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Abstract. This paper is devoted to convergence theorems which play
an important role in our scheme for deriving theorems on the existence
of solutions of the Beltrami equations.
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1. Introduction

Let D be a domain in the complex plane C, i.e., a connected and open
subset of C, and let µ : D → C be a measurable function with |µ(z)| < 1
a.e. The Beltrami equation is the equation of the form

fz = µ(z) · fz (1.1)

where fz = ∂f = (fx + ify)/2, fz = ∂f = (fx − ify)/2, z = x + iy, and
fx and fy are partial derivatives of f in x and y, correspondingly. The
function µ is called the complex coefficient and

Kµ(z) =
1 + |µ(z)|
1 − |µ(z)| (1.2)

the maximal dilatation or in short the dilatation of the equation (1.1).
The Beltrami equation (1.1) is said to be degenerate if ess supKµ(z) = ∞.
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Recall that a function f : D → C is absolutely continuous on lines,
abbr. f ∈ ACL, if, for every closed rectangle R in D whose sides are
parallel to the coordinate axes, f |R is absolutely continuous on almost
all line segments in R which are parallel to the sides of R. In particular,
f is ACL (possibly modified on a set of Lebesgue measure zero) if it
belongs to the Sobolev class W 1,1

loc of locally integrable functions with
locally integrable first generalized derivatives and, conversely, if f ∈ ACL
has locally integrable first partial derivatives, then f ∈ W 1,1

loc , see e.g.
1.2.4 in [9]. For a sense-preserving ACL homeomorphism f : D → C,
the Jacobian Jf (z) = |fz|2 − |fz|2 is nonnegative a.e. In this case, the
complex dilatation µf of f is the ratio µ(z) = fz/fz, if fz 6= 0 and µ(z) = 0
otherwise, and the dilatation Kf (z) of f is Kµ(z), see (1.2). Note that
|µ(z)| ≤ 1 a.e. and Kµ(z) ≥ 1 a.e. Given a function Q : D → [1,∞],
a sense-preserving ACL homeomorphism f : D → C ia called a Q(z)-
quasiconformal mapping if Kf (z) ≤ Q(z) a.e., see [11].

Recall also that, given a family of paths Γ in C, a Borel function
ρ : C → [0,∞] is called admissible for Γ, abbr. ρ ∈ adm Γ, if

∫

γ

ρ(z) |dz| ≥ 1 (1.3)

for each γ ∈ Γ. The modulus of Γ is defined by

M(Γ) = inf
ρ∈adm Γ

∫

C

ρ2(z) dx dy. (1.4)

Motivated by the ring definition of quasiconformality in [6], we in-
troduce the following notion that extends and localizes the notion of a
quasiconformal mapping. Let D be a domain in C, z0 ∈ D, and Q : D →
[0,∞] a measurable function. We say that a homeomorphism f : D → C

is a ring Q-homeomorphism at the point z0 if

M(∆(fC0, fC1, fD)) ≤
∫

A∩D

Q(z) · η2(|z − z0|) dx dy (1.5)

for every ring

A = A(z0, r1, r2) = {z ∈ C : r1 < |z − z0| < r2}, 0 < r1 < r2 <∞,

and for every continua C0 and C1 in D which belong to the different
components of the complement to the ring A in C, containing z0 and ∞,
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correspondingly, and for every measurable function η : (r1, r2) → [0,∞]
such that

r2∫

r1

η(r) dr = 1. (1.6)

2. On convergence of Sobolev’s functions

First of all let us recall necessary definitions and basic facts on the
Sobolev spaces W l,p and Lp, p ∈ [1,∞]. Given an open set U in R

n

and a natural number l, C l0(U) denotes a collection of all functions ϕ :
U → R with compact support having all partial continuous derivatives
of order at most l in U. ϕ ∈ C∞

0 (U) if ϕ ∈ C l0(U) for all l = 1, 2, . . ..
A vector α = (α1, . . . , αn) with natural coordinates is called a multi-
index. Every multi-index α is associated with the differential operator
Dα = ∂|α|/∂xα1

1 · · · ∂xαn
n where |α| = α1 + · · · + αn.

