#### УДК 539.3

## ©2011. Е.В. Алтухов, Е.В. Симбратович

# УПРУГИЕ КОЛЕБАНИЯ ДВУХСЛОЙНЫХ ПЛАСТИН СО СВОБОДНЫМИ ОТ НАПРЯЖЕНИЙ ПЛОСКИМИ ГРАНЯМИ

В трехмерной постановке рассмотрена задача о гармонических колебаниях двухслойных изотропных пластин. Полуобратным методом получены однородные решения системы уравнений движения в перемещениях. Исследованы дисперсионные уравнения вихревого и потенциального состояний. *Ключевые слова:* двухслойная пластина, гармонические колебания, однородные решения, дисперсионные уравнения, частоты запирания дисперсионных кривых, фазовые и групповые скорости.

1. Введение. С помощью метода однородных решений может быть осуществлен переход от уравнений трехмерной теории упругости к двумерным уравнениям без гипотез и предположений. Основы метода заложены в статье [1], где символическим способом получено решение задачи о равновесии изотропного слоя со свободными от усилий плоскими гранями. В работах [2, 3] символический метод А.И. Лурье применяется в трехмерной теории динамики однослойных пластин. Некоторые результаты исследований равновесия поперечно-неоднородных пластин на основе однородных решений отражены в монографии [4]. В частности, в работе [5] получены однородные решения в задаче равновесия двухслойной пластины со свободными от усилий торцами.

Ниже дается развитие этих результатов с учетом [6] для случая колебания двухслойной пластины.

2. Постановка и решение задачи. Рассмотрим пластину со свободными от напряжений плоскими гранями, составленную из двух изотропных слоев. Координатную плоскость  $O\tilde{x}_1\tilde{x}_2$  совместим с плоскостью их спая. Ось  $O\tilde{x}_3$  направим перпендикулярно к торцам. В дальнейшем величины, относящиеся к верхнему слою, будем обозначать индексом (1), к нижнему – индексом (2). Физико-механические характеристики материалов обозначим:  $\tilde{G}_m$  – модуль сдвига,  $\nu_m$  – коэффициент Пуассона,  $\rho_m$  – плотность материала, m – номер слоя.

Введем следующие безразмерные величины [6]

$$\begin{aligned} x_1 &= \tilde{x}_1/R, \ x_2 &= \tilde{x}_2/R, \ x_3 &= \tilde{x}_3/h = \tilde{x}_3/(\lambda R), \\ \lambda &= h/R, \ h = h_1 + h_2, \ \lambda_1 &= h_1/h, \ \lambda_2 &= h_2/h, \\ u_{i(m)}(x_1, x_2, x_3) &= \tilde{u}_{i(m)}(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)/R, \\ \sigma_{ij(m)}(x_1, x_2, x_3) &= \tilde{\sigma}_{ij(m)}(\tilde{x}_1, \tilde{x}_2, \tilde{x}_3)/(2\tilde{G}_2) \ (i, j = \overline{1, 3}), \\ G_m &= \tilde{G}_m/\tilde{G}_2, \ G_1 &= G \ (m = 1, 2), \end{aligned}$$
(1)

где h – толщина пластины,  $\lambda$  – безразмерная толщина пластины, R – характерный линейный размер в серединной плоскости пластины,  $\lambda_m$  – относительная толщина

слоев. За счет такого перехода сокращается число рассматриваемых в дальнейшем геометрических и физических параметров.

Введем обозначения операций дифференцирования, положив

$$\partial_1 = \frac{\partial}{\partial x_1}, \quad \partial_2 = \frac{\partial}{\partial x_2}, \quad \partial_1^2 = \partial_1 \partial_1 = \frac{\partial^2}{\partial x_1^2}, \quad \partial_2^2 = \partial_2 \partial_2, \quad D^2 = \partial_1^2 + \partial_2^2.$$

С учетом введенных обозначений задача об установившихся колебаниях рассматриваемой двухслойной пластины сводится к интегрированию системы уравнений движения в перемещениях

$$\lambda^{-2}\partial_3^2 u_{1(m)} + (D^2 + \Omega_m^2/\lambda^2)u_{1(m)} + \nu_{0(m)}\partial_1\theta_m = 0,$$
  

$$\lambda^{-2}\partial_3^2 u_{2(m)} + (D^2 + \Omega_m^2/\lambda^2)u_{2(m)} + \nu_{0(m)}\partial_2\theta_m = 0,$$
  

$$\lambda^{-2}\partial_3^2 u_{3(m)} + (D^2 + \Omega_m^2/\lambda^2)u_{3(m)} + \lambda^{-1}\nu_{0(m)}\partial_3\theta_m = 0$$
(2)

