Pseudo-nearrings and quasi-modules over them

Anna Chwastyk and Kazimierz G乇azek

(Presented by V.M. Usenko 10.01.2003)

Abstract

In this paper we start to investigate a new notion of pseudonearrings and a generalization of linear spaces to quasi-modules over pseudo-nearrings. Pseudo-nearrings can be treated as ringoids in the sense of J. Hion (see [6]). The idea of pseudo-nearings is based on the notion of a ${ }^{*}$-associative quasigroup, i.e. on an involutive groupoid $\left(A ;+{ }^{*}\right)$ in which the following identities hold:

$$
\left(x^{*}\right)^{*}=x,(x+y)^{*}=y^{*}+x^{*},(x+y)^{*}+z=x+(y+z)^{*}
$$

We assume also commutativity and quasigroup properties of $(A ;+)$.
2000 MSC. 20N02, 20N05, 16Y30, 16W10, 16D99.

1. Introduction

An algebra $\left(A ;+,{ }^{*}\right)$ is said to be an involutive groupoid if the following identities hold:

$$
\left(x^{*}\right)^{*}=x, \quad(x+y)^{*}=y^{*}+x^{*}
$$

We call an involutive groupoid *-associative if it satisfies the equation:

$$
(x+y)^{*}+z=x+(y+z)^{*} .
$$

A ${ }^{*}$-associative groupoid $\left(A ;+,^{*}\right)$ is a ${ }^{*}$-associative quasigroup if $(A ;+)$ is a quasigroup.

The concepts of *- associative groupoid and quasigroup were introduced in [2]. For the standard terminology of semigroups, quasigroups and near-rings, see [1], [7], [9] and [10].
Examples 1 and 2. Define the following operations in the set Z_{5} :

$$
x^{*}=4 x(\bmod 5), x \oplus y=4 x+4 y+2 x^{2} y^{2}(x+y)(\bmod 5)
$$

Received 10.01.2003

Key words and phrases. Groupoid with involution, *-associative groupoid, term operation, quasigroup, ${ }^{*}$-associative quasigroup, pseudo-nearring, quasi-module.
and in the set Z_{7} :
$x^{*}=6 x(\bmod 7), x \oplus y=6 x+6 y+2 x^{2} y^{2}\left(x^{3}+y^{3}\right)+4 x^{3} y^{3}(x+y)(\bmod 7)$.
Then $\left(Z_{5} ; \oplus,{ }^{*}\right)$ and $\left(Z_{7} ; \oplus,{ }^{*}\right)$ are ${ }^{*}$-associative quasigroups.
Example 3. The algebra $\left(Z ; \oplus,{ }^{*}\right)$, where Z is the set of integers, $x \oplus y=$ $-(x+y)+3 a$ (for some fixed $a \in Z$), and $x^{*}=-x+2 a$, is a *-associative quasigroup.

For more examples, we refer the reader to [2] and [5].
In our investigation, we use the following proposition (see [3]):
Proposition 1. Let $\left(A ;+,{ }^{*}\right)$ be a commutative *-associative groupoid. Then
(a) $(a+b)+c=\left(a+c^{*}\right)+b^{*}$;
(b) $(a+b)+(c+d)=(a+c)+(b+d)$, for all $a, b, c \in A$.

Therefore the considered groupoid $(A ;+)$ is medial.
In the following we need to have a description of term operations for the considered algebras.

