice of M, &(\g) is strongly positive. Moreover, setting

dg
20 = S()\o) s 21 :

= (o) = —(B+ M)"H (W),

one has that N[£y] = span[yg] and £1¢ € R[Lo]. Indeed, if
Lou = —(E + M)~ (W)
for some uw € U, then
u— (E+ M) (AW + M)u] = —(E + M)~ (W)

and, by elliptic regularity, u € Cg"(Q). Thus, (E — AW)u = —Wy,
which contradicts (5.4). Hence, the transversality condition of
M. G. Crandall and P. H. Rabinowitz [4] is satisfied and, consequently,
x[€; Xo] = 1. Therefore, since A{ and A are the unique values of A where
positive solutions of (5.1) can bifurcate from (A,0), as an immediate con-
sequence from Theorem 1.1 the following result is obtained.

Theorem 5.1. There is a bounded component of the set of positive
solutions of (5.1), say €F such that (A\$,0), (\,0) € €. Moreover,

b0 a0, -
PrCh C (A7, A7), where P stands for the A-projection operator.

It should be noted that, thanks to Theorem 4.1 and Theorem 5.1, (5.1)
cannot admit an abstract representation as a fixed point equation of the
form (1.1) with R(\) = AK for some fixed compact strongly positive
operator K, and, consequently, even if the unilateral results of P. H.
Rabinowitz [13] would be correct as originally stated, Theorem 5.1 could
not be a consequence from them.
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6. Three Different Types of Bounded Components

Under the assumptions of Theorem 1.1, £(A) must possess two dif-
ferent eigenvalues A € &, at least A\p and )\, associated with each the
operator has a positive eigenfunction. This is far from being true if, in-
stead of assuming that Ag is a nonlinear eigenvalue, one assumes that
X[£€; Mo] € 2N, since, in this case, the component QI;O might emanate
from the curve (A, 0) exclusively at \g. Therefore, the oddity of the mul-
tiplicity is crucial for the validity of Theorem 1.1. Actually, there are
boundary value problems of the form (5.1) that possess bounded com-
ponents exhibiting each of these behaviors. For example, consider the
one-dimensional prototype model in = (0,1)

o — : _ 2
{ u” + pu = Asin(2rz)u — a(z)u”, (6.1)

u(0) =u(1) =0,
where

—0.2sin (§5(02—x)) if 0<2<0.2,
a(z) = sin (g (z —0.2)) if 0.2<2<0.8, (6.2)
—0.2sin (§5(z — 0.8))  if 0.8 <z <1,

and (A, ;) € R? are regarded as two real parameters. Note that a > 0 in
(0.2,0.8), a < 01in (0,0.2)U(0.8,1), and a(0) = a(0.2) = a(0.8) = a(1) =
0. For an adequate choice of the parameter p, this problem fits into the
abstract setting of Section 5 by choosing F,, := —% +u, W:=sin(27-)
and r = 2. Indeed, since N =1, 2%, = (0,0.2) U (0.8,1) and

2
maxo[E, — A\W; Q] = o]

2
e T T =T

because of the symmetry of the problem around 0 (cf. [3] for further
details), it turns out that condition (5.2) holds as soon as p > —m2.
Actually, for each p > —72, there exist A (1) < 0 < A () = —\¢(w)

such that
(B = AT (m)W; Q) = o[E, — AF(m)W;9] = 0.

Moreover, As p decreases approaching —72, ){2 (1) increases, and, hence,
A (1) decreases, approaching 0, i.e., lim,,| UM =0=lim,|_ o AL ().
As a result, Theorem 5.1 applies when p > —? while it cannot be applied
if 4 < —72. Actually, the mapping A — X,()\) := o[E, — A\W; Q] satisfies
¥_2(0) =0, ¥ ,(0) =0, and ¥_,2(\) < 0 for each X € R\ {0}.
Therefore, x[E_ 2 — AW; 0] = 2 and Theorem 5.1 cannot applied to cover
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this transition situation, though the problem still possesses a bounded
component of positive solutions emanating from (\,0) at A = 0 if u =
—72 (cf. the second plot of Figure 6.1). When u < —7? there are
no bifurcation points to positive solutions from (A,0) and, actually, if
p is sufficiently close to —m2, then (3.1) exhibits an isola of positive
solutions (cf. the third plot of Figure 6.1). The bifurcation diagrams
of Figure 6.1 were computed by coupling a pseudo-spectral method with
collocation and a path-continuation solver (cf. [3]). The left plot of Figure
6.1 shows the component for 4 = 0. In this case, A{ ~ —28.0233 and
)\52) ~ 28.0233. The central plot of Figure 6.1 show the perturbations of
the positive solutions of the left plot as p decreases from zero up to reach
the value y = —9.8693 > 2 = —9.86960.... Now, \{ ~ —0.13861 and
)\g ~ 0.13861; as these values are very close, the central plot of Figure
6.1 shows them super-imposed. As the computational model is discrete
and 72 is irrational there is no way to get the bifurcation diagram for
pu = —n2, though it must be very similar to the central diagram. The
right plot shows the isola of solutions obtained for p = —40, for which
(X, 0) always is linearly unstable.

