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REGULAITY OF INFINITE DIMENSIONAL
HEAT DYNAMICS OF UNBOUNDED LATTICE SPINS
WITH NON-CONSTANT DIFFUSION COEFFICIENTS

Below we demonstrate how the C*°-regular properties of heat dynamics with
non-unit nonlinear diffusion coefficient can be studied. We consider an infinite
dimensional model, describing evolution of unbounded lattice spins RZ’ As a
main step we provide a construction of corresponding variational processes in
¢,(c) spaces with growing weights cj ~ e®*l k€ Z°.

Developing the approach of nonlinear estimates on variations, we find suffi-
cient conditions on the nonlinear coefficients of differential equation that lead to
C*>-regularity of solutions with respect to the initial data and C'°°-regularity of
corresponding heat semigroup.
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1. Introduction.

It is already known, e.g. |7, 8], that for the stochastic differential
equations

dy® = B(y")dW, — F(y°)dt, 4°(0) = ° (1)

with coefficients, that are globally Lipschitz and have all bounded
derivatives, there is C*-regularity of solutions y?(z") with respect to
the initial data 2°. Moreover, corresponding heat semigroup, defined
as amean P, f(2°) = E f(y?(2°)) with respect to the Wiener measure,
preserves spaces of continuously differentiable functions with bounded

derivatives. These results follow from application of fixed point and
Py (a")

implicit function theorems to variations 17 (x) = I of process

v (2") with respect to the initial data z°.
The consideration of more wide class of stochastic differential
equations with essentially nonlinear non-Lipschitz coefficients leads
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to a monotone conditions of coercitivity and dissipativity: VC' >
0 dM such that

coercitivity < F(z)— F(y),z—y > —
—C||B(z) = By)|? = =M||z — y|”

dissipativity = < F(z),z > —C||B(2)|*> > —M(1 + ||=|]*),

that are sufficient for the existence, uniqueness and continuous de-
pendence of solutions with respect to the initial data [10, 11].

In |2, 4, 5] it was shown that the application of Cauchy-Liouville-
Picard scheme to the problem of C*-regularity for non-Lipschitz
differential equations meets difficulties. Here we discussed a particular
case of system (1) with constant diffusion coefficient B = 1, that has
important applications to the classical Gibbs lattice systems with
unbounded spins. To be able to work with such nonlinear differential
equations we followed [8; 9|, where, after the shift n, = y, — W,
equation (1) becomes ordinary differential equation on variable 7;:

dne = —F(n, + Wy)dt

with random control W;.
In [2, 4, 5] we found that due to the structure of the associated
with (1) variational system

dy' = Y2 BO@)y .yl dW — 3 FO )y yrdt
1A de=i, PR, (2)
s>1 s>1
y'(0)=1Id, y'(0)=0,i>2
the variation of N* order is proportional to the N** power of the

variation of 1% order.
Such proportionality led to nonlinear estimates on variations

= > En(ly®ID Iy (OI% < ¢ pu(0), (3)

permitting to apply monotone methods to the problem of C'*°-regula-
rity. The weights p; and topologies X; on variations were found to be
related with the order of nonlinearity of coefficients of initial equation
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(1). Moreover, the order of nonlinearity also influenced the structure
of topologies in the spaces of differentiable functions, preserved by
heat semigroup P;.

In [2] it was observed that the variations should be constructed
in spaces £,(c) with exponentially growing on lattice Z% weights, i.c.
e ~ ek e Z% For diffusion coefficient B = I this property
follows from Kato results about the construction of solutions to the
linear ordinary differential equations. For B = I terms with B() =
0 for s > 1 in (2) are absent and (2) becomes non-autonomous
inhomogeneous linear equation on variable 3" with control 3?.

The use of process n and application of Kato results becomes
impossible for non-constant diffusion coefficient B # I. The solution
of this problem is a main topic of this article.

In Section 2 we describe a model with non-constant nonlinear
diffusion coefficient and state main results about the properties of
variations of diffusion process and regularity of its semigroup. In
Section 3 we define the stochastic integrals fot BydW; with B € {,(c)
and construct the nonlinear diffusion and its variations with respect
to the initial data. In Section 4 we prove nonlinear estimate (3).
Section 5 is devoted to the study of continuity and C* regularity of
variations with respect to the initial data. Here we also demonstrate
the regularity of heat semigroup P, (proof of Theorem 1).

Finally remark, that even the problem of the first order re-
gularity with respect to the initial data is still under question for
more general classes of stochastic differential equations, e.g. [6] and
references therein.

2. Basic model and statement of main results.
We consider the stochastic process on the lattice product of

spin spaces R%" = Hk:(khm’kd)ezd IR, described by the following
nonlinear equation

Y (t) =fvo+/0 B(yO(S))dW(S)—/O [F(y°(s)) + Ay°(s)lds  (4)
Nonlinear diagonal maps

RZ" 52 = {24} e g0 — Blx) = {B(x))}yepe € RZ"
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RZ" 50 = {a)} e g — Flo) = {F(24)}pege € R

are generated by smooth functions B, F € C*®(IR') of polynomial
with derivatives behaviour and the linear finite diagonal map A :
RZ" — R%" is defined by

Irg  (Ax)= > Alk-jx;, kez

J:li—kl<ro

and is bounded in any space £,(c), supj;_;_;|ck/c;| < o0.

The cylinder Wiener process W = {Wj.(t)},.cz¢ with values in
ly(a), D pegaar = 1, a € IP is canonically realized on measurable
space (Q = Cy([0,T],05(a)), F,F:, P) with canonical filtration F; =
a{W(s)|0 < s < t} and cylinder Wiener measure P. Processes
Wi, k € Z¢ are independent IR'-valued Wiener processes. Henceforth
we denote by E the expectation with respect to measure P and by IP
the set of all vectors a = {ay},c 5 such that 6, = sup |ax/a;| < oo.