с граничными условиями

$$\sigma_{i3(1)}(x_1, x_2, \lambda_1) = 0, \quad \sigma_{i3(2)}(x_1, x_2, -\lambda_2) = 0,$$
  
$$u_{i(1)}(x_1, x_2, 0) = u_{i(2)}(x_1, x_2, 0), \quad \sigma_{i3(1)}(x_1, x_2, 0) = \sigma_{i3(2)}(x_1, x_2, 0),$$
  
(3)

где

$$\begin{aligned} \theta_m &= \partial_1 u_{1(m)} + \partial_2 u_{2(m)} + \lambda^{-1} \partial_3 u_{3(m)}, \ \nu_{0(m)} &= 1/(1 - 2\nu_m), \\ \Omega_m &= \omega h/c_{S(m)}, \quad c_{S(m)} = \sqrt{\tilde{G}_m/\rho_m}, \end{aligned}$$

*ω* – круговая частота колебаний.

С использованием метода И.И. Воровича однородные решения краевой задачи (2), (3) будем искать в виде суммы вихревого и потенциального состояний

$$u_{i(m)}(x_1, x_2, x_3) = u_{i(m)B}(x_1, x_2, x_3) + u_{i(m)\Pi}(x_1, x_2, x_3) \quad (i = \overline{1, 3}, m = 1, 2).$$

## 3. Вихревое решение. Перемещения вихревого состояния имеют вид

$$u_{1(m)B}(x_1, x_2, x_3) = p_{(m)}(x_3)\partial_2 B(x_1, x_2),$$
  

$$u_{2(m)B}(x_1, x_2, x_3) = -p_{(m)}(x_3)\partial_1 B(x_1, x_2),$$
  

$$u_{3(m)B}(x_1, x_2, x_3) = 0.$$
(4)

Подставим выражения (4) в соотношения (2), (3). В результате получим уравнения для определения функций  $B(x_1, x_2)$ 

$$D^{2}B(x_{1}, x_{2}) - (\delta/\lambda)^{2}B(x_{1}, x_{2}) = 0$$
(5)

и спектральную задачу для нахождения собственных функций  $p_{(m)}(x_3)$  и параметра  $\delta$ :

$$\partial_{3}^{2} p_{(m)}(x_{3}) + l_{(m)}^{2} p_{(m)}(x_{3}) = 0,$$
  

$$p_{(1)}(0) = p_{(2)}(0), \quad Gp_{(1)}'(0) = p_{(2)}'(0),$$
  

$$p_{(1)}'(\lambda_{1}) = 0, \quad p_{(2)}'(-\lambda_{2}) = 0,$$
  
(6)

где  $l_{(m)}^2 = \Omega_{(m)}^2 + \delta^2$ , а штрих здесь и далее означает производную по  $x_3$ . Собственные функции спектральной задачи (6)получаются такими

$$p_{(1)k}(x_3) = \cos(\lambda_1 - x_3)l_{(1)},$$
  

$$p_{(2)k}(x_3) = \cos(l_{(1)}\lambda_1)\cos(l_{(2)}x_3) + \frac{Gl_{(1)}}{l_{(2)}}\sin(l_{(1)}\lambda_1)\sin(l_{(2)}x_3),$$
(7)

а собственные значения  $\delta$  находим из трансцендентного уравнения

$$G l_{(1)} \sin l_{(1)} \lambda_1 \cos l_{(2)} \lambda_2 + l_{(2)} \sin l_{(2)} \lambda_2 \cos l_{(1)} \lambda_1 = 0.$$
(8)

Окончательно для вихревого решения имеем

$$u_{1(m)B} = \sum_{k=1}^{\infty} p_{(m)k} \partial_2 B_k, \quad u_{2(m)B} = -\sum_{k=1}^{\infty} p_{(m)k} \partial_1 B_k, \quad u_{3(m)B} = 0.$$
(9)

В случае, когда  $\omega = 0$ , уравнение (8) преобразуеться к виду

$$(G+1)\sin\delta = (1-G)\sin(2\lambda_1 - 1)$$

и совпадает с известным [5].

