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1. Introduction.

We are interested in the following problem: let Ω be an open set in RN we denote
by Σ the set Ω ∩ {xN = 0} and we assume Σ 6= ∅. Moreover we denote x = (x′, xN ) =
(x1, x2, ..., xN−1, xN ). We consider the problem

∫
DuDv m(dx) +

∫
D′uD′v σ(dx) = 0 (1.1)

u ∈ H1
loc(Ω) with trace in H1

loc(Σ)

∀v ∈ H1
loc(Ω) with trace in H1

loc(Σ), with supp(v) ⊆ Ω

where m denotes the Lebesgue measure on RN and σ denotes the Lebesgue measure on
RN−1; moreover we denote by D the gradient in RN and by D′ the tangential gradient
on RN−1

x′ . If u verify (1.1) we say that u is a solution of (1.1). If we replace in (1.1) the
equality by the inequality ≤ (≥) and we consider only positive test functions v we say
that u is a subsolution (supersolution) of (1.1) in Ω.

The aim of this paper is to study the local regularity for a solution of (1.1).
If we consider a ball that does not intersect Σ the problem of the regularity of u

reduce to the problem of the regularity of an harmonic function; then in particular
Harnack inequality for nonegative u and Hölder continuity for u hold. Problems arise in
the case of sets having a non empty intersection with Σ (due to the different rescaling
by the usual dilation of the two terms in (1.1)).

We also observe that the bilinear form in (1.1) defines a strongly local regular Dirichlet
form on L2(Ω,m + δΣ),[3], but the measure m + δΣ does not verify a doubling property
then the regularity theory in [1][2] does not apply.

To study the local regularity of u in B(x0, r) with, x0 ∈ RN−1
x′ we modify the def-

inition of a ball defining B(x0, r) = {x : |x′ − (x0)′|4 + |xN − (x0)N |2 < r4} and we
write S(x0, r) = B(x0, r) ∩ {xN = 0}. We define a cut-off function between B(x0, tr)
and B(x0, sr), s, t ∈ [ 12 , 1) s < t, as η(x) = φ(d(x − x0)) where d(x) = (|x′|4 + x2

N )
1
4 ,

φ(ρ) = 1 for ρ ≤ sr, φ(ρ) = 0 for ρ ≥ tr, 0 ≤ φ ≤ 1 and |φ′| ≤ C
(t−s)r . Then

|D′η| ≤ C

(t− s)r
on S(x0, r), |Dη| ≤ C

(t− s)r2
on B(x0, r).

With such a modification we obtain:



Theorem 1.1. Let u be a nonegative solution of (1.1) in B(x0, 4r), x0 ∈ RN−1
x′ ; then

supB(x0,r)u ≤ C infB(x0,r)u

where C is a constant depending only on N.

Theorem 1.1. Let u be a solution of (1.1) in Ω; then u is locally Hölder continuous in
Ω.

In Section 2 we prove suitable Poincaré and Sobolev type inequalities, that play a
fundamental role in the proof, by a Moser type iteration method, of local L∞ estimates
for solutions (or subsolutions) of (1.1), given in section 3. In section 4 we prove the
results in Theorems 1.1 and 1.2. The result in Theorem 1.2 is an easy consequence of
the one in Theorem 1.1; the proof of the result in Theorem 1.1 uses an iteration method
introduced by Moser,[6], that allow use to consider estimates only on concentric balls
B(x0, r); this last opportunity is usefull due to the different forms of the balls in the
case x0 ∈ Σ or x0 /∈ Σ.

2. Poincaré and Sobolev type inequalities.

It is well known that a fundamental role in the local regularity theory of harmonic
functions relative to an uniformly elliptic operator is played by the usual Poncaré and
Sobolev inequalities.

The goal of this section is to prove suitably adapted Poincaré and Sobolev inequalities
relative to the problem in consideration.

Proposition 2.1. Let u be a function in H1(B(x0, r)), x0 ∈ RN−1
x′ , with a trace in

H1(S(x0, r)) and ur be the average of u on S(x0, r) relative to the measure σ; then

∫

B(x0,r)

|u− ur|2 m(dx) +
∫

S(x0,r)

|u− ur|2 σ(dx) ≤

≤ C[r4

∫

B(x0,r)

|DNu|2 m(dx) + r2

∫

S(x0,r)

|D′u|2 σ(dx)]

where
∫

B(x0,r)
m(dx) (

∫
S(x0,r)

σ(dx)) denotes the average on the set B(x0, r) (S(x0, r))
relative to the measure m (σ).