Let us impose the following conditions on the llg;é‘fglcients {F, B}.
1. Coercitivity and dissipativity: VM 3K,;, K;, K5 such that
(z —y)(F(x) = F(y) — M(B(z) — B(y))* = Ku(z —y)* (5)
rF(x) — M B*(z) > —K 2% — K, (6)

Inequality (5) implies in particular that VM 3K,

~F'(z) + M[B'(0)]* < Ku (7)

2. Nonlinear parameters: Function F : R — IR' is monotone
and Jkp. kg > —1 with 2kp < kg such that Vn € IN 3C,
Vi=0,...nVz,y € R'

[FO(2) = FO(y)| < Calo —y|(1+ |2l + [y)*r (8)
BO(@) = BO(y)] < Colw = yl(1+ |2 + [y)** (9)

Main result is that under the above conditions the heat diffusion
semigroup

(Pif)(@) = E f(y"(t,2")) (10)
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preserves spaces of continuously differentiable functions, which topo-
logies depend on the order of nonlinearity kg. This result generalizes
[1, 3, 2], where the unit diffusion case B(z) = 1 was considered.

Let us say that array © = ©1U...UO", n € IN with ©™ be a set
of pairs of m'-order (p,G =G'®..@G™), G'€ P, i=1,...,m, is
quasi-contractive with parameter kg ifVm =2, ... nV(p,G) € ©™ and
Vi, j € {2,...,m}, i < j thereis a pair (p, G = é1®...®ém_1) com!
such that 3K € IR,

+1

Vee R, (1+2) 5 5(2) < Kpl2) ()

GUNY <KG, (=1,..m—1 (12)

Above p,p are smooth functions of polynomial behaviour (27) and
inequality (12) is understood as a coordinate inequality between (m—
1) order tensors for (m — 1)-tensor

Glid} = ('@, G RGH®.. .06 e K GiIGIg I ®...G™
constructed by m-tensor G = G' ® ... ® G™.

Definition 1. Function f € Dg,({2(a)), r >0, iff
1. There is a set of Borel measurable partial derivatives

lo(a) >z — 0-f(z) € R Vr={ji,..5s} ITl<n  (13)
such that Va° € ly(a), Yh € AC([a, b])

b

a4+ h)| = / ds 3" 0uf(@0 + h(s)hy(s)  (14)

a @ kez?

and V1 |t <n-—1

b

= [(ds 30 o s heDh(s) (1)

0 f (2" + h(-))

Here we used notation

AC(la,0)) = N AC([a, 0], 6,(c)) (16)

p>1, celP
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for
AC([a,b]),X) ={h € C([a,b], X) : 3" € Li([a,b], X)}

2. The norm is finite

76, = £l + max [0 fllon <00 (17
where (@)
Wl = o T el -
+ sup |f(z) = f(y)|

eyeta(@) 1T = Yllea@) (1 + 2]l ez0) + 1Yllea(a))”
and for multifunction of m' order 0™ f(x) = {0, f(x), |7| = m}

o) f(x
107 fllom = sup max o 2>|g
z€l(a) (PG)EO™ p(1+ ||5E||z2(a))

O-f(z)? for G = G'®

(19)

with [0 f(z)|7 = S Gl .G

Jm

R G™.

Theorem 1. Let F, B satisfy conditions (5)-(9) and © = ©'U...u0",
n € IN be quasi-contractive array with parameter Kg. Suppose that
function f € Dg,(l2(a)), r >0, ie.

Then ¥ >> 0 semigroup P; preserves scale of spaces Do (la(a)), 7 >
0 and there are Ko ,, Mo, such that

Vf € Do(l2(a)) 1P:fllpe., < Kese" " fllpe, (20)

The formal differentiation of (10) with respect to z° shows that
the derivatives of semigroup is related with the variations of process
4 with respect to the initial data 2°. Let 7 = {Jj1, ..., ju}, Jjs € Z°
be any ordered array of points from Z¢. To the set T we associate
vector Yy, = {Ykr }rezd, Which satisfies equation

Y = Thr + Jo (B (WDykr + 08 ) AWy~
(21)
S E WDy + (Ayo )+ o )ds, ke Z°,
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derived by differentiation of (4) with respect to variables {9 , ..., 27 }.
Above the inhomogeneous parts p? and ¢! are constructed from

functions B and F' by the following rule

o= > DYk Yk (22)

YU . Uys=T, s>2

where y,,, ..., y,, are the solutions of lower rank variational equations.
Summation in (22) runs on all possible subdivisions of set 7={j1,..,jn}
on the nonintersecting subsets 71, ..., vs C 7, |71|+...+|vs| = |7|, s >
2? |%| > 1.