1400 —— : : 1400 —— : : 1400
1200f S 4 1200} S 1 1200f :
1000} w7 4 1000} 4 1000} :
>
800} _ { soof { soof 1
600 1 eoof 1 eoof % .
400} “ 4 a00f .1 400t P 1
200 1 200t 4 200f \/ 8
ot 1 of 1 of 1
-200— : : ~200— : ‘ -200— ‘ :
50 0 50 50 0 50 50 0 50

Figure 6.1 Three components of positive solutions for
w=10,-9.8693, —40, respectively.
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In Figure 6.1 we are plotting the value of A against the Lo,-norm of the
corresponding positive solution. Stable solutions are indicated by solid
lines, unstable by dotted lines. As there are some ranges of values of A
where the model possesses at least two solutions with very similar Lo-
norms, the plot did not allow us distinguishing them, but rather plotted
twice these pieces. This is why the bifurcation diagrams exhibit a darker
arc of curve.

It should be clear that in case u = —7? the component of positive
solutions of (3.1) bifurcating from (A, 0) at A = 0 must be bounded and
that it emanates from the curve (A, 0) exclusively at A = 0.

References

[1] H. Amann, Fized point equations and nonlinear eigenvalue problems in ordered
Banach spaces, STAM Rev. 18 (1976), 620-709.

[2] S. Cano-Casanova, Compact Components of positive solutions for Superlinear In-
definite Elliptic Problems of Mized Type // Top. Meth. Non. Anal. 23 (2004),
45-72.

[3] S. Cano-Casanova, J. Lépez-Gémez, and M. Molina-Meyer, Isolas: compact solu-
tion components separated away from a given equilibrium curve, Hiroshima Math.
J. 34 (2004), 177-199.

[4] M. G. Crandall, and P. H. Rabinowitz, Bifurcation from simple eigenvalues //
J. Funct. Anal. 8 (1971), 321-340.

[5] E. N. Dancer, Global solution branches for positive mappings // Arch. Rat. Mech.
Anal. 52 (1973), 181-192.

[6] E. N. Dancer, Bifurcation from simple eigenvalues and eigenvalues of geometric
multiplicity one // Bull. London Math. Soc. 34 (2002), 533-538.

[7] J. Esquinas, Optimal multiplicity in local bifurcation theory, II: General case //
J. Diff. Eqns. 75 (1988), 206-215.

[8] J. Esquinas, and J. Lépez-Gémez, Optimal multiplicity in local bifurcation theory,
I: Generalized generic eigenvalues // J. Diff. Eqns. 71 (1988), 72-92.

[9] P. Hess, and T. Kato, On some linear and nonlinear eigenvalue problems with an
indefinite weight function // Comm. Part. Diff. Eqns. 5 (1980), 99-1030.

[10] M. G. Krein, and M. A. Rutman, Linear operators leaving invariant a cone in a
Banach space // Amer. Math. Soc. Transl. 10 (1962), 199-325.

[11] J. Lépez-Gomez, [2001] Spectral Theory and Nonlinear Functional Analysis, Re-
search Notes in Mathematics 426, CRC Press, Boca Raton 2001.

[12] J. Lépez-Goémez, and M. Molina-Meyer, The mazimum principle for cooperative
weakly elliptic systems and some applications // Diff. Int. Eqns. 7 (1994), 383—
398.

[13] P. H. Rabinowitz, Some global results for nonlinear eigenvalue problems //
7 (1971), 487-513.



S. CANO-CASANOVA, J. LOPEZ-GOMEZ, M. MOLINA-MEYER 51

Santiago
Cano-Casanova

Julian
Lopez-Gémez

Marcela
Molina-Meyer

CONTACT INFORMATION

Departamento de Matematica Aplicada y
Computacién

Universidad Pontificia Comillas de Madrid
28015-Madrid,

Spain

E-Majil: scano@dmc.icai.upco.es

Departamento de Matemédtica Aplicada
Universidad Complutense de Madrid
28040-Madrid,

Spain

E-Mail: Lopez_Gomez@mat.ucm.es

Departamento de Matematicas
Universidad Carlos III de Madrid
28911-Leganés, Madrid,

Spain

FE-Mail: mmolinam@math.uc3m.es



