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AVERAGING OF THE DIRICHLET PROBLEM
FOR THE SPECIAL HYPERBOLIC
QUASILINEAR EQUATION

In this paper we establish sufficient conditions on the data of the problem
which guarantee a convergence of its solution to a limit solution. The domains
where we consider the problem has a fine-grained structure. We use S.I.Pohozhaev’s
method for the proof of the unique solvability in entire and the D.Cioranescu-
F.Murat hypothesis for the description of the domain milling.
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The hyperbolic Kirchhoff equation is named the following one
wile,t) = a (I Vul, )3 ) Sule,t) = fla,8),

reQCR" teR, (1)
where = = (zy, ..., z, ), V = (09/0xy, ..., 0/0x, ),
A = Y 0%/0x2, with positive continuous function a : Rt — RT.

i=1

The initial boundary value Dirichlet problem was considered to this
equation [1],[2] in a cylinder @ = Q x (0,7") where 2 is a bounded
domain in R", n > 3, with boundary 0f2, T is an arbitrary fixed
positive number, with boundary conditions

u(-,t) oo =0, t € (0,71,

u(z,0) = @(x), u(z,0) =¢(z), x €. (2)
For an arbitrary function a(t) such that
a(t) € C*R"), a(t) = ap >0Vt € RY, oy = const, (3)

the solvability of the problem in entire was ascertained first in paper
[1] for the special class of infinitely differentiable functions f, ¢, ¢ and
0N of class C°.
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For the concrete function
a(t) = ag(t) := (Cit + Co) ™%, Oy =const >0, i =1,2,  (4)

the solvability of the problem in entire was ascertained [2] for the
class of data having only second order derivatives summable in second
power and a boundary 92 of class C?. It was showing [3],that function
(4) is the unique one in the class

ac C*(R"), a=0, (5)

for which the problem (1), (2) is solvable in entire in the set of data
having only second order derivatives summable in square.

We consider a bounded domain 2 C R", n > 3, and domain
Q) c Q which has a multiply connected boundary

N(s)
00 = | | ool | uon,
=1

where s € N is a parameter, N is a varying number of sets QES) cQ
being closures of domains QZ(-S) with smooth singly connected boundaries
0@58) of dimensions n — 1, QZ(-S) N ngg) =o(i #7), QNN = ¢(i =
1,...,NG),
N(s)
) — U QES)v 06 = O \ )
i=1

By notation Q) = Q)% (0,T), T = const > 0, [[v]| = [[v\]| 2 ),

we study the following boundary value problem on Q) relatively to
a real function u(®)(z,1):

uld) (1) — ag (|Va@ (-, 1)) Au® (2, t) = fO(z,1),

(z,1) € QW, (6)
U(S)('7t>|89(5) =0, 1€ (07T>7 U(S)(xv()) = 90(8)(x>7
u (,0) = v (z), z € Q)

We show conditions on Q)| f(8) () 1)) supplying a convergence
of u® as s — oo to the limit function u(z,t) defined on @ when a
perforation becomes very small.
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We suppose that a boundary 99 is Lip—continuous and following
conditions are fulfilled

P € D (A, QW) N HYQY), v e F1(QY),

£ e L2 (0,T; D(A, LXHQW)) 0 B H(QW). (7)

Moreover, let the norms
||f(8)||L2(Q(S)) + ||Af(8)||L2(Q(S))>

IV + 12|, Vo) < Ko Vs (8)

to be bounded relatively to s. Then problem (6), as in [2]|, has the
unique solution such that

u e ([O,T];fﬂ(ms))) TSI (O,T;ﬁﬂ(ﬂ“))) :

Aul) e 1 (0,T; LAQW)) | ufy) € LHQW), (9)

moreover, following estimates are valid:

max [|ug” ()[* < Ky, max [|[Vu® (#)]” < Ko,
t€[0,T] t€[0,T

esssup ||Vu§8)(t)||2 < Gy 'Ky, (10)
te(0,T)

esssup ||Au® ()||> < Ko(CLE, + Cs),
te(0,T)
where constants K7, K5 do not depend on s € N but depend only on
Cy,Cy, T, K.
We describe the regularity of behaviour of domains Q) when
s — oo by the hypothesis of D.Cioranesku-F.Murat [4], [5]:

Hypothesis (A): let exists a sequence of real functions wy(x), s €
N, with following properties:

1) wy(z) € HY(Q) N L=(Q),
2) wy(x) =0, z € F®),

3) w,(z) — 1 weakly in H'(Q), weakly* in L>(£2) and for almost
every x € () when s — oo,
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4) —Awy(z) = ps(r) — vs(x) where p,, v, € H~1(Q), moreover
s — pu strongly in H~'(2) when s — 0o, (7s,v)q = 0 for all

v E ;II(Q) such that v =0 on F®),

herein

(4, v)q = / u(@)o(z)dz.

Q

Corollary [5]: under conditions 1)—4), we have

5) 0 < u(x) € H1(Q) N LY(Q)that is u(z) to be a finite positive
measure on ).