Когда  $\lambda_1 \to 0, G \to 0$ , вид уравнения (8) будет таким

$$\sin l_{(2)} = 0.$$

В случае  $\omega = 0, \lambda_1 \rightarrow 0, G \rightarrow 0$  уравнение (8) представимо таким образом:

$$\sin \delta = 0.$$

При  $\lambda_2 \to 0, G \to \infty$  имеем из уравнения (8)

 $\sin l_{(1)} = 0.$ 

**4. Потенциальное решение.** Для построения потенциального решения полагаем следующее:

$$u_{1(m)\Pi}(x_1, x_2, x_3) = n_{(m)}(x_3)\partial_1 C(x_1, x_2),$$
  

$$u_{2(m)\Pi}(x_1, x_2, x_3) = n_{(m)}(x_3)\partial_2 C(x_1, x_2),$$
  

$$u_{3(m)\Pi}(x_1, x_2, x_3) = q_{(m)}(x_3)C(x_1, x_2).$$
(10)

Из выражений (2), (3), (10) следует, что функция  $C(x_1, x_2)$  удовлетворяет уравнению

$$D^{2}(x_{1}, x_{2}) - (\gamma/\lambda)^{2}C(x_{1}, x_{2}) = 0, \qquad (11)$$

а для определения функций  $n_{(m)}(x_1, x_2), q_{(m)}(x_1, x_2)$  и параметра  $\gamma$  получаем системы обыкновенных дифференциальных уравнений

$$n_{(m)}''(x_3) + \left[\Omega_m^2 + \gamma^2 (1 + \nu_{0(m)})\right] n_{(m)}(x_3) + \lambda \nu_{0(m)} q_{(m)}'(x_3) = 0,$$

$$q_{(m)}''(x_3) + \frac{\Omega_m^2 + \gamma^2}{1 + \nu_{0(m)}} q_{(m)}(x_3) + \frac{\gamma^2 \nu_{0(m)}}{\lambda (1 + \nu_{0(m)})} n_{(m)}'(x_3) = 0$$
(12)

и граничные условия

$$q_{(1)}(\lambda_{1}) + \lambda^{-1} n'_{(1)}(\lambda_{1}) = 0, \ q_{(2)}(-\lambda_{2}) + \lambda^{-1} n'_{(2)}(-\lambda_{2}) = 0, \ n_{(1)}(0) = n_{(2)}(0),$$

$$q_{(1)}(0) = q_{(2)}(0), \ G\left(q_{(1)}(0) + \lambda^{-1} n'_{(1)}(0)\right) = q_{(2)}(0) + \lambda^{-1} n'_{(2)}(0),$$

$$G\left((\nu_{0(1)} - 1)\gamma^{2}\lambda^{-1}n_{(1)}(0) + (1 + \nu_{0(1)}) q'_{(1)}(0)\right) =$$

$$= (\nu_{0(2)} - 1)\gamma^{2}\lambda^{-1}n_{(2)}(0) + (1 + \nu_{0(2)}) q'_{(2)}(0),$$

$$\gamma^{2}\lambda^{-1}(\nu_{0(1)} - 1)n_{(1)}(\lambda_{1}) + (\nu_{0(1)} + 1) q'_{(1)}(\lambda_{1}) = 0,$$

$$\gamma^{2}\lambda^{-1}(\nu_{0(2)} - 1)n_{(2)}(-\lambda_{2}) + (\nu_{0(2)} + 1) q'_{(2)}(-\lambda_{2}) = 0.$$
(13)

Общее решение системы (12) имеет вид

$$n_{(m)}(x_3) = H_{1(m)} \cos \gamma_{1(m)} x_3 + H_{2(m)} \sin \gamma_{1(m)} x_3 + + H_{3(m)} \cos \gamma_{2(m)} x_3 + H_{4(m)} \sin \gamma_{2(m)} x_3, q_{(m)}(x_3) = Q_{1(m)} \sin \gamma_{1(m)} x_3 + Q_{2(m)} \cos \gamma_{1(m)} x_3 + + Q_{3(m)} \sin \gamma_{2(m)} x_3 + Q_{4(m)} \cos \gamma_{2(m)} x_3$$
(14)