To prove Theorem 1 it is necessary to find the joint topologies
for solvability of system in variations (21), and to check that at the
special choice of initial data in (21)

Ty, =0 for 7={j}, |7|=1 and 7, =0 for |7 >2 (23)
the variation y, is interpreted as a derivative of y° with respect to 2°

alyp(t, 2°)

5 = Yk (24)
0:)39-” . .8%’?1

Equation (21) possesses a certain nonlinear symmetry with res-
pect to the lower rank variations, where the i** order variation and
the " degree of the first order variation appear simultaneously. Like
in [2] introduce the following nonlinear object

plyt) =EY iz Y

o (25)

lmy (c4)

where the set 7 = {j1, ..., 50}, i € Z% 2z =1+ 1y°(t, 2°) 17,4y and

my =y /|7

Impose the following hierarchy of weights p;, c,. It is dictated by
the unbounded operator coefficients with control ¢° in (21), (22) and
depends on the order of nonlinearity kp > 2kp:

1. The vectors ¢, = {cp }pege C P fulfill

Vo C 7Yy U.. Uy, =a Vs > 23K, ... suchthatVk € Z*

kg
[Cha]la‘ak : < K717---m/s;a[ckﬁ/1]lyll'"[ckﬁs]wsl (26)
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2. Positive monotone functions p; € C*(IR,) of polynomial be-
haviour

Je>0Vze Ry pi(z) >e pi(z) >¢
3C (14 2)pi (2)] < Cpi(z) (1+2)pi(z) < Cpilz)  (27)

satisfy condition

3K, Vi €{2,...,n} Viy, yis, § 22 Q1+ i =]

™ < K pa () (), z€ Ry (28)

Theorem 2. Let F, B satisfy conditions (5)-(9) and y°, y, be solutions
to (4) and (21) for 2° € ly(a) and zero-one initial data T, (23).
Suppose that hierarchies (26) and (28) are valid.

Then the nonlinear quasi-contractive estimate holds

AM =M, Yt>0  p(y;t) <eMpr(y;0) (29)

3. {,(c)-valued stochastic integrals and construc-
tion of diffusion process and its variations.

In the following Lemma we construct ¢,(c)-valued stochastic
integral, appearing in (21), and prove Ito formula for the norm of
,(c)-valued continuous processes. This result will permit to work
correctly with variations y, in ¢, (c;) scales, arising in nonlinear
expression (25).

Lemma 1. Let ®(t), V(t) be F;-adapted processes with values in
ly(c), c€ IP, p>1 such that

Vg=1,  sup E([[Q@)[7 )+ VDOIF, ) < oo
te[0,7

Then the process, defined by coordinates

nk(t) = nk(O) + /: (I)k(s)de(S) + /: \Ifk(s)ds
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for n(0) € L (2, P, l,(c)), belongs to the space of continuous Fi-

adapted processes, equipped with the norm (E sup || - ng(c))l/q and
te[0,T

Ito formula is fulfilled
In(OI17, ) = I OIZ, 0+

+q [y In() 5L < 0* (), n(s)@(s)dW () >1,0) +

(30)
t — _
+q fo In(s)I7 &) < 1™ (5),1(s) W (5) + 2@ (5) >4,(0) ds+
— t — _
LU [ () [£2 Y Rlels) 202 (s)ds
kez?

where we used notation

<Y 0= clmlP (31)

kez?
Moreover Vg >p>2VT >0 3K, such that

t

T
E sup | [ o) WL, < Kor / ol dt  (32)

te[0,T] 0

Remark 1. First note that the coefficients of diffusion process B(xy)
and F'(zy) are transition invariant. Therefore the required by Lemma
1 inclusions {B(zk)}pezd, {F (k) bpeze € €p(a) lead to the require-
ment ), 4 a; < 0o on topologies of spaces £,(a), where the initial
diffusion process (4) can be constructed.

On the contrary, we do not have restrictions on the weights in
spaces £, (c) for variational processes y,. Indeed, the principal part of
variational equations has form {B'(xy)Yk - trezd, {E(Tk)Ykr b rezd,
i.e. has additional factor y,. Due to the zero-one initial data for
variational equations (23), there is an inclusion y,(0) € /,(c) for
any ¢ € IP. Therefore, it becomes possible to construct variations in
any space £,(c).

This is also important for the study of regularity properties of
semigroup, because in Lemma 2 we need the estimates on variations,
which grow exponentially fast ¢, ~ e ke Z°.
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Proof.  First of all note that for any vector h € £,(c), ¢ € IP
the process {hWi(t,w)}reze = MW (t,w) has P a.e. w € Q £p(c)-
valued continuous on t € [0,00) paths. This fact follows from the
Kolmogorov theorem and estimates

E[[AW 07, < (X ahl)CPPE( Y ahf|Wit)]) =

kezd kez?

— [|A]l2 2B [Wo(1)t < oo

E||h(W () = W(EDIE o =E(Y chf|W(t) = W(s))"? <

kez?

< (X ahl) PR (Y ahi|[Wilt) — Wi(s)|?) =

kez? kez?

= [[AlI o) (t = $)E [Wo(1)]4 < o0

where we used Holder inequality and the properties of cylinder Wiener
process, W, is a Wiener process at point 0 € Z? of lattice.
Now consider the F;-adapted process

H(t) = H', for t € (t;tin], i >0, and H(ty) = H® for ty =0,

where all H are F;,-measurable and H' € L..(2, P;{,(c)). Then due
to the continuity of terms H'(w)(W (t,w) — W (t;,w)) the stochastic
integral, defined by

{fo }k—
g LWi(ty1) = Wilty) + Hi(Wi(t) = Wi(t:),  t € (ti tir]

and Z,(0) = 0 has £,(c) pathwise continuous version and is a martin-
gale. B

Therefore for £,(c)-valued continuous martingale Z(t) due to |8,
Th.3.8] we have inequality

~ q ~
E sup [[Z®)[* < (——=)" sup E|Z(?)[| (33)
t€[0,T] q—1 t€[0,T]

where the r.h.s. norm is finite by assumptions on H* € L.