For a fixed algebra $\mathcal{A}=(A ; \mathbb{F})$ and $n=0,1,2, \ldots$, we denote by $\mathbb{T}^{(n)}(\mathcal{A})$ (or $\mathbb{T}^{(n)}$ for short) the class of all n-ary term operations of \mathcal{A}, i.e. the smallest class of operations satisfying the conditions:
(i) $e_{i}^{n} \in \mathbb{T}^{(n)}, \quad\left(e_{i}^{n}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=x_{i}\right.$ for $\left.i=1,2, \ldots, n\right)$
(ii) if $g_{1}, g_{2}, \ldots, g_{k} \in \mathbb{T}^{(n)}, f \in \mathbb{F}^{(k)}$, then

$$
\begin{aligned}
& f\left(g_{1}, g_{2}, \ldots, g_{k}\right)\left(x_{1}, x_{2}, \ldots, x_{n}\right)= \\
& \quad=f\left(g_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, g_{k}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right)
\end{aligned}
$$

belongs to $\mathbb{T}^{(n)}$.
For completeness, we recall the description of term operations in commutative *-associative groupoids (see [3]).

Denote $\left.\left.g_{(k, l)}(x)=\left(\ldots\left(x^{i_{1}}+x^{i_{2}}\right)+\ldots\right)+x^{i_{l}}\right)+\ldots\right)+x^{i_{k}}$, where $k \in N$, $l \in N \cup\{0\}, l$ is the first place in which * appears, $x \in A, x^{0}=x^{*}, x^{1}=x$, i.e., if $l=1$, then $i_{1}=0, i_{2 r}=0, i_{2 r+1}=1$ for $r \in N$, and if $l>1$, then $i_{r}=1$ for $r<l ; i_{l+2 s}=0, i_{l+2 s+1}=1$ for $r, s \in N \cup\{0\}$.

Then we have (see [3]):
Theorem 1. Every unary term operation in a commutative *-associative groupoid $\left(A ;+,{ }^{*}\right)$ is of the form $g_{(k, l)}(x)$.

Define $\left.\left.\left.h_{(p, r)}(y, x)=\left(\ldots\left(y+x^{i_{1}}\right)+x^{i_{2}}\right)+\ldots\right)+x^{i_{r}}\right)+\ldots\right)+x^{i_{p}}$, where $p, r \in N \cup\{0\}, h_{(0,0)}(y, x)=y, i_{s}=0$ for $s<r ; i_{r+2 s}=0, i_{r+2 s+1}=1$ for $s \in N \cup\{0\}$.

For simplicity of notation, we write $g_{(k, l)}(x) \oplus h_{(p, r)}(x)$ instead of $h_{(p, r)}\left(g_{(k, l)}(x), x\right)$. We obtain (see [3]):

Proposition 2. Every n-ary term operation in a commutative *-associative groupoid $\left(A,+,{ }^{*}\right)$ is of the following form:

$$
f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\ldots\left(g_{\left(k_{1}, l_{1}\right)}\left(x_{1}\right) \oplus h_{\left(k_{2}, l_{2}\right)}\left(x_{2}\right)\right) \oplus \ldots\right) \oplus h_{\left(k_{n}, l_{n}\right)}\left(x_{n}\right) .
$$

2. *-Associative quasigroups

We have the following characterization of *-associative quasigroups (see [2]):

Theorem 2. Let $\left(A ;+,^{*}\right)$ be a^{*}-associative groupoid. Then $(A ;+)$ is a quasigroup if and only if the following two conditions hold:
(i) $(\exists \varepsilon \in A)(\forall a \in A) \quad \varepsilon+a=a^{*}$,
(ii) $(\forall a \in A)(\exists b \in A) \quad b+a=\varepsilon$.

Let $\mathcal{A}=\left(A ;+,{ }^{*}, \varepsilon\right)$ be a ${ }^{*}$-associative quasigroup. Define $-a$ as an element such that $a+(-a)=\varepsilon$. To shorten notation, we write $a-b$ instead of $a+(-b)$. The unary operation $a \mapsto-a$ can be added to the set of fundamental operations of \mathcal{A}. Now, we prove several simple properties of ${ }^{*}$-associative quasigroups.