Здесь

$$\begin{aligned} \gamma_{1(m)} &= \Omega_m^2 / (1 + \nu_{0(m)}) + \gamma^2, \ \gamma_{2(m)} = \Omega_m^2 + \gamma^2. \\ Q_{1(m)} &= -\frac{\gamma_{1(m)}}{\lambda} H_{1(m)}, \ Q_{2(m)} = \frac{\gamma_{1(m)}}{\lambda} H_{2(m)}, \\ Q_{3(m)} &= -\frac{\gamma^2}{\lambda \gamma_{2(m)}} H_{3(m)}, \ Q_{4(m)} = \frac{\gamma^2}{\lambda \gamma_{2(m)}} H_{4(m)}. \end{aligned}$$
(15)

Подставляя выражения (14) в граничные условия (13) с учетом (15), получим однородную систему линейных алгебраических уравнений относительно  $H_{i(m)}$   $(i = \overline{1,3})$ . Из условия равенства нулю определителя этой системы получаем дисперсионное уравнение

$$F(\gamma, \Omega) = \det\{A_{ij}\} = 0.$$
(16)

Ненулевые элементы определителя  $\det\{A_{ij}\}$   $(i, j = \overline{1, 8})$  этой системы имеют вид

$$\begin{split} A_{11} &= -2\gamma_{1(1)}\sin\gamma_{1(1)}\lambda_{1}, \ A_{12} &= 2\gamma_{1(1)}\cos\gamma_{1(1)}\lambda_{1}, \ A_{13} &= -\frac{(\gamma^{2} + \gamma_{2(1)}^{2})}{\gamma_{2(1)}}\sin\gamma_{2(1)}\lambda_{1}, \\ A_{14} &= \frac{(\gamma^{2} + \gamma_{2(1)}^{2})}{\gamma_{2(1)}}\cos\gamma_{2(1)}\lambda_{1}, \ A_{21} &= \left(\gamma^{2}(\nu_{0(1)} - 1) - \gamma_{1(1)}^{2}(\nu_{0(1)} + 1)\right)\cos\gamma_{1(1)}\lambda_{1}, \\ A_{22} &= \left(\gamma^{2}(\nu_{0(1)} - 1) - \gamma_{1(1)}^{2}(\nu_{0(1)} + 1)\right)\sin\gamma_{1(1)}\lambda_{1}, \ A_{23} &= -2\gamma^{2}\cos\gamma_{2(1)}\lambda_{1}, \\ A_{24} &= -2\gamma^{2}\sin\gamma_{2(1)}\lambda_{1}, \ A_{31} &= 1, \ A_{33} &= 1, \ A_{35} &= -1, \ A_{37} &= -1, \ A_{42} &= \gamma_{1(1)}, \\ A_{44} &= \frac{\gamma^{2}}{\gamma_{2(1)}}, \ A_{46} &= -\gamma_{1(2)}, \ A_{48} &= -\frac{\gamma^{2}}{\gamma_{2(2)}}, \ A_{52} &= 2G\gamma_{1(1)}, \ A_{54} &= \frac{G(\gamma^{2} + \gamma_{2(1)}^{2})}{\gamma_{2(1)}}, \\ A_{56} &= -2\gamma_{1(2)}, \ A_{58} &= -\frac{\gamma^{2} + \gamma_{2(2)}^{2}}{\gamma_{2(2)}}, \ A_{61} &= G\left(\gamma^{2}(\nu_{0(1)} - 1) - \gamma_{1(1)}^{2}(\nu_{0(1)} + 1)\right), \\ A_{63} &= -2G\gamma^{2}, \ A_{65} &= -\gamma^{2}(\nu_{0(2)} - 1) + \gamma_{1(2)}^{2}(\nu_{0(2)} + 1), \ A_{67} &= 2\gamma^{2}, \\ A_{75} &= 2\gamma_{1(2)}\sin\gamma_{1(2)}\lambda_{2}, \ A_{76} &= 2\gamma_{1(2)}\cos\gamma_{1(2)}\lambda_{2}, \ A_{77} &= \frac{(\gamma^{2} + \gamma_{2(2)}^{2})}{\gamma_{2(2)}}\sin\gamma_{2(2)}\lambda_{2}, \\ A_{78} &= \frac{(\gamma^{2} + \gamma_{2(2)}^{2})}{\gamma_{2(2)}}\cos\gamma_{2(2)}\lambda_{2}, \ A_{85} &= \left((\nu_{0(2)} - 1)\gamma^{2} - (\nu_{0(2)} + 1)\gamma_{1(2)}^{2}\right)\cos\gamma_{1(2)}\lambda_{2}, \\ A_{87} &= -2\gamma^{2}\cos\gamma_{2(2)}\lambda_{2}, \ A_{88} &= 2\gamma^{2}\sin\gamma_{2(2)}\lambda_{2}. \end{split}$$