The result in Proposition 2.1 isa consequence of the following Sobolev type inequality:

Proposition 2.2. Let u be a function in H1(B(x0, r)), x0 ∈ RN−1
x′ , with a trace in

H1(S(x0, r)).
(a) Let N > 3; there exists q > 2 such that

[
∫

B(x0,r)

|u− ur|q m(dx) +
∫

S(x0,r)

|u− ur|q σ(dx)]
2
q ≤

≤ C[r4

∫

B(x0,r)

|DNu|2 m(dx) + r2

∫

S(x0,r)

|D′u|2 σ(dx)]



(b) Let N = 3; for every q > 2 we have

[
∫

B(x0,r)

|u− ur|q m(dx) +
∫

S(x0,r)

|u− ur|q σ(dx)]
2
q ≤

≤ C[r4

∫

B(x0,r)

|DNu|2 m(dx) + r2

∫

S(x0,r)

|D′u|2 σ(dx)]

(c) Let N = 2; then
oscB(x0,r)u ≤

≤ C[r4

∫

B(x0,r)

|DNu|2 m(dx) + r2

∫

S(x0,r)

|D′u|2 σ(dx)]
1
2

Proof. We prove the result for the case (a); the proof in the cases (b) and (c) is analo-
gous.

It is enough to prove the result in the case r = 1 and we write B(x0, r) = B,
S(x0, r) = S.

Let s = 2N−2
N−3 , we have ∫

S

|u− u1|s σ(dx)]
2
s ≤

≤ C

∫

S

|D′u|2 σ(dx),

where we denote by C possibly different constants depending only on N .
Let q = 2+s

2 = 2N−4
N−3 , by easy computations we obtain

sup((x0)N−1,(x0)N+1)

∫

B∩{xN=t}
|u− u1|q σ(dx) ≤

≤ C[(
∫

B

|DNu|2 m(dx))
q
2 + (

∫

S

|u− u1|s σ(dx))
q
s ] ≤

≤ C[(
∫

B

|DNu|2 m(dx))
q
2 + (

∫

S

|D′u|2 σ(dx))
q
2 ]

and the result follows.

3. The local L∞ estimate for subsolutions.

We prove at first an L∞ estimate for nonegative subsolution of (1.1) and finally we
prove the general L∞ estimate for nonegative solutions of (1.1)



Proposition 3.1. Let u be a function in H1(B(x0.r)), x0 ∈ RN−1
x′ , with a trace

in H1(S(x0, r)). Assume that u is a nonnegative subsolution in a neighbourhood of
B(x0, r); then there exists constants d and C such that for α ∈ [ 12 , 1) and p ≥ 2 we have

(supB(x0,αr)u)p ≤ C

(1− α)d
[

∫

B(x0,r)

upm(dx) +
∫

S(x0,r)

upσ(dx)]
1
p

Proof. Let β ≥ 1 and 0 < M < +∞; we define

HM (t) = tβ for t ∈ [0,M ]

HM (t) = Mβ + βMβ−1(t−M) for t > M

The function HM (t) is Lipschitz-continuous for every fixed M .
We assume that u is Lipschitz continuous (if it is not the case we use an approximation

of u in H1(B(x0, r)) and in H1(S(x0, r)) by a sequence {uk} of nonegative Lipschitz-
continuous functions).

For a fixed M we define

φ(x) = η(x)2
∫ u(x)

0

H ′
M (t)2dt

where η is a Lipschitz continuous function with support in B(x0, r) to be choosen. We
observe that φ are nonegative Lipschitz continuous functions defined in B(x0, r) and

Diφ = η2H ′
M (u)2Diu + 2ηDiη

∫ u(x)

0

H ′
M (t)2dt (3.1)

for i = 1, 2, ..., N . Since u is a subsolution we have
∫

Du η2H ′
M (u)2Du m(dx)+ (3.2)

+
∫

Du 2ηDη(
∫ uk

0

H ′
M (t)2dt) m(dx) +

∫
Du η2H ′

M (u)2Du σ(dx)+

+
∫

Du 2ηDη(
∫ u

0

H ′
M (t)2dt) σ(dx) ≤ 0.