Regularity of infinite dimensional heat dynamics 111

By Ito formula for f(Z(t)) = || Z(t MZ, o

F(Z(1) = +q/ 1Z(s)IE ey D enlZu(s)P~" Hils)dWi(s)+

kezd

L ck|Zk(s)\p‘2fI,§ds+

kezd

aa ~r) / 1ZG)22 S @1 Z(s) oD HE(s)ds
keZz?

and due to > |dibg| < > |dk| > |bk| one has

9t~
E / 1ZNER NI o ds
0

Finally, using (33), we obtain

=~ q(q
EZWOI,. <

E sup || Z(t)]lf <
te[0,7

< (L)1t s[up [¥AG] e fo IH ()2 oyds <

< Ky(B sup [|Z(0)|[f ) 2 B (fy [H(s)]2 ) ds)"*)

te[0,T
This leads to
- ) oo~
E sup |Z(DI7, < K{*E ([, IH ()7 (yds)?? <

t€[0,7]
9 _ T 7
< K¥7(@2/a I E [H(s)|7, s

and gives the statement of theorem for all functions of H type. Due
to their density, closing inequality (32) we have the definition of
stochastic integral and inequality (32) for all . Moreover, the martin-
gale property of Z(t) and its P a.e. continuity is a simple consequence
of estimate (32)

t t T
E sup | HldW—/ Hdwle ., qu,T/ E |, - WLt
0 0

tefo,7]  Jo
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which gives uniform on [0, 7] convergence on measure and therefore
P a.e. convergence on subsequence.
To prove Ito formula, first note that

()17 = 1) + p fo lw(s) [~ { @i (5)dWi(s)+

+ W (s)ds} + P [T i (s) [P 207 (s)ds

Summing up on k € Z? with weights ¢, we have Ito formula for
7k () 1|5 (¢ Which immediately gives (30). O

Theorem 3. For 2° € ﬁp(kF+1)2+€(a), e >0, p> 2, equation (4)
has a unique strong solution, i.e. Fy-adapted continuous C,(a)-valued

process y°, which satisfies (4) in the sense of (E sup || - ||Zp(a))1/q
te[0,T
topology, q > 2. It admits a representatz’on as a sum of {,(a)-valued

continuous martingale My(t fo dW and l,(a)-valued conti-
nuous finite variation process VO = — fo y)+Ay°)ds and fulfills
estimate
Va2 swp Byl <o (31)
t€[0,T] p(kp+1)
For 2° € (,(a) there is a unique generalized solution y°(t,z°),
i.e. a limit of strong solutions in the sense of ( sup E|| - ||zp(a )ia
te(0,T
topology, q > 2 and the following estimate holds
Vg 3C,p, Dyp :
sup B [[y°(t, 2°) 17 oy < €T (|12°117 (o) + Do) (35)
te[0,T]
Moreover

3C; , Va0, y° € £y(a) -
"sup Bly°(t,2%) — 10t g1 ) < ChoTa0 3L, (36)
te[0,T
Remark, that the construction of solution y°(¢,2°) in the ¢,(a),
p > 2 spaces is required for the proof of differentiability with respect
to the initial data.
Proof is quite standard. It uses some infinite-dimensional Lipschitz
approximations of equation (4) with a successive application of mo-
notone methods, like in [10, 11]. Being a little technical result, it is
ommitted. O
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Theorem 4. Let my > |7|, m, = my /|| and vectors {c,;} C IP fulfill
(26). ThenVz° € €y(a) and zero-one initial data T., (23) the equation
(21) has a unique strong solution y. in space EmT(cT), i.e. there is F-
adapted C,, (c;)-valued continuous process y,(t,x%; T,y C ) such
that it fulfills equation (21) in the sense of (E SElp 1117, )

topology, ¢ = m..

]t is represented as a sum of Ly (c;) continuous martingale
M. (t) = [[(B'(y yT + ) dW and Ui, (c;) continuous finite va-
matzon process Vo(t) = — fo (F'(y°)y, + Ay, + ©I')ds. Moreover, the
following estimate holds: ¥Yq > m, YR > 0 3K, (R) such that

sup E ||yT(t .Z’ x’vay - T)Hfm (er) S KT(R) (37>

t€[0,T]
for R = max(||2°llez @y |15 e (e 7 € 7)-

Proof. The solvability of equations (21) is obtained inductively with
respect to the number of points in set 7 = {j1, ..., jm}, Ji € Z®. First
of all note that at |7| = 1 the inhomogeneous parts ¢? = pI' =
and the proof of inductive base coincides with the proof of inductive
step.

We prove more general result: if for any v C 7, |y| < |7| the
statement of Theorem 4 holds in scale {€,, (d'c,)},c, for any i >
0, then the same is true for 7. Vector d € IP is such that d, >

_(kFH te)m
for some € > 0.
Introduce notations F§(z) = A(z)F'(z) and B} (x) = A«x)B'(x)
for A € C*(IR*,[0,1]) such that for some Ny > 0

Ax)=0 for |z > Ny+1 and Az)=1 for |z| <N, (38)
and consider the approximating equation to (21)

yp (1) = Tur + [oABAWDYR , + 0B YdWi—
(39)

— JAE @D + (Ayd)e + of s

Remark that hierarchy (26) holds for vectors {d'c, } at any fixed i > 0
and that the zero-one initial data Z, € £,, (d'c,) at any i > 0.
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Step 1. Equation (39) has a unique strong solution y» in space
by (d'c;), i.e. there is Fi-adapted €, (d'c.)-valued pathwise conti-
NUOUS PTOCESS
y(t, 2% Ty, C 1)
such that it fulfills equation (39) in the sense of (E sup [|-|I} . ))1/‘1
te[0,7) mr AT

- topology, q > m,, and admits a representatz’on as a sum of conti-
nuous martingale M (t fO{BA )y + goT BYAW and continuous
finite variation process VA fo {F{(y®)y2 + Ay + ol ds.