Таким образом, потенциальное решение примет вид

$$u_{1(m)\Pi}(x_1, x_2, x_3) = \sum_{p=1}^{\infty} n_{(m)p}(x_3) \partial_1 C_p(x_1, x_2),$$
$$u_{2(m)\Pi}(x_1, x_2, x_3) = \sum_{p=1}^{\infty} n_{(m)p}(x_3) \partial_2 C_p(x_1, x_2),$$
$$u_{3(m)\Pi}(x_1, x_2, x_3) = \sum_{p=1}^{\infty} q_{(m)p}(x_3) C_p(x_1, x_2).$$

Для длинных вол<br/>н при  $\gamma=0$ из уравнения (16) имеем

$$F(\Omega) \equiv (G\Omega_1 S_{21} C_{22} + \Omega_2 C_{21} S_{22})(Gk_1^{-1} \Omega_1 S_{11} C_{12} + k_2^{-1} \Omega_2 C_{11} S_{12}) = 0,$$
(17)

где

$$k_m = \sqrt{(1 - 2\nu_m)/(2 - 2\nu_m)};$$
  

$$S_{1m} = \sin(k_m \Omega_m \lambda_m), \ S_{2m} = \sin(\Omega_m \lambda_m),$$
  

$$C_{1m} = \cos(k_m \Omega_m \lambda_m), \ C_{2m} = \cos(\Omega_m \lambda_m), \ (m = 1, 2).$$

Трансцендентное уравнение (17) определяет две независимые системы критических частот:

$$G\Omega_1 S_{21} C_{22} + \Omega_2 C_{21} S_{22} = 0, (18)$$

$$Gk_1^{-1}\Omega_1 S_{11}C_{12} + k_2^{-1}\Omega_2 C_{11}S_{12} = 0.$$
<sup>(19)</sup>

Частоты, задаваемые уравнением (18) не зависят от значений коэффициентов Пуассона  $\nu_1, \nu_2$ , в отличие от корней уравнения (19), образующих второе семейство критических частот. При некоторых  $\nu_1, \nu_2$  частоты из соседних семейств могут совпадать.

Для исследования процесса переноса энергии основное значение имеют распространяющиеся моды, соответствующие мнимым участкам дисперсионных ветвей. Важнейшими характеристиками распространяющихся мод являются фазовая и групповая скорости. В каждой точке ветви дисперсионной кривой фазовая скорость представляется следующим образом

$$c_p = \omega/k = ic\Omega/\gamma,$$

где

$$\Omega = \omega h/c, \; k = -i\gamma/h, \; i = \sqrt{-1}.$$

Групповая скорость  $c_g$  распространяющихся мод согласно кинематическому определению задается равенством

$$c_q = d\omega/dk = ic \, d\Omega/d\gamma$$

и представляет собой тангенс угла наклона касательной к мнимому участку ветви в данной точке.

5. Результаты численных исследований. Пусть верхний слой пластины изготовлен из алюминия и характеризуется параметрами среды  $\rho_1 = 2, 7 \cdot 10^3 \text{ кг/m}^3$ ,  $\widetilde{G}_1 = 2, 61 \cdot 10^{10} \text{ H/m}^2$ ,  $\nu_1 = 0, 35$ , скорость поперечной волны  $c_{S1} = 3110 \text{ м/c}$ , а нижний – из вольфрама:  $\rho_2 = 18, 7 \cdot 10^3 \text{ кг/m}^3$ ,  $\widetilde{G}_2 = 15, 3 \cdot 10^{10} \text{ H/m}^2$ ,  $\nu_2 = 0, 29$ , скорость поперечной волны  $c_{S2} = 2860 \text{ м/c}$ . Расчеты проводились для следующих трех вариантов:

1. 
$$\lambda_1 = \frac{1}{3}, \lambda_2 = \frac{2}{3};$$
  
2.  $\lambda_1 = \frac{2}{3}, \lambda_2 = \frac{1}{3};$   
3.  $\lambda_1 = \lambda_2 = \frac{1}{2}.$ 

Входящие в приведенное решение безразмерные частоты  $\Omega_1$ ,  $\Omega_2$  и нормирующая размерная скорость *с* выбирались следующими:

$$\Omega_1 = \Omega c_{S2}/c_{S2}, \ \Omega_2 = \Omega, \ c = c_{S2}.$$

В табл. 1 приведены первые пятнадцать частот запирания ( $\delta = 0$  или  $\gamma = 0$ ) дисперсионного уравнения (8) – столбцы 1-3 и дисперсионного уравнения (16) – столбцы 4-6. Столбцы 1,4 соответствуют варианту 1; столбцы 2,5 – варианту 2; столбцы 3,6 – однослойной пластине из алюминия.

Упругие колебания двухслойных пластин со свободными от напряжений плоскими гранями

| Номер   | Значения частот запирания |               |           |               |           |               |  |
|---------|---------------------------|---------------|-----------|---------------|-----------|---------------|--|
| частоты | 1                         | 2             | 3         | 4             | 5         | 6             |  |
| 1       | 4,200077                  | 2,953268      | 3,141593  | 4,200077      | 2,953268  | 3,141593      |  |
| 2       | 6,004629                  | 7,901464      | 6,283185  | 6,004629      | 6,097164  | 6,283185      |  |
| 3       | 9,529994                  | 9,819776      | 9,424778  | 7,870329      | 7,901464  | 6,539747      |  |
| 4       | 13,921747                 | $13,\!936170$ | 12,566371 | 9,529994      | 9,819776  | 9,424778      |  |
| 5       | 16,649382                 | 18,305117     | 15,707963 | 12,030378     | 13,936170 | 12,566371     |  |
| 6       | 19,114382                 | 20,063069     | 18,849556 | 13,921747     | 15,632274 | 13,079493     |  |
| 7       | 23,484765                 | 24,929005     | 21,991149 | 16,649382     | 18,305117 | 15,707963     |  |
| 8       | 27,230951                 | $28,\!187748$ | 25,132741 | 17,736499     | 19,084559 | $18,\!849556$ |  |
| 9       | 28,919236                 | 30,842680     | 28,274334 | 19,114382     | 20,063069 | 19,619240     |  |
| 10      | 33,010936                 | 35,836404     | 31,415927 | $23,\!484765$ | 24,929005 | 21,991149     |  |
| 11      | 37,288770                 | $37,\!972677$ | 34,557519 | 25,825752     | 28,187748 | $25,\!132741$ |  |
| 12      | 39,268586                 | 41,809073     | 37,699112 | 27,230951     | 28,659186 | $26,\!158986$ |  |
| 13      | 42,547616                 | 46,392523     | 40,840704 | 28,919236     | 30,842680 | 28,274334     |  |
| 14      | 46,949676                 | 48,065974     | 43,982297 | 36,396943     | 34,681033 | $31,\!415927$ |  |
| 15      | 49,944723                 | 52,806504     | 47,123890 | 37,288770     | 35,836404 | 32,698733     |  |

В табл.2 приведены значения первых пятнадцати частот запирания вихревого и потенциального решений, которые отражают влияние изменения относительных толщин слоев.