Proposition 3. Let $\left(A ;+,-,{ }^{*}, \varepsilon\right)$ be a^{*}-associative quasigroup. Then
(a) $(-a)^{*}=-\left(a^{*}\right)$;
(b) $-(a+b)=(-b)+(-a)$;
(c) $a=b \Leftrightarrow a-b=\varepsilon$; and
(d) $[a=b+c] \Leftrightarrow a-b^{*}=c$, for all $a, b, c \in A$.

Proof. The first equality is obvious. For the second we have:

$$
\begin{aligned}
&(a+b)+((-b)+(-a))=(a+b)+\left(\left(-a^{*}\right)+\left(-b^{*}\right)\right)^{*}= \\
&=\left((a+b)+\left(-a^{*}\right)\right)^{*}+\left(-b^{*}\right)=\left(\left(b^{*}+a^{*}\right)^{*}+\left(-a^{*}\right)\right)^{*}+\left(-b^{*}\right)= \\
&=\left(b^{*}+\left(a^{*}+\left(-a^{*}\right)\right)^{*}\right)^{*}+\left(-b^{*}\right)=\left(b^{*}+\varepsilon\right)^{*}+\left(-b^{*}\right)=b^{*}+\left(-b^{*}\right)=\varepsilon .
\end{aligned}
$$

The proofs of the last two equivalences are straightforward.

If there exists an idempotent e (i.e., $e+e=e, e^{*}=e$) in a *-associative $\operatorname{groupoid}\left(A ;+,{ }^{*}\right)$, then we can define a set Q_{e} as follows:

$$
Q_{e}=\left\{a \in A: e+a=a+e=a^{*}, a+b=b+a=e \text { for some } b \in A\right\} .
$$

Proposition 4. Let $\mathcal{A}=\left(A ;+,^{*}\right)$ be a^{*}-associative groupoid. Then Q_{e} is a^{*}-associative quasigroup and

$$
Q_{e}=\left\{a \in A: a^{*} \in(e+A) \cap(A+e), e \in(a+A) \cap(A+a)\right\}
$$

Proof. We first prove that Q_{e} is a subalgebra of \mathcal{A}. Let $a \in Q_{e}$. Then $a+e=e+a=a^{*}$ and $a+b=b+a=e$ for some $b \in A$. This yields $e+a^{*}=(a+e)^{*}=\left(a^{*}\right)^{*}=a=a^{*}+e, a^{*}+b^{*}=(b+a)^{*}=e=b^{*}+a^{*}$. This clearly forces $a^{*} \in Q_{e}$.

Now, suppose that $a, b \in Q_{e}$. Therefore $a+c=c+a=e$ and $b+d=d+b=e$ for some $c, d \in A$. Then

$$
\begin{gathered}
e+(a+b)^{*}=(e+a)^{*}+b=a^{* *}+b=a+b \\
(a+b)^{*}+e=a+(b+e)^{*}=a+b,(a+b)^{*}+(d+c)^{*}= \\
=a+\left(b+(d+c)^{*}\right)^{*}=a+\left((b+d)^{*}+c\right)^{*}=a+(e+c)^{*}= \\
\quad=(a+e)^{*}+c=a+c=e=(d+c)^{*}+(a+b)^{*}
\end{gathered}
$$

This implies $(a+b)^{*} \in Q_{e}$, and consequently $a+b \in Q_{e}$.
To prove that $Q_{e} \supseteq\left\{a \in A: a^{*} \in(e+A) \cap(A+e), e \in(a+A) \cap\right.$ $(A+a)\}$, let $a^{*} \in(e+A) \cap(A+e)$ and $e \in(a+A) \cap(A+e)$. Hence $a^{*}=e+p, a^{*}=q+e, e=a+r$ and $e=t+a$ for some $p, q, r, t \in A$. So $e+a=e+(e+p)^{*}=(e+e)^{*}+p=e+p=a^{*}$, and analogously $a+e=a^{*}$.