We observe that
|Diu 2ηDiη(

∫ u

0

H ′
M (t)2dt)| ≤

≤ 1
2
Diu η2H ′

M (u)2Diu+

+2|Diη|2( 1
H ′

M (u)

∫ u

0

H ′
M (t)2dt)2 ≤



≤ 1
2
Diu η2H ′

M (u)2Diu + +2|Diη|2(uH ′
M (u))2

From (3.2) it follows
1
2

∫
|D(HM (u))|2η2 m(dx)+ (3.3)

+
1
2

∫
|D(HM (u))|2η2 σ(dx) ≤

≤ 2
∫
|Dη|2(uH ′

M (u))2 m(dx) + 2
∫
|Dη|2(uH ′

M (u))2 σ(dx).

We choose now η as the cut-off function between the B(x0, sr) and B(x0, tr). From
(3.3) we obtain ∫

B(x0,sr)

|D(HM (u))|2 m(dx)+ (3.4)

+
∫

S(x0,sr)

|D(HM (u))|2 σ(dx) ≤

≤ c2

(t− s)2r4

∫

B(x0,tr)

(uH ′
M (u))2 m(dx)+

+
c2

(t− s)2r2

∫

S(x0,tr)

(uH ′
M (u))2 σ(dx).

Using the Sobolev inequality we obtain

[
∫

B(x0,sr)

|HM (u)− (HM (u))sr|q m(dx)+

+
∫

S(x0,sr)

|HM (u)− (HM (u))sr|q σ(dx)]
1
q ≤

c3
s

t− s
[

∫

B(x0,tr)

(uH ′
M (u))2 m(dx) +

∫

S(x0,tr)

(uH ′
M (u))2 σ(dx)]

1
2 .

We use the inequality H(t) ≤ tH ′(t) and we obtain

[
∫

B(x0,sr)

|HM (u)|q m(dx) +
∫

S(x0,sr)

|HM (u)|q σ(dx)]
1
q ≤

c5(
s

t− s
+ 1)[

∫

B(x0,tr)

(uH ′
M (u))2 m(dx)+

+
∫

S(x0,tr)

(uH ′
M (u))2 σ(dx)]

1
2 .



We observe that ( s
t−s + 1) ≤ 2 s

t−s . We take into account the definition of HM and
we let M → +∞; then

[
∫

B(x0,sr)

uβq m(dx) +
∫

S(x0,sr)

uβq σ(dx)]
1
q ≤

c6β
s

t− s
[

∫

B(x0,tr)

u2β m(dx) +
∫

S(x0,tr)

u2β σ(dx)]
1
2 .

We write 2β = ν, q = 2τ (τ > 1) and we obtain

[
∫

B(x0,sr)

uτν m(dx) +
∫

S(x0,sr)

uτν σ(dx)]
1

τν ≤ (3.5)

(c6ν
s

t− s
)

2
ν [

∫

B(x0,tr)

uν m(dx) +
∫

S(x0,tr)

uν σ(dx)]
1
ν .

From (3.5) an iteration method of Moser’s type (see for example [3]) give the result.

Proposition 3.2. Let u be a local nonegative solution of our problem in B(x0, 2r),
x0 ∈ RN−1

x′ . Then there exists constants d, τ > 1 and C such that for α ∈ [ 12 , 1) and
every real p we have

(supB(x0,αr)u)p ≤

≤ C

(1− α)d
(1 + |p|) 2τ

τ−1 [
∫

B(x0,r)

upm(dx) +
∫

S(x0,r)

upσ(dx)]
1
p

Proof. It is enough to prove the result in the case −∞ < p < 2 and u ≥ ε > 0.
By Proposition 3.1 u is bounded in B(x0, r); we define φ = η2uβ ,with β ≤ 1 and we

can prove that φ is in H1(B(x0, r)) and its trace is in H1(S(x0, r)).
We recall that

Diφ = η2βuβ−1Diu + 2ηDiη uβ

Di(u
β+1
2 ) =

β + 1
2

u
β−1

2 Diu.

Then for β 6= −1 we obtain

| β

β + 1
|2

∫

B(x0,r)

|D(u
β+1
2 )|2η2 m(dx)+ (3.6)

+| β

β + 1
|
∫

S(x0,r)

|D′(u
β+1
2 )|2η2 σ(dx)) ≤

≤
∫

B(x0,r)

|D(u
β+1
2 )Dη|u β+1

2 η m(dx)+

+
∫

S(x0,r)

|D′(u
β+1
2 )Dη|u β+1

2 η σ(dx).