Indeed, in the Banach space of Fi-adapted £,,, (d'c,)-valued path-
wise continuous processes 7)(t) equipped with a norm

Inlles = (B sup [n(®)2 o)
t€[0,T
introduce a map
t t
UN)K(t) = Tk » +/ ngde —/ gpdes—l— (40)
0 0

+/0 B (yp)mi(s)dWi(s /{F)\ Yimi(s) + (An)i(s) bds

By Lemma 1 and due to the boundedness of coefficients Fy, B
and
| All £, (dicr)) < 00 We have

prUn',Un*) =E sup |lUn' —UP|] .\ <
te[0,T

T T
< Mosir [ BIN) = PO, s < Mo [ o' )i

M™
Therefore prU™nt,U™p?) < —= =

such that the map U™ is a strict contraction in ||| Forny =0
by Lemma 1 we have

— 22T pr(nt, n?) and there is my

ol < (177 le,., @ic)

+C1 sup (E ||<p ||€ dlcf))l/q +Cy sup (E ||‘Pf||zm7(di07)>l/q
te[0,T) t€[0,T]
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Above we used inequality

B0z ds] " <

1/q o (41)
-1/q r a I
< 760/ (B [ 12]ds) gT<sup Euztu)

te[0,T

for any F;-adapted Banach space valued process Z;.
By [2, Theorem 4.15] with Q(-) = F©®)(:) or B®(.), (*=¢, =

... =y, =0, s = ( and Holder inequality with r; = ‘leir‘l, i=1,...s,

+ 1 imply for P = ! or B (22)

D
(sup BILIL, )" <
€[0,T]

7’0:|7'

<K 5 (sup B[yl o))

x [[(sup E(1+ ||y7j||ng‘(dicyj))qrj)1/qrj
J=1 tel0,T) ’

which gives [|[Un]|,; < oo by (35) and inductive assumption. Therefore
the sequence {U™ng}m>1 converges in || - ||,;; to some Fi-adapted
. (d'c;)-valued pathwise continuous process y?. By Lemma 1 se-
quence (40) converges to (39) with corresponding martingale and

finite variation parts.
Step 2. Vi > 0Vqg>1 dC; such that

sup sup B gXf ) < Cs (43)
X tel0,T) T

where supremum is taken over all functions A € C* (IR, [0, 1]), which

Fulfill (38).

Indeed, by Ito formula for ¢ > 2m,
Bt = BN Y e, = h(O0)+

t
40 [ BIANE ey < W25 0B = A2 = 68) >0, oy ds+
0

q(mT B 1) ! —mr
1= R < G2 (B + )7 0 e dst
0
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+Q(q - m'r) tE ” )\Hq—?mr Z A2 2 | A |2(m7—1)(B/ A + B )2d
5 ; Y, (dicy) k Ck,r Yk, Air T Prr) as
kez?

Inequality (7) and property 0 < A(+) < 1 give that VM IK ),

—F{(z) + M[B}(2)]* = =) F'() + MX*(2)[B'(2)]* <

< “A@)F'(2) + MA@)[B (@) < A() Ky < Kuy

Using boundedness of || A||z«,, (aic, ) and inequalities

m— m-—=p m p m
Do < fukl Y Jul,y J2 ™yl < - |z +E|y| (44)

* m 2 m 1 m 1
<N 2y >0 | < S+ .
| <2y >0 | m ||C||zm( ) mHIHZ’"( ) m||?/

m
ém(c)

we obtain

B(t) < h(0) + (ql| Al + qFyr + (g — 1)) / h(s)ds+

t t
+ [ BIGEIL eyt 20— 1) [ BICEI, gods @9

For inductive base oI = P = 0, |7| = 1, therefore by Gronwall-
Bellmann inequality the statement of Step 2 holds for any ¢ > 0.
Inductive assumption (37) in any £, (d'c,), |y| < |7], (35) and
(42) give the boundedness of the last two terms in (45). Then the
application of Gronwall-Bellmann inequality finishes the proof of
(43).

Step 3. Vi >0 Vq > 1 for functions \, u which fulfill (38) we have

sup Bllyd —v2¢  yoy =0, NuN,—oo  (46)
te[0,T
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Like in Step 2 by Ito formula for ¢ > 2m,
W) =By =217 ey = =Sy Bllu — w2017 e %

Xy =y, (v — v Fly? — Foyk + Ay — v })ds+

q—mr
ém-,- (dl C-r) X

+ame=l) (VR [y — g

X((y2 = )", (BA\y} = Boy)) e, (aie.)ds+

q—2mr
m (dl CT)

alaom) (VR [|y) — e

x 3 dP e, — v PV (Bl — By ) ds
kez?

Using inequalities (44) and coordinate relations
F)y2 = FL "y = (A@°) = uy) F %)y + ) F (%) (2 — yt)
(BA(Y")yy = BL(y")yr)? <
< 22 (y")[B' (") (w7 — ) + 2(0(5°) — (y)?[B' (") (92)* <

< 2u(y")[B' (") (v — v2)* + 2(A (") — n(@”)?[B' (") (12)?

we obtain
h(t) < (allAll + (g = 1)?) Jy h(s)ds +q [y E 1y} = y2 117 ") %

Xy — )%, (= ) PuO{—=F'(4°) + (¢ — D)[B'(y°)]*}) + ds
+ [BING) = nGDFOORI, eyt @)

201 [ BIN) = woDB G, ods 69
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Due to conditions (8)-(9) for 0 < A(-) < pu(-) <1

+1
2

[F' () AwR) — m(yi)] < Kx{lypl = Nap(1 + |y2|2)kF <

_(@
< Ka, °*

1

kp+
i {lofl = Niban + anlyfl?)
" (19)