Remark 1. It is easy to prove [6] that conditions By, By, C' in
monograph |7, ch.9] and in the paper [8] with the measure density
v(z) € L"(R2), r > n/2, formulated for the Laplace operator on
H(Q) are sufficient for validity of hypothesis (A) with a function
peC)orpe L"(Q), r>n/2, accordingly and w(z) > 0.

We denote ©(*)(x) the prolongation on Q of a function v (z)
defined on Q) by definition it by zero on F). We adopt some more

notations for duality relations of vector functions
Uz, t) = (ur(z,t), ..., uy(z,t)):

(i, 7)) = / i(z,t) - (x, t)dadt, (i, 7) = / i(x,t) - O(x, t)dzdt,
Q) Q
and the same notations for scalar ones and denote
N,(t) = [[Vu® (-, 1)]].

We multiply equation (6) by a function wsv,v € C§°(Q), and
integrate over Q(*). Then we obtain the integral identity for prolongations

~

(f) ww) = (@), wew) — (ag(N?)a), weAv)—

2ag(N2) 1OV, Vws) 4 (ao(N?)aPv, pg). (11)

We suppose additionally to (8) in order to average (11) that
following convergences as s — oo take place

¥ — f weakly in L*(Q),

¢(5) — , ’(Z}(s) — 1) both weakly in IO-Il(Q) (12)
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We take into account as (8), (10) that for @) such estimates are
valid: ©

i (1))? < K Vil (t)|? < K. 10/

max [ O < Ko, max [VAOO < Ko, (10)

esssup | Vil (1)|? < Cy 'K,
te(0,T)

1|20y < C3 2T K (C1E + Co)] 2 + Ko,

Moreover, some more estimate follows from (8), (10)

1D < K 13
tgf%!lu ()]l 3, (13)

where K3 depends only on C4,Cs, T, Ky. Therefore we can choose
from N such sequence denoted {s} that following convergences take
place:

4'®) — u weakly in H'(Q) and strongly in L*(Q),
Vil — Vu, weakly* in L>(0, T; L2(R)), (14)
aﬁf) — uy weakly in L?(Q).
We have here some more convergence

4 — u weakly* in WL (0,T; ﬁ[l(Q)) (15)
It follows from (15), (14) the convergence [5]

a® — win CL([0,T]; BT (), (16)

where we denote Cy.([0, T]; V') the space of scalar continuous functions
from [0, 7] into Banach space V'[9, ch.3, 8.4].
Hence a limit function u(z,t) satisfies initial conditions

Ulimo = ¢, Ut|,_g = 1. (17)

Let to ascertain (this is only a hypothesis for the present which
has to be proved) that the presence of (14) imply convergence

N,(t) — N(t) strongly in C([0,T7). (18)

Then using (14), (18) and properties 3), 4) of functions w, we pass
to the limit in integral identity (11) over the chosen sequence {s}. As
the result we obtain identity

(f.0) = (us, v) — {ao(N*)u, Av) + {ag(N*)uv, p),
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or the same in differential form taking into account (17):
utt(xu t) - CLO(N2(T/>)AU(SC, t) + CLO(N2(T/)>IM(SL’>U(]}, t) = f(xv t)a

(z,1) € Q,
u( oo =0, t € (0,T), u(z,0) = ¢(z), w(z,0) =), (19)
x €.
It is clear from equation (19) that the following definition is probable

N2 (1) = lul O = IVuC O+l Ol 00

V= ﬁ[l(Q) N L*(Q; pder). (20)

Remark 2. In the case of conditions of remark 1 we have either

pe C(Q) or pe L) if v(z) € L>(N2). Then
L2(Q) € L3 pda), V = H'().

In this paper, we prove that assumptions (18), (20) are right and
problem (19) really is the limit one for problem (6) in the sense that
for solutions (6) convergences (14), (15) are valid to a limit function

u(z,t) being a solution of problem (19), (20). More precisely, the
following assertion is valid.

Theorem 1. Let us suppose that the boundary Q) is Lip-continuous
and hypothesis (A) with a limit function u(x) € L*(Q) and conditions
(7), (8) are fulfiled. Let convergences (12) and following

1F = fllporizey — 0, V(@ —wyp)| — 0 (21)

have place as s — oo. Let also suppose to exist a solution of problem
(19), (20) having following properties

we (0,75 WLQ) N 1x©),
Vu e L0, T; L¥()), Aue L¥(0,T; L*(5)),
Pu = (0°u/0x;0x; : i,j =1,n) € L' (0,T;L"(Q)), (22)
(

w € L0, T; H Q) N L¥(Q), Vg € LY0,T; L'(Q)).

Then for the complete sequence s € N convergences (14)-(16), (18),
(20) and additional following ones

Vi) — Vu in Cse([0,T); L*(9)),
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ﬁis) — wy strongly in C([0,T]; L*(9)) (23)

have place to the solution of problem (19), (20) which is unique in
class (22).

Remark 3. In order to fulfil convergence condition (21) to ¢
it is sufficient [5] by hypothesis (A) function ¢®) to be the solution
of problem

—ApW () = g (z), x € Q) o € HHQY), ¢ e HH(QW),
moreover, to exist a limit
lim 15 = gllr-1) = 0

but the limit in the sense of (12) function ¢ being then the unique
solution of problem

—Ap(r) + p(z)p(z) = g(z), 1 €Q, p €V,

to belong still to C'(Q2).