Now, let u and v : U → R be locally integrable functions. The
function v is called the generalized derivative Dαu of u if

∫

Ω

uDαϕdx = (−1)|α|
∫

Ω

v ϕ dx ∀ϕ ∈ C∞
0 (2.1)

The concept of the generalized derivative was introduced by Sobolev
in [13]. The Sobolev class W l,p(Ω) consists of all functions u : U → R in
Lp(U), p ≥ 1, with generalized derivatives of order l summable of order
p. A function u : U → R belongs to W l,p

loc(U) if u ∈ W l,p(U∗) for every
open set U∗ with compact closure U∗ ⊂ U. A similar notion introduced
for vector-functions f : U → R

m in the component-wise sense.

A function ω : R
n → R with a compact support in B is called a

Sobolev averaging kernel if ω is nonnegative, belongs to C∞
0 (Rn) and

∫

Rn

ω(x) dx = 1 (2.2)

The well-know example of such a function is ω(x) = γϕ(|x|2 − 1
4) where

ϕ(t) = e1/t for t < 0 and ϕ(t) ≡ 0 for t ≥ 0 and the constant γ is chosen
so that (2.2) holds. Later on, we use only ω depending on |x|.
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Let U be a nonempty bounded open subset of R
n and f ∈ L1(U).

Extending f by zero outside of U, we set

fh = ωh ∗ f =

∫

|y|≤1

f(x+ hy)ω(y) dy =
1

hn

∫

U

f(z)ω

(
z − x

h

)
dz (2.3)

where fh = ωh ∗ f, ωh(y) = ω (y/h) , h > 0, is called the Sobolev mean
function for f. It is known that fh ∈ C∞

0 (Rn), ‖fh‖p ≤ ‖f‖p for every
f ∈ Lp(U), p ∈ [1,∞], and fh → f in Lp(U) for every f ∈ Lp(U),
p ∈ [1,∞), see e.g. 1.2.1 in [9]. It is clear that, if f has a compact support
in U, then fh also has a compact support in U for small enough h.

A sequence ϕk ∈ L1(U) ia called weakly fundamental if

lim
k1,k2→∞

∫

U

Φ(x) (ϕk1(x) − ϕk2(x)) dx = 0 ∀Φ ∈ L∞(U)

It is well-known that the space L1(U) is weakly complete, i.e., every
weakly fundamental sequence ϕk ∈ L1(U) converges weakly in L1(U),
see e.g. Theorem IV.8.6 in [3]. Give also the following useful statement,
see e.g. Theorem 1.2.5 in [7].

Proposition 2.1. Let f and g ∈ L1
loc(U). If

∫
f ϕ dx =

∫
g ϕ dx ∀ϕ ∈ C∞

0 (U), (2.4)

then f = g a.e.

Later on, in comparison with [11], we apply the following lemma in-
stead of Lemma III.3.5 in [10] which is not valid for p = 1.

Lemma 2.1. Let U be a bounded open set in R
n and let fk : U → R

be a sequence of functions of the class W 1,1(U). Suppose that fk → f
as k → ∞ weakly in L1(U), ∂fk/∂xj, k = 1, 2, . . ., j = 1, 2, . . . , n are
uniformly bounded in L1(U) and their indefinite integrals are absolutely
equicontinuous. Then f ∈ W 1,1(U) and ∂fk/∂xj → ∂f/∂xj as k → ∞
weakly in L1(U).