_( +1+ ) 012 k +1
< Ka, °* : [akIyNkL F(1+ H?JOHZ(a)) <

A

+e) <

k +1
—(=5 =) k
K 2 Ft1
S ak Ngs (1 _|— ||y0||?2(a)) 2 e

where x{A} denotes the characteristic function of set A.
Kyt

(=5 —+e)m

Therefore for dj, > a,, " we have estimate on (47)

sup B0 = sy F GO ey <

te[0,T
K1
< Néquqsup E(1+ ||y0’|32(a))( o +€)q||y7)-\||zm7_(di+1cq—) — 0, (50)
A te[0,7
]\/‘)\,]\7‘u — 00

where we applied (35) and statement of Step 2. The analogous con-
vergence holds for term (48). Using 0 < u(-) <1 and (7) we have

h(t) < (gl Al + aFyor + (g — 1) / h(s)ds + by,

with 9y, — 0, Ny, N, — oo. By Gronwall-Bellmann inequality we
obtain (46).
Step 4. End of the proof: Theorem 4 is fulfilled for y, in any space
by (dicy), i > 0.

By Step 3 there is Fi-adapted £, (d'c,)-valued process y* (t, 2°;
T,y C T) such that Vg > m,

q

sup Elly? — oM7) =0, Na— oo (51)

te[0,7

To construct the strong solution y, it is sufficient to prove that the
equation (39) converges to (21) in the topology (E sup ||| Yi/a
te[0,7

ém-,- (dl C-r)
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when Ny — co. By Lemma 1 and choice Bj(z) = \(z)B'(z)

t
(E sup || [ {B\u")yp — B' WO YdWI] (i) <

t€[0,T] 0
< Ky thBpT ](E 1AW = DB @)L, (o) (52)
e )
+K, AT Sup (BB ~ v, we ) (53)
e El

Like in (50) the term (52) tends to zero at Ny — oo. To the
second term we apply |2, Theorem 4.15]

(53) < C sup [B(1+ 9 lles(a) 2 ®r |y — v
te[0,T)

q 1/q
ém-r (di+1c7-)] — 0,

NA—>OO.

Above we also used (51) and (35). Therefore the stochastic integral in
(39) converges to the stochastic integral in (21) and gives £, (d'c,)-
pathwise continuous martingale. The convergence of continuous finite
variation part of (39) to the corresponding part of (21) is checked in
a similar way.

We obtain, that the r.h.s. of (39) converges in topology (E sup ||
te[0,7

ZYLT(dicT))l/q’ thus the Lh.s. ) of (39) also has a limit in the same

topology: 3y, such that y» — y., Ny — oo. Such convergence
improves (51) and provides a necessary strong solution y, as £, (d’c,)
pathwise continuous modification of y#.

The uniqueness of strong solution g, is proved by induction on
|7|. Suppose that we have shown the uniqueness for all |y| < |7|. By
Ito formula for two different solutions ! and y2? we have in analogue
to Step 3

h(t) = E|ly; — y?

t
! e S AlANfy h(s)ds+

t . ,
+¢ Jy Ellyr — w215 "Gy 2o dicrrlyi, — vi"x
kez?

<{=F"(y) + (¢ — D[B' W)} < (qllAll + ¢Kym1) fy h(s)ds
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where we used (7). By h(0) = 0 we obtain h(t) = 0 which gives the
uniqueness.

It remains to show estimate (37). By Ito formula for strong
solution y, to (21) and by (44)

h(t) =E|ly-ON7, giey < NT7, @it
(@l Al + (g = 1)) fy h(s)ds + g fy B lly-(Ol17 e, %

X 33 dicrrlye " {=F'(yR) + (¢ — 1) [B'(y))]* }ds+

kez®
+fo E ||<PT b (dicy ds +2(¢g—1) fo E HQOT b (dlc-r)ds
We use (35), (7) and inequality (42) to obtain
M) < Tl e + K(R)+
(54)
(| All + a1+ (@ = 1)) fy
and therefore (37), which ends the proof of Theorem 4. O

4. Nonlinear estimate on variations (Proof of
Theorem 2).

First we restrict to the case 2¥ € 62(kF+1)2+6(a), e > 0, i.e. when

1" is a strong solution in the sense of Theorem 3. Introduce notations

hl y7 =E Zps Zt Z ||y'y||Z;(cw)]7 = 1, ceey |T‘

YCT, [vl=s

9v(t) = Bpi(z)lly, Oy, oy, =i (55)
If we prove that for all vy C 7, |y| =i andi=1,...,|7]

t
() <P, (0) + Dy [ PO yis)ds (56)
0

then we will have the recurrence base and step for the statement of
Theorem at i = |7|.
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By Ito formula

0 o (HEPp) () ds—

0,() = 9,(0) - / E|ly,

t
—mfy/ Epi(2) < 45 s [F' (00)yy + Ayy + 03] >0, () dst
0
my(m, —1) [*
+f/ Epi(z) <2, [B'(")yy + @0 >0, (c) ds+
0

+2m~,/ Epi(2)) _arcerti BN YeAl™ v { B () Yn + i, Hs
kez?

where we used notation (31) and operator H*® acts on smooth
function f(-) by rule

(52 )(o) = S =5 B0n) gy + (Flan) + (Ah) 3} )
kez?

Immediately remark that for functions p which fulfills (27) the fol-
lowing property takes place

3¢, € R H"Pp(z) > —Cip(2) (57)

for 2 =1+ |27, ) Indeed,

HF’B]D(Z) = Z CLk{2F(SL’k)fL’k — B2(flfk) — 2(A:L’)kxk}p’(z)—

kez?