From (3.6) we easily obtain for β 6= 0,−1
∫

B(x0,r)

|D(u
β+1
2 )|2η2 m(dx) +

∫

S(x0,r)

|D′(u
β+1
2 )|2η2 σ(dx) ≤

≤ (
β + 1

β
)2|

∫

B(x0,r)

|Dη|2uβ+1 m(dx)+

+(
β + 1

β
)2

∫

S(x0,r)

|D′η|2uβ+1 σ(dx).

Then, taking again η as the cut-off function between B(x0, sr) and B(x0, tr), 1
2 ≤ s <

t < 1, we have
∫

B(x0,sr)

|D(u
β+1
2 )|2 m(dx) +

∫

S(x0,sr)

|D′(u
β+1
2 )|2 σ(dx) ≤

≤ (
β + 1

β
)2

1
(t− s)2r4

∫

B(x0,tr)

uβ+1 m(dx)+

+(
β + 1

β
)2

1
(t− s)2r2

∫

S(x0,tr)

uβ+1 σ(dx).

We use now the Sobolev inequality in Proposition 2.2; then by the same methods as in
Proposition 3.1 we have

[
∫

B(x0,sr)

u
β+1
2 q m(dx) +

∫

S(x0,sr)

u
β+1
2 q σ(dx)]

1
q ≤ (3.7)

≤ c|β + 1
β

|( s

t− s
+ 1)[(

∫

B(x0,tr)

uβ+1 m(dx)+

+
∫

S(x0,tr)

uβ+1 σ(dx)]
1
2 .

Setting β + 1 = ν and q = 2τ we have for any −∞ < ν ≤ 2, ν 6= 0,−1

[
∫

B(x0,sr)

uτν m(dx) +
∫

S(x0,sr)

uτν σ(dx)]
1

τ|ν| ≤ (3.8)

≤ c
2
|ν| (| ν

ν − 1
| s

t− s
+ 1)

2
|ν| [(

∫

B(x0,tr)

uν m(dx)+

+
∫

S(x0,tr)

uν σ(dx)]
1
|ν| .

From (3.8) the results follows by a Moser’s type iteration argument (see for example
[3]).



Proposition 3.3. Let the assumptions of Proposition 3.2 hold and assume that u ≥
ε > 0. For α ∈ [ 12 , 1) define k by

logk =
∫

S(x0,αr)

logu σ(dx),

x0 ∈ Σ; then for λ > 0 we have

m{x ∈ B(x0, αr); |log(
u(x)

k
)| > λ} ≥ C

1− α
m(B(x0, αr))

σ{x ∈ S(x0, αr); |log(
u(x)

k
)| > λ} ≥ C

1− α
σ(S(x0, αr))

where C is a constant that does not gepend on ε.

Proof. By easy computations we obtain
∫
|D(logu)|2η2 m(dx) +

∫
|D′(logu)|2η2 σ(dx) ≤

≤ 4
∫
|Dη|2 m(dx) +

∫
|D′η|2 σ(dx) ≤

≤ c

(1− α)2
(
m(B(x0, r))

r4
+

σ(S(x0, r))
r2

).

where η is the cut-off function between B(x0, αr) and B(x0, r). By Proposition 2.1 we
obtain ∫

B(x0,αr)

|logu− logk|2 m(dx) ≤ c

(1− α)2
m(B(x0, r))

r4
(3.9)

∫

S(x0,αr)

|logu− logk|2 σ(dx) ≤ c

(1− α)2
σ(S(x0, r))

r2
). (3.10)

From (3.10) and (3.11) the result easily follows.

4. Proof of Theorems 1.1 and 1.2.

We are now in position to prove Theorem 1.1.