Remark 2.1. The weak convergence fk → f in L1(U) implies that

sup
k

‖fk‖1 <∞,

see e.g. IV.8.7 in [3]. The latter together with
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sup
k

‖∂fk/∂xj‖1 <∞,

j = 1, 2, . . . , n, implies that fk → f by the norm in Lq for every 1 < q <
n/(n−1), the limit function f belongs to BV (U), the class of functions of
bounded variation, but, generally speaking, not to the class W 1,1(U), see
e.g. Remark in 4.6 and Theorem 5.2.1 in [4]. Thus, the additional condi-
tion of Lemma 2.1 on absolute equicontinuity of the indefinite integrals
of ∂fk/∂xj is essential, cf. also Remark to Theorem I.2.4 in [10].

Proof of Lemma 2.1. It is known that the space L1 is weakly complete,
see Theorem IV.8.6 in [3]. Thus, it sufficies to prove that the sequences
∂fk

∂xj
are weakly fundamental in L1.

Indeed, by definition of generalized derivatives we have that
∫

U

ϕ(x)
∂fk
∂xj

dx = −
∫

U

fk(x)
∂ϕ

∂xj
dx ∀ϕ ∈ C∞

0 (U) (2.5)

Note that the integrals in the right hand side in (2.5) are bounded linear
functionals in L1(U) and the sequence fk is weakly fundamental in L1(U)
because fk → f weakly in L1(U). Hence, in particular,

∫

U

ϕ(x)

(
∂fk1
∂xj

− ∂fk2
∂xj

)
dx→ 0 ∀ϕ ∈ C∞

0 (U)

as k1 and k2 → ∞.
Now, let Φ ∈ L∞(U). Then ‖Φh‖∞ ≤ ‖Φ‖∞ and Φh → Φ in the

norm of L1(U) for its Sobolev mean functions Φh, and hence Φh → Φ
in measure as h → 0. Set ϕm = Φhm where Φhm → Φ a.e. as m → ∞.
Considering restrictions of Φ to compacta in U, we may assume that
ϕm ∈ C∞

0 (U). By the Egoroff theorem ϕm → Φ uniformly on a set
S ⊂ U such that |U \ S| < δ where δ > 0 can be arbitrary small, see e.g.
III.6.12 in [3]. Given ε > 0, we have that

∣∣∣∣∣

∫

S

(Φ(x) − ϕm(x))

(
∂fk1
∂xj

− ∂fk2
∂xj

)
dx

∣∣∣∣∣

≤ 2 · max
x∈S

| Φ(x) − ϕm(x)| · sup
k=1,2,...

∫

U

∣∣∣∂fk
∂xj

∣∣∣ dx ≤ ε

3

for all large enough m. Choosing one such m, we have that
∣∣∣∣∣

∫

U

ϕm(x)

(
∂fk1
∂xj

− ∂fk2
∂xj

)
dx

∣∣∣∣∣ ≤
ε

3
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for k1 and k2 large enough. By absolute equicontinuity of the indefinite
integrals of ∂fk/∂xj there is δ > 0 such that

∫

E

∣∣∣∂fk
∂xj

∣∣∣ dx ≤ 1

12

ε

‖Φ‖∞

for all k = 1, 2, . . . and every measurable set E ⊂ U with |E| < δ, see
IV.8.10 and IV.8.11 in [3]. Setting E = U \ S, we obtain that

∣∣∣∣∣

∫

U

Φ(x)

(
∂fk1
∂xj

− ∂fk2
∂xj

)
dx

∣∣∣∣∣ ≤ I1 + I2 + I3

where

I1 =

∣∣∣∣∣

∫

E

(Φ(x) − ϕm(x))

(
∂fk1
∂xj

− ∂fk2
∂xj

)
dx

∣∣∣∣∣,

I2 =

∣∣∣∣∣

∫

S

(Φ(x) − ϕm(x))

(
∂fk1
∂xj

− ∂fk2
∂xj

)
dx

∣∣∣∣∣,

I3 =

∣∣∣∣∣

∫

U

ϕm(x)

(
∂fk1
∂xj

− ∂fk2
∂xj

)
dx

∣∣∣∣∣

and hence by the above arguments
∣∣∣∣∣

∫

U

Φ(x)

(
∂fk1
∂xj

− ∂fk2
∂xj

)
dx

∣∣∣∣∣ ≤ ε

for large enough k1 and k2. Thus, ∂fk

∂xj
is weakly fundamental in L1(U)

and hence ∂fk

∂xj
converges weakly in L1(U) just to ∂f

∂xj
by (2.5), see Propo-

sition 2.1.