|         |                           |                    |                    |                    |                    | Таблица $2$        |  |
|---------|---------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--|
| Номер   | Значения частот запирания |                    |                    |                    |                    |                    |  |
| частоты | $\lambda_1 = 0,01$        | $\lambda_1 = 0, 1$ | $\lambda_1 = 0, 9$ | $\lambda_1 = 0,01$ | $\lambda_1 = 0, 1$ | $\lambda_1 = 0, 9$ |  |
| 1       | 3,169413                  | 3,442574           | 2,694481           | 3,169413           | 3,442574           | 2,694481           |  |
| 2       | 6,338820                  | 6,876069           | 6,435849           | 5,827715           | 6,330546           | 5,602460           |  |
| 3       | 9,508216                  | 10,283495          | 10,420838          | 6,338820           | 6,876069           | 6,435849           |  |
| 4       | 12,677595                 | 13,613885          | 14,458327          | 9,508216           | 10,283495          | 10,420838          |  |
| 5       | 15,846952                 | 16,648244          | 18,504271          | 11,655423          | 12,648651          | 13,373940          |  |
| 6       | 19,016281                 | 18,948751          | 22,529562          | 12,677595          | 13,613885          | 14,458327          |  |
| 7       | 22,185576                 | 21,515278          | 26,464027          | 15,846952          | 16,648244          | 18,504271          |  |
| 8       | 25,354830                 | 24,708750          | 29,925703          | 17,483115          | 18,934142          | 21,647896          |  |
| 9       | 28,524037                 | 28,078323          | 32,282272          | 19,016281          | 18,948751          | 22,529562          |  |
| 10      | 31,693191                 | 31,498397          | 35,480173          | 22,185576          | 21,515278          | 26,464027          |  |
| 11      | 34,862285                 | 34,936531          | 39,364182          | 23,310783          | 24,708750          | 29,925703          |  |
| 12      | 38,031311                 | 38,380034          | 43,377997          | 25,354830          | 25,139722          | 30,020183          |  |
| 13      | 41,200260                 | 41,820521          | 47,422053          | 28,524037          | 28,078323          | 32,282272          |  |
| 14      | 44,369126                 | 45,247276          | 51,464132          | 29,138419          | 31,115503          | 35,480173          |  |
| 15      | 47,537899                 | 48,636105          | 55,468623          | 31,693191          | 31,498397          | 38,379982          |  |

В табл.3 отражено влияние коэффициента Пуассона  $\nu_2$  нижнего слоя на первые пятнадцать частот запирания для двухслойной пластины. При этом значение

Таблина 1

|         |                           |                |                |                |                | Таблица З      |  |
|---------|---------------------------|----------------|----------------|----------------|----------------|----------------|--|
| Номер   | Значения частот запирания |                |                |                |                |                |  |
| частоты | $\nu_2 = 0,05$            | $\nu_2 = 0, 1$ | $\nu_2 = 0, 2$ | $\nu_2 = 0, 3$ | $\nu_2 = 0, 4$ | $\nu_2 = 0,45$ |  |
| 1       | 3,141593                  | 3,141593       | 3,141593       | 3,141593       | 3,141593       | 3,141593       |  |
| 2       | 5,060477                  | 5,169437       | $5,\!453492$   | $5,\!877382$   | 6,283185       | 6,283185       |  |
| 3       | $6,\!283185$              | 6,283185       | 6,283185       | 6,283185       | 6,550349       | 7,025249       |  |
| 4       | $9,\!424778$              | 9,424778       | 9,424778       | $9,\!424778$   | 9,424778       | 9,424778       |  |
| 5       | $10,\!424867$             | 10,579571      | 11,006043      | 11,754763      | 12,566371      | 12,566371      |  |
| 6       | 12,566371                 | 12,566371      | 12,566371      | 12,566371      | 13,543984      | $15,\!683950$  |  |
| 7       | $15,\!225678$             | 15,535483      | 15,707963      | 15,707963      | 15,707963      | 15,707963      |  |
| 8       | 15,707963,                | 15,707963      | 16,364871      | 17,632145      | 18,849556      | 18,849556      |  |
| 9       | $18,\!849556$             | 18,849556      | 18,849556      | $18,\!849556$  | 19,723836      | 21,991149      |  |
| 10      | 20,760056                 | 21,103899      | 21,991149      | 21,991149      | 21,991149      | 22,193244      |  |
| 11      | 21,991149                 | 21,991149      | 22,003198      | 23,509527      | 25,132741      | 25,132741      |  |
| 12      | 25,132741                 | 25,132741      | 25,132741      | 25,132741      | 26,940950      | 28,274334      |  |
| 13      | 25,501760                 | 25,972420      | 27,288709      | 28,274334      | 28,274334      | 29,842236      |  |
| 14      | 28,274334                 | 28,274334      | 28,274334      | 29,386908      | 31,415927      | 31,415927      |  |
| 15      | 30,972899                 | 31,415927      | 31,415927      | 31,415927      | 33,075478      | 34,557519      |  |

параметров следующие: G = 1,  $\rho_1/\rho_2 = 1$ ,  $\lambda_1 = \lambda_{=}0, 5, \nu_1 = 0, 3$ .