- Zd20232($k)93ip2’(2) > =2|| All £(es(a)) 20" (2)+
keZz

+ 3 {2F (wp)xp — B ()} (2) — 220p7 (2)] Y2 axB*(xy) >

kEZd kezd

> =2 AlCp(z) + 3 ar{2F (z)zr — (14 20) B () }p/(2) >

kez?

> 2| A|Cp(2) + ¥ ar{—FKiaf — Ko}p'(2) >

kez?

—(2[A[[C + (K1 + K2)C)p(z) = —Cip(z)
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where we successively applied > |ugvr| < D7 |ug| D k|, (27), (6) and

Z Qp = 1.
Using (44) and (57) we obtain

6x(1) < 92(0) + (Cr + ma | A + (m — 1)?) / gr(s)ds

+mv/0 E pi(2:)(y3 = F'(43) + (my = DB W)} e, () A5+

+ [y Epi(z) |l F le,) (e ds
(58)
t
+2(m», -1) fo Epi(zs)H% ||me(%)ds+

t
Lom, Ky / E 2,l(2) < 5% (1+ B WO >0 o) ds +
0

t
Lom, Ky / E 2.l(2) < 35 (1+ [B'0O))1e? >0, (o) ds
0

Assumption (27), applied to (58), (27) and (7) lead to
9+(t) < g,(0) + (C1 +m, [|A[| + (my, — 1)* + 2m, K, C+

F2K3C (my — 1) + my Ko —142k,0) fy 97(5)ds+
(59)
+f0EpZ 2 ||<p || d8—|—2(m7—1)f Epz(zs)Hcp ”Zm (cw)deL
+2K3C fOtEpi<Zs>H(1+ 1B' W)@ ) e )d
All terms in (59) have the same structure

/0 E pi(z)| > D) Vel

aiU...Uas=vy, s>2

ds (60)

m (C’y)

where function D8(-) = F®)(-), B&(.) or (14 |B'(:)|)B¥(-). Using
condition (8)-(9) and property 2kp < kp we estimate (60) by

60 <K1 Z / Epz Zs

ajU..Uag =1,
s>2

X Z Ckv“/[DS@l(c))]mvlyk,al|mv---|yk,'ys|mvd5 <

kez?
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K
<Klzf0EpZ Z5) Y. Ckaq, 20X
kezd
(61)

k.1
x(a + arlyd?) T ™ ko ™ Ykl ds <

+1

Z /Epzzs E "

ajU..Uas =7,
s>2

F+1
XY nay, 2 kel ™ Yk, ™ ds
kez?

By hierarchies (26), (28) we obtain
(61) < K1 K,/ "%

X Z K(i{b‘_7as;'y fOtE Z {p\aiI(zs)Ck,ai mai}\ail/\’ﬂds S

ajU..Uas =7, kez?
s> 2

< K1K1/M ZK%I,VI,%,VZE / pml' = Hym

< KRR max K0l e, B )

arlU.. .Uas=yCT

ykvai

ds <

Zma (Cai )

Here we used V5 = 1,..,s || < |y| and inequality |zy...zs| <
|21 |7 g1 + ... + |xs]% /qs With ¢; = |v|/]ey|. Finally we have

t t
g+(t) < g,(0) + Dy / G+(8)ds + D R (y; s)ds
0 0

which leads to (56) and proves the quasi-contractive nonlinear estimate
for 2° € fz(kF+1)2+€(a), e > 0. The closure to z° € ¢5(a) is done with

application of estimates (36), (62) and polynomiality of p;. O

5. Regularity of variations and Proof of Theorem
1.
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Before the study the differentiability of y°(¢,2°) on variable z°
we obtain the continuity of variations with respect to initial data
2. This result will be applied to close the nonlinear estimate on
variations from x° € Ep(k+1)2+a(a) to 2% € l5(a) and to prove C*-
differentiability of y?(z°) with respect to the initial data z°.

Theorem 5. Let my > |7|, m, = my/|v|, vectors {c.} C IP fulfill
(26) and T be zero-one initial data (23). Then Yq > m, VR >
0 3K, (R) such that ¥a°, y° € ly(a) the variations fulfill

q
ém-,- (CT) S

sup E|[ly-(t,2% %,y C7) —y-(t,y% Ty, 7y C 7)
te€[0,T

< K, (R)]2° - 4|1,

with R = max(|a® | ea(a), 19 lles @y 15 e aer)) Jor dic > :
ke z.

Proof is similar to the proof of nonlinear estimate on variations and
proceeds with application of Ito formula instead of pathwise estimates
of [2, Th.4.18|. O
To obtain the integral representation of Theorem 6, we need
the following Lemma, which gives uniform on |7]| < ng estimates on
variations. This result is also required for the study the high order
differentiability of the stochastic flow and heat semigroup P;.

Lemma 2. Under conditions (5)-(9) for zero-one initial data T., (23)
we have

Vip € IPVYn>1Vq>1 3AK,(R,1,q) such that

0 ~ \lq —LEHq(\TI—l) -1
sup E |y, (t,2°,7,)|? < Ko(R, 9, q)a, [Tved (63)

t€[0,T] jer

sup E |yk,T(t7 'rov g“/) - yk,T(tv y07 g“/)|q <
te[0,7
k

ke (64)
SKn(R7w7Q)ak I; a2l

) _
[T vill2° = °ll%, )
JET

with R = max(||2°||eya)s 19° ]| e2(a)) -
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kFHm1 H‘\*‘l

. . . ~ . 2 vy

Proof uses a special choice of weights ¢, = q, [T ¢e—j,
&y

v C 7 with my «f q|7| and coincides with proof of |2, Corollary 4.19].
It can be omitted. a

Now we turn to the differentiability of process y° (4) with respect
to the initial data.