3. On convergence of ACL homeomorphisms

Theorem 3.1. Let D be a domain in C and let fn : D → C be a sequence
of sense-preserving ACL homeomorphisms with complex dilatations µn
such that

1 + |µn(z)|
1 − |µn(z)|

≤ Q(z) ∈ L1
loc ∀n = 1, 2, . . . (3.1)

If fn → f uniformly on each compact set in D, where f is a homeomor-
phism, then f ∈ ACL and ∂fn and ∂fn converge weakly in L1

loc to ∂f and
∂f , respectively. Moreover, if in addition µn → µ a.e., then ∂f = µ∂f
a.e.
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Remark 3.1. In fact, it is easy to show that under the condition (3.1) fn
as well as f belong to W 1,1

loc , see e.g. (3.2) below and II.3.27 in [3]. More-

over, if in addition Q ∈ Lploc, then fn and f belong to W 1,s
loc , ∂fn → ∂f

and ∂fn → ∂f weakly in Lsloc, where s = 2p/(1 + p), see e.g. Lemma 2.2
in [1]. Finally, f is a Q(z)-quasiconformal mapping, see [11].

Proof of Theorem 3.1. By Lemma 2.1 to prove the first part of the theo-
rem it suffices to show that ∂fn and ∂fn are uniformly bounded in L1

loc

and have locally absolute equicontinuous indefinite integrals. So, let C
be a compact set in D and let V be an open set with their compact
closure V in D such that C ⊂ V, say V = {z ∈ D : dist(z, C) < r} where
r < dist(C, ∂D). Note that

|∂fn| ≤ |∂fn| ≤ |∂fn| + |∂fn| ≤ Q1/2(z) · J1/2
n (z) a.e.

where Jn is the Jacobian of fn. Consequently, by the Hölder inequality
and Lemma III.3.3 in [8]

∫

E
|∂fn| dx dy ≤

∣∣∣∣∣

∫

E

Q(z) dx dy

∣∣∣∣∣

1/2

|fn(C)|1/2

for every measurable set E ⊆ C. Hence by the uniform convergence of
fn to f on C

∫

E

|∂fn| dx dy ≤
∣∣∣∣∣

∫

E

Q(z) dx dy

∣∣∣∣∣

1/2

|f(V )|1/2 (3.2)

for large enough n and, thus, the first part of the proof is complete.

Now, assume that µn(z) → µ(z) a.e. Set ζ(z) = ∂f(z) − µ(z) ∂f(z)
and show that ζ(z) = 0 a.e. Indeed, for every disk B with B ⊂ D, by
the triangle inequality

∣∣∣∣∣

∫

B

ζ(z) dx dy

∣∣∣∣∣ ≤ I1(n) + I2(n)

where

I1(n) =

∣∣∣∣∣

∫

B

(
∂f(z) − ∂fn(z)

)
dx dy

∣∣∣∣∣

and
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I2(n) =

∣∣∣∣∣

∫

B

(µ(z) ∂f(z) − µn(z) ∂fn(z)) dx dy

∣∣∣∣∣

Note that I1(n) → 0 because ∂fn → ∂f weakly in L1
loc by the first part

of the proof. Next, I2(n) = I ′2(n) + I ′′2 (n), where

I ′2(n) =

∣∣∣∣∣

∫

B

µ(z)(∂f(z) − ∂fn(z)) dx dy

∣∣∣∣∣

and

I ′′2 (n) =

∣∣∣∣∣

∫

B

(µ(z) − µn(z))∂fn(z) dx dy

∣∣∣∣∣.