На рис.1 изображены соответствующие уравнению (8) спектральные кривые зависимостей  $\Omega$  от параметра  $\delta$ . Рис.1а соответствует варианту 1, рис.16 – случаю 2. Уравнение (16) при фиксированной частоте имеет конечное число действительных и чисто мнимых корней и счетное множество комплексных корней.



Аналогично на рис.2а и 26 представлены спектральные кривые, соответствующие уравнению (16). Сплошные линии соответствуют вещественным и чисто мнимым корням, штриховые – комплексным корням.

Для потенциального состояния на рис.3 и 4 для вариантов 1 и 2 приведены графики изменения безразмерных фазовых  $v_p = c_p/c$  (рис.3*a* и рис.4*a*) и групповых  $v_g = c_g/c$  (рис.3*б* и рис.4*б*) скоростей первых трех распространяющихся мод.

#### Упругие колебания двухслойных пластин со свободными от напряжений плоскими гранями



Из рисунков и таблиц следует, что в двухслойной пластине изменяется характер распространения волн. В области низких частот появляется две действительные моды и происходит сближение мод, изменяются значения и количество частот запирания. При фиксированной частоте уравнение (16) имеет конечное число мнимых, счетное число комплексных и действительных корней. В отличие от двухслойных пластин с жестко защемленными плоскими гранями [6] здесь при малых частотах возбуждаются две бегущие нормальные дисперсные моды.

Подтверждаются факты, что комплексные дисперсионные кривые пересекают плоскость  $\Omega = 0$  под прямым углом и оканчиваются в точках относительного минимума действительных или мнимых кривых. Фазовая скорость ненулевых частот

запирания стремится к бесконечности, а групповая скорость равна нулю. На графиках групповых скоростей четко выражены максимумы и минимумы. С ростом номера мнимой ветви количество таких экстремумов увеличивается.

- 1. *Луръе А. И.* К теории толстых плит // Прикладная математика и механика. 1942. **6**, № 2-3. С. 151-168.
- 2. *Кутсер М., Нигул У.* О применении символического метода А.И. Лурье в динамике плит при деформации, симметричной относительно серединной поверхности // Известия АН Эстонской ССР. 1965. **14**, № 3 С. 385-395.
- 3. *Нигул У. К.* О применении символического метода А. И. Лурье в трехмерной теории динамики упругих плит // Известия АН Эстонской ССР. – 1963. – **12**, № 2. – С. 146-155.
- 4. *Устинов Ю. А.* Математическая теория поперечно-неоднородных плит. Ростов н/Д: ООО ЦВВР, 2006. 257 с.
- 5. *Ружицкий Б. А.* Однородные решения для двухслойной плиты // Теоретическая и прикладная механика. 1980. № 11. С. 10-16.
- 6. Алтухов Е. В., Куцая Е. В., Фоменко М. В. Установившиеся колебания упругих двухслойных пластин с жесткими плоскими гранями // Вісник Донецького національного ун-ту. Сер. А. 2010. № 2. С. 38-46.

### E.V. Altukhov, E.V. Simbratovich

#### Elastic vibration of two-layer plate with planar faces are free from stresses.

In three-dimensional statement the problem of harmonic vibration of elastic two-layer plate is considered. Homogeneous solutions of system of motion equations in displacement are constructed by semi-inverse method. The dispersion equation of vortical and potential states are investigated.

**Keywords:** two-layer plate, harmonic vibration, homogeneous solutions, dispersion equations, cut-off frequencies of dispersion curves, phase and group velocities.

#### €.В. Алтухов, О.В. Сімбратович

### Пружні коливання двошарової пластини з вільними від напруження плоскими гранями.

У тривимірній постановці розглянуто задачу про гармонічні коливання двошарових ізотропних пластин. Напівоберненим методом отримано однорідні розв'язки системи рівнянь руху в переміщеннях. Досліджено дисперсійні рівняння вихрового та потенційного станів.

**Ключові слова:** двошарова пластина, гармонічні коливання, однорідні розв'язки, дисперсійні рівняння, частоти запирання дисперсійних кривих, фазові та групові швидкості.

Донецкий национальный ун-т altuhov@matfak.dongu.donetsk.ua Получено 31.03.11