Theorem 6. Let F, B satisfy conditions (5)-(9). Then V' € ly(a),
zero-one initial data T, (23) and h € AC([a,b]) for allt € [0,T] and
P a.e. w e Q the path

X'() =yt 2" + h()) — y°(t, 2" + h(a)) € AC([a, b))

In particular, in any space ,(c), ¢ € IP, p > 1 its derivative is given
by first order variation

b

P20+ 0| = e / S iyt 20+ h(s)H(s)ds  (65)

a @ jezs

Space AC([a,b]) was introduced in (16).

Proof. First we prove representation (65) for initial data 2° €
ﬁml(kFH)Q%(a), e > 0, in space L,(Q2, P, 4, (1)), ¢ > 1, with vector
kF+1

c1 € IP such that diycp1 < ay for dy > a, 2 "™ Due to Theorem
3 for 2° € Eml(kFH)erE(a), e > 0, there is a strong solution 3° to

equation (4) in space with topology E sup || - |7 (o) and estimate
te[0,7) 1

holds E ||y°(¢, 2°) — yo(t,yO)HZml(a) < eYalt||z0 — yo||gm1 (a)- nequality
|+ llem; 1) < I+ e, (o) implies that for function h € AC(]a,b]) the
map [a,b] 2 s — y°(t,2° + h(s)) € L(Q,P, 4, (c1)) is absolutely
continuous. The theory of absolutely continuous functions in reflexive
Banach space gives that for a.e. s € [a,b] there is L,(Q, P, 4y, (c1))

d
strong derivative d—yo(t, 2% 4+ h(s)) and representation holds
s

D2+ h)| = L@ Pt (1) / %yO(t,xuh(s))ds (66)

a
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To reconstruct the strong derivative let us show that for h €
AC([a,b]) and a.e s € [a, b] such that

h(s+ a) — h(s)

lim ||

a—0

— B (8)lmy (@) = 0
the convergence holds

Ye(t, 2% + h(s + @) — yp(t, 2° + h(s))

sup E '
te[0,T

q

— 22 Ykt YO (s)

jez?

—0, a—0
Zm1(cl)

Further proof coincides with the proof of [2, Th.4.20] with use
of Tto formula instead of pathwise estimates. O
Next Theorem states any order differentiability of process y°(t, z°).

Theorem 7. Let F, B fulfill conditions (5)-(9). Then Va® € {y(a),
zero-one initial data T, (23) and h € AC([a,b]) (16) we have for all
te[0,T], P ae weQ andVk € Z%, V1 the path

Xbir () = Yrr(t,2° + 1)) = yir(t, 2° + h(a)) € AC([a, 1], R')
In particular different order variations are related by

b
/ S roy (b, 20 + h(s)l(s)ds

¢ ez

Ynr (t.2” + h(-))

b
a

Proof. Like in the proof of Theorem 6 we first consider initial data
¥ € €m1(kF+1)2+€(a), e > 0, for some m; > |7|. Choose vectors

{¢n}n>1 so that
Vk € Z° Chnt1de < Crmy  Cradr < ag (67)

Kp+1
with dj, > a,;FTml. These vectors obviously satisfy condition (26).
Introduce notation X, = ¢y, (c}-). Applying Theorem 5 in scale
{Xjr} and inequality || - [|Ix,,, < const| -|[x,,, we have the absolute
continuity of the map

[a, b] 28— yT(t,xO + h(S)) € Lq(Qa P>X\T|+1)
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for any ¢t € [0, 7] and h € AC(]a,b]). The theory of absolutely conti-
nuous functions implies the existence of strong derivative

d
L,(9,P, X|T‘+1)%yT(t,x0 + h(s)) for a.e. s € [a,b]

and gives representation

p(t, 2+ 0| = L@ P X / %yT(t,onrh(s))ds (68)

a

If we prove by induction on || that for a.e. s € [a, b] such that

i | h(s + 02 — h(s)

a—0

W)y @ = 0 (69)

the convergence holds

0 _ 0
o B ' (b 2° + h(s + ) =yt 20+ h(s))
t€[0,T) «
‘ (70)
— 22 Yrruih(s) — 0
jez? Xr 141

for v — 0, then the representation (68) will lead to

b b
= Lq(Q, ].:)7 X|T‘+1> / Z Yru{jy (t, l’0+h(8))h;(8)d8

a @ jez?

Y- (t, 2" +h("))

This gives the P a.e. coordinate equality: Vk € Z¢

b

rlta® +BO)| = [ 3 phroip(ta® + (s (1)

a @ jeZ?

with integrable for P a.e. w € () right hand side
> vkrop(ta® + ROIR(C) € La(la, 0], IRY) (72)
jez?

Further proof proceeds similar to |2, Th.4.21|, with the use of
Ito formula for convergence (70) instead of pathwise estimates. W
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The developed above technique is sufficient for the study of
differentiable properties of Feller semigroup P, (10).
Proof of Theorem 1. It completely coincides with one, conducted in
[2, § 4.6] for the unit diffusion case. The only difference is that, using
representation

I7|

0-Pf(x") =" Y E<df).yy ® ... 0y, > (t,2°) (73)

o=ly1U..Uys=T

with variations y., (21) and

< a(o)f(y0)>y’Y1 ®...Q Yo > (t’xo) -

= > Ot F WO )y, a0 (8, 2°0). 4, (8, 20)

jl7"'7j0€zd

one should use existence of majorant to show the measurability of
derivatives 0, P, f(x). O
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