Again, by the weak convergence ∂fn → ∂f in L1
loc we have that I ′2(n) → 0

because µ ∈ L∞. Moreover, given ε > 0, by (3.2)

∫

E

|∂fn(z)| dx dy < ε, n = 1, 2, . . . , (3.3)

whenever E is every measurable set in B with |E| < δ for small enough
δ > 0.

Further, by the Egoroff theorem, see e.g. III.6.12 in [3], µn(z) → µ(z)
uniformly on some set S ⊂ B such that |E| < δ where E = B \S. Hence
|µn(z) − µ(z)| < ε on S and by (3.3)

I ′′2 (n) ≤ ε

∫

S

|∂fn(z)| dx dy + 2

∫

E

|∂fn(z)| dx dy

≤ ε

{(∫

B

Q(z) dx dy

)1/2

· |f(λB)|1/2 + 2

}

for some λ > 1 and for all large enough n, i.e. I ′′2 (n) → 0 because ε > 0 is
arbitrary. Thus,

∫
B ζ(z) dx dy = 0 for all disks B with B ⊂ D. Finally,

by the Lebesgue theorem on differentiability of indefinite integral, see
e.g. IV(6.3) in [12], ζ(z) = 0 a.e. in D.

Proposition 3.1. Let D be a domain in C and fn : D → C, n = 1, 2, . . . ,
a sequence of homeomorphisms such that fn → f uniformly on compact
sets in D with respect to the spherical (chordal) metric. If the limit
function f is discrete, then f is a homeomorphism.
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Proof. Indeed, suppose that f(z1) = f(z2) for some z1 6= z2 in D. For
small t > 0, let Dt be a disk of the spherical radius t centered at z1 such
that Dt ⊂ D and z2 /∈ Dt. Then for all n, fn(∂Dt) separates fn(z1)
from fn(z2) and, hence, s(fn(z1), fn(∂Dt)) < s(fn(z1), fn(z2)). Thus,
for every such t, there is ζn(t) ∈ ∂Dt such that s(fn(z1), fn(ζn(t)) <
s(fn(z1), fn(z2)). Moreover, there is a subsequence ζnk

(t) → ζ0(t) ∈ ∂Dt

because the circle ∂Dt is a compact set. However, the locally uniform
convergence fnk

→ f implies that fnk
(ζnk

(t)) → f(ζ0(t)), see e.g. [2,
p. 268]. Consequently, s(f(z1), f(ζ0(t)) ≤ s(f(z1), f(z2)). Then, since
f(z1) = f(z2), there is a point zt = ζ0(t) on ∂Dt such that f(z1) = f(zt)
for every small t contradicting the discreteness of f .

Corollary 3.1. Let D be a domain in C and fn : D → C, n = 1, 2, . . . ,
a sequence of quasiconformal mappings which satisfy (3.1). If fn → f
locally uniformly, then either f is constant or f is an ACL homeomor-
phism and ∂fn and ∂̄fn converge weakly in L1

loc(D \ {f−1(∞)}) to ∂f
and ∂̄f , respectively. If in addition, µn → µ a.e., then ∂̄f = µ∂f a.e.

Proof. Consider the case when f is not constant in D. Let us show that
then no point in D has a neighborhood of the constancy for f . Indeed,
assume that there is at least one point z0 ∈ D such that f(z) ≡ c for
some c ∈ C in a neighborhood of z0. Note that the set Ω0 of such points
z0 is open. The set Ec = {z ∈ D : s(f(z), c) > 0}, where s is the spherical
(chordal) distance in C, is also open in view of continuity of f and not
empty in the considered case. Thus, there is a point z0 ∈ ∂Ω0 ∩ D
because D is connected. By continuity of f we have that f(z0) = c.
However, by the construction there is a point z1 ∈ Ec = D \ Ω0 such
that |z0−z1| < r0 = dist (z0, ∂D) and, thus, by the lower estimate of the
distance s(f(z0), f(z)) in Lemma 3.12 from [11] we obtain a contradiction
for z ∈ Ω0. Then again by Lemma 3.12 in [11] we obtain that f is discrete
and f is a homeomorphism by Proposition 3.1. All other assertions follow
from Theorem 3.1.