Lemma 4.1. Let m, µ, C, θ ∈ [ 12 , 1) be positive constants and let w > 0 be a function
in H1(B(x0, r)), x0 ∈ RN−1

x′ , such that

supB(x0,sr)w
p ≤ (4.1)

C

(t− s)d

1
m(B(x0, r))

∫

B(x0,tr)

wp m(dx)+



+
C

(t− s)d

1
σ(S(x0, r))

∫

S(x0,tr)

wp σ(dx)

for all 1
2 ≤ θ ≤ s < t ≤ 1, 0 < p < µ−1. Moreover, let

m(x ∈ B(x0, r); logw ≥ λ) ≤ Cµ

λ
m(B(x0, r)) (4.2)

σ(x ∈ S(x0, r); logw ≥ λ) ≤ Cµ

λ
σ(B(x0, r)) (4.3)

for all λ > 0. Then there exists a constant γ = γ(θ, d, C) such that

supB(x0,θr)u ≤ γµ

Proof. We assume, without loss of generality r = 1. Replacing w by wµ and λ by λµ
we reduce us to the case µ = 1.

Define
φ(s) = supB(x0,s)logw, θ ≤ s < 1;

we observe that φ(s) is a nondecreasing function.
We now prove that the following inequality holds:

φ(s) ≤ 3
4
φ(t) +

γ1

(t− s)2d
(4.4)

where θ ≤ s < t ≤ 1 and γ1 is a constant depending on θ, d, C.
We decompose B(x0, t) and S(x0, t) into the sets where logw > 1

2φ(t) and where
logw ≤ 1

2φ(t); then taking into account (4.2) and (4.3) we obtain

∫

B(x0,t)

wp m(dx) ≤ (epφ(t) 2C

φ(t)
+ ep

φ(t)
2 )m(B(x0, 1))

∫

S(x0,t)

wp σ(dx) ≤ (epφ(t) 2C

φ(t)
+ ep

φ(t)
2 )σ(S(x0, 1)).

Summing up the two inequalities we have

1
m(B(x0, 1))

∫

B(x0,t)

up m(dx) +
1

σ(S(x0, 1))

∫

S(x0,t)

up σ(dx) ≤

≤ 2(epφ(t) 2C

φ(t)
+ ep

φ(t)
2 ).

We choose now p such that the two terms in the right-hand side are equal:

p =
2

φ(t)
log(

φ(t)
2C

)



provided the term in the right-hand side is less than µ−1 = 1; this last inequality requires
φ(t) > c1 (4.5)

where c1 depends only on C.
In that case we have

1
m(B(x0, 1))

∫

B(x0,t)

up m(dx) +
1

σ(S(x0, 1))

∫

S(x0,t)

up σ(dx) ≤

≤ 4ep
φ(t)
2 ,

hence by (4.1) we obtain

φ(s) ≤ 1
p
log(

4C

(t− s)d
ep

φ(t)
2 ) =

=
1
p
log(

4C

(t− s)d
) +

1
2
φ(t)

Then, taking into account the fixed value of p, the above inequality becomes

φ(s) ≤ 1
2
φ(t){

log( 4C
(t−s)d )

log(φ(t)
2C )

) + 1}.

If

φ(t) ≥ 32C3

(t− s)2d
(4.6)

we obtain
φ(s) ≤ 3

4
φ(t)

then (4.4) holds.
If (4.5) or (4.6) does not hold; then

φ(s) ≤ φ(t) ≤ γ1

(t− s)2d
,

θ ≤ s < t ≤ 1, where γ1 is a constant depending on C, c1, d, θ; so (4.4) holds again.
We have so proved the inequality (4.4); the result now follows by iteration as in

Lemma 3 in [6].
We are now in position to prove the result of Theorem 1.1. We assume, without loss

of generality, u ≥ ε > 0. We use the result in Proposition 4.1 for u
k and k

u ; Where
logk =

∫
S(x0,r)

logu σ(dx). The assumptions of proposition 4.1 hold in B(x0, 2r) by
Proposition 3.2 and 3.3; then

supB(x0,r)
u

k
≤ C, supB(x0,r)

k

u
≤ C

Then the result follows.
The result in Theorem 1.2 can be proved from Theorem 1.1 by standard methods

(see [5]).
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