Proof of this theorem has been published [10].

Thus, validity of the assertion of theorem 1 depends on existence
of a solution to problem (19), (20) having properties (22). We consider
this problem separately denoting

Ju(t) =-C; [(VU(7 t)v Vut(‘? t))Q + (u(v t)? ut(‘? t))Q“uF +
HCIN2(t) + Co) (IVur (- )1 + N (-5 0)[17) + (24)
(CIN?(t) + Co) [ Aul-, t) = p(ul, 1)1

(1, 0)ay = / w(@yo(@)u(z)dr,  ul2 = (u, u)ay,
Q

Mu(x,t) = uy(z,t) — aZ(N?(t))(Au(z,t) — p(z)u(z,t)).

Lemma 1. Let a function u(z,t) be such that

u € Cl([O,T]; V), Uy € C([O7T];L2(Q))7
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Au— € CH[0,T]; L (), (25)
then we have Ju € C'([0,T]) and

U0 — 6O (a0, Bl 1)~ a1 -
~O(CNE) + o) (Mu(- 0), A ) — e (26)

Ju(t) = Collus(-, )7 + (CLN*(t) + Co) M| Au(, 1) — u(- )%,
t €10,77. (27)
Lemma 2. Let u(x,t) be a solution satisfying inclusions (25) of
problem (19), (20) with right hand sides such that
feL*0,T:V), Af —uf € LXQ), (28)

VeV, peV, Ap—pp e L*N).

Then we have the estimate

Ju(t) < K 29
e u(t) 4 (29)

and hence following estimates

max N%(t) < K5, max |Ju,(-,t)||y < K,

t€[0,T] t€[0,7)
max {|Au(-, 1) — p(-)u(-, )] < K7, (30)
te[0,T

where K;,i = 4,7 are known constants depending on (28).

The proofs of these lemmas in their basic features are similar to
Pohozhaev’s ones [2].

Next, we consider the spectral problem

—DNpp(z) + p(x)pp(x) = Mpr(z), € Q, ¢ €V, il = 1,

which is solvable because the energy space V' C L?(Q) compactly,
and consider the finite dimensional problem of the type (19), (20)

Mun:fn n Q>un(>t) e V" =< P1yeeyPn >C v,
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u(z,0) = ¢"(z), uy(x,0) =¢"(z), x € Q, n €N, (31)

where f"(-,t), " Y™ € V™ and are such that following convergences
have place as n — oo:

1" = fllzz@) — 0, [l¢" —elly — 0, [[¥" =9 — 0, (32)

and by conditions (28), such estimates are valid uniformly on n:

A" = pwf g < Ks, [[9"lv < Ko, [[Ap™ — pe"|| < Kip Vn.
(33)
Problem (31) has a solution u™ € H?(0,T;V™).
Then all conditions of lemma 2 are fulfiled for problem (31) and
hence the estimates (30) are right for u™(x,t) uniformly on n € N.
So we prove

Theorem 2. If 9O is Lip-continuous, pn € L*(Q2) and conditions (28)
are fulfiled, then problem (19), (20) has a solution u(x,t) with such
properties

u € C([0,T); V), u, € C([0,T); L*(Q)) N L>(0,T;V),

Au— pu € L0, T; L*(Q)), uy € L*(Q), (34)

moreover, such convergence has place as n € N;n — oo

) — -t P t) —u(-,t 0.
nax Ju" (-, 2) = u(, )||v+tgg§]llut(, ) —w(, )] —

Now we are able to formulate some conditions to raise smoothness
of a solution to problem (19), (20).

Theorem 3. Let k=1,2,...,n=dim) and
1) n =4k — 2,4k — 1 and such additional conditions are fulfiled:
e C*™ pew1Q), m=1,2,...,
p € H™H(Q), ¢ € H™(Q), f e L*(0,T; H*™(Q)),
and boundary ones for them:

(~A+pl)'e € HNQ)E=0,1,...,m), (~A+pl)y € H'(Q),

(=A+pl)"f € LX0,T; HHQ)(r =0,1,...,m — 1),
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then problem (19),(20) has a solution u(x,t) such that following
inclusions take place:

u € L0, T; H*™(Q)), u, € L®(0,T; H*™(Q)),
uy € L*(0,T; H*™1(Q)),

which are sufficient for all inclusions (22) by

n

2) n =4k, 4k + 1 and following conditions are fulfiled:

o0 e MY e WA(Q), m=0,1,2,...,
© c H2(m+1)(9)7 w c H2m+1(Q), f c L2(0,T, H2m+1(Q)),
(—=A+pl)'o € HY(Q),

(~A+pl) € HY(Q). (=0 +pD)'f € (0.7 H'(9).
(=0,1,...,m,
then a solution u(x,t) exists to problem (19), (20) which

u € L0, T; H*™(Q)), u, € L0, T; H*™ (1)),

U € L2(O, T, H2m(Q>),

and these inclusions are sufficient for all ones of (22) by

n
2 1> —.
m + 5
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