4. On convergence of ring Q-homeomorphisms

Theorem 4.1. Let fn : D → C, n = 1, 2, . . . , be a sequence of ring Q-
homeomorphisms at a point z0 ∈ D. If fn converges locally uniformly to
a homeomorphism f : D → C, then f is also a ring Q-homeomorphism
at z0.

Proof. Note first that every point w0 ∈ D′ = fD belongs to D′
n =

fnD for all n ≥ N together with D(w0, ε) where D(w0, ε) = {w ∈ C :
s(w,w0) < ε} for some ε > 0. Indeed, set δ = 1

2 s(z0, ∂D) where z0 =
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f−1(w0) and εn = s(w0, ∂fnD(z0, δ)). Note that the sets fnD(z0, δ) are
open and εn > 0 is the radius of the maximal closed disk centered at
w0 which is inside of fnD(z0, δ). Assume that εn → 0 as n → ∞. Since
∂D(z0, δ) and ∂fnD(z0, δ) = fn∂D(z0, δ) are compact there exist zn ∈
∂D(z0, δ), s(zn, z0) = δ, such that εn = s(w0, fn(zn)) and we may assume
that zn → z∗ ∈ ∂D(z0, δ) as n→ ∞ and then fn(zn) → f(z∗) as n→ ∞,
see e.g. [2, p. 268]. However, by the construction s(w0, fn(zn)) = εn → 0
as n → ∞ and hence f(z∗) = f(z0), i.e., z = z∗. This contradiction
disproves the above assumption. Thus, we obtain also that every compact
set C ⊂ D′ belongs to D′

n for all n ≥ N for some N.

Now, remark that D′ =
⋃∞
m=1 Cm where Cm = D∗

m, D
∗
m is a con-

nected component of the open set Ωm = {w ∈ D′ : s(w, ∂D′) > 1/m},
m = 1, 2, . . . , including a fixed point w0 ∈ D′. Indeed, every point w ∈ D′

can be joined with w0 by a path γ in D′. Because |γ| is compact we
have that s(|γ|, ∂D′) > 0 and, consequently, w ∈ D∗

m for large enough
m = 1, 2, . . . .

Next, take an arbitrary pair of continua E and F in D which belong
to the different connected components of the complement of a ring A =
A(z0, r1, r2) = {z ∈ C : r1 < |z − z0| < r2}, z0 ∈ D, 0 < r1 < r2 < r0 ≤
supz∈D |z − z0|. For m ≥ m0, continua fE and fF belong to D∗

m. Fix
one of such m. Then the continua fnE and fnF also belong to D∗

m for
large enough n. As well-known,

M(∆(fnE, fnF ;D∗
m)) →M(∆(fE, fF ;D∗

m))

as n→ ∞, see [14, Theorem 1]. However, D∗
m ⊂ fnD for large enough n

and hence

M(∆(fnE, fnF ;D∗
m)) ≤M(∆(fnE, fnF ; fnD))

and, thus, by (1.5)

M(∆(fE, fF ;D∗
m)) ≤

∫

A∩D

Q(z) · η2(|z − z0|) dx dy

for every measurable function η : (r1, r2) → [0,∞] such that

r2∫

r1

η(r) dr = 1.
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Finally, since Γ =
⋃∞
m=m0

Γm where Γ = ∆(fE, fF ; fD) and Γm : =
∆(fE, fF ;D∗

m) is increasing in m = 1, 2, . . . , we obtain that M(Γ) =
limm→∞M(Γm), see e.g. [5, Theorem 7], and, thus,

M(∆(fE, fF ; fD)) ≤
∫

A∩D

Q(z) · η2(|z − z0|) dx dy,

i.e., f is a ring Q-homeomorphism at z0.
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