Now, put $b=(t+e)^{*}$. Then $t+e=t+e^{*}=t+(a+r)^{*}=$ $(t+a)^{*}+r=e+r=(t+a)+r$. Thus $(t+a)+r=b^{*}=t+(a+r)$ and so $a+b=a+((t+a)+r)^{*}=a+(e+r)^{*}=(a+e)^{*}+r=a^{* *}+r=a+r=e$. In the same manner, we can see that $b+a=e$. The result is $a \in Q_{e}$.

Here and subsequently, we denote $i=0,1, j=i+1(\bmod 2)$.
Lemma 1. The following properties hold in every commutative *-associative quasigroup $\left(A ;+,-,{ }^{*}, \varepsilon\right)$:
(a) $-\left(a-a^{*}\right)=\left(a-a^{*}\right)^{*}$,
(b) $a^{i}+\left(a-a^{*}\right)^{i}=a^{i}$,
(c) $\left(a+a^{*}\right)+\left(a-a^{*}\right)^{i}=a^{j}+a^{j}$,

Proof. It is immediate.
Let $g_{(k, l)}(x)$ be as in Section 1, and let \mathbb{T}_{1} and \mathbb{T}_{2} denote the sets of all terms of the form $g_{(k, l)}(x)$ fulfilling the following conditions:

1) $l=0$ for $k=2, l=1$ for k odd, $l=3$ for $k>2, k$ even;
2) $l=0$ for $k=1, l=1$ for k even, $l=3$ for $k>1, k$ odd, respectively. Denote

$$
f_{(k, l, m, n)}(x)=g_{(k, l)}(x)+g_{(m, n)}\left(x-x^{*}\right),
$$

where $k \in N, l, m, n \in N \cup\{0\}$, and $g_{(0,0)}(x)=\varepsilon$.
If $m \neq 0$, then $\left[g_{(k, l)}(x) \in \mathbb{T}_{1}\right.$ and $\left.g_{(m, n)}(x) \in \mathbb{T}_{2}\right]$ or $\left[g_{(k, l)}(x) \in \mathbb{T}_{2}\right.$ and $\left.g_{(m, n)}(x) \in \mathbb{T}_{1}\right]$.

Theorem 3. Every unary term operation in a commutative *-associative quasigroup $\left(A ;+,-,{ }^{*}, \varepsilon\right)$ is of the form $\pm f_{(k, l, m, n)}(x)$.

Proof. Obviously, every *-associative quasigroup is also a *-associative groupoid. So, by Theorem 1, the term operations of the form $g_{(k, l)}(x)$ and also $-g_{(k, l)}(x)$ belong to the set of term operations of a commutative *-associative quasigroup.

From Propositions 1(b), 3(a) and 3(b) we deduce that the term operations are also of the form

$$
g_{(k, l)}(x) \pm g_{(m, n)}\left(x-x^{*}\right) \text { or }-g_{(k, l)}(x) \pm g_{(m, n)}\left(x-x^{*}\right)
$$

By Lemma 1(a), these forms are equivalent to

$$
\pm\left[g_{(k, l)}(x)+g_{(m, n)}\left(x-x^{*}\right)\right]= \pm f_{(k, l, m, n)}(x)
$$

We consider only the term operations of the form $f_{(k, l, m, n)}(x)$, because for $-f_{(k, l, m, n)}(x)$ the verification is similar.

We first observe that, for $m \neq 0$, it is enough to consider the terms $g_{(k, l)}(x)$ which belong to \mathbb{T}_{1} or \mathbb{T}_{2}, because the other forms of term operations can be rewritten in a suitable form, i.e. $f_{\left(k^{\prime}, l^{\prime}, m^{\prime}, n^{\prime}\right)}(x)$.

For $k=2$, by Lemma 1(c) we have

$$
\begin{aligned}
f_{(2,2, m, n)}(x)= & \left(x+x^{*}\right)+g_{(m, n)}\left(x-x^{*}\right)= \\
= & \left(x+x^{*}\right)+\left[g_{(m-1, n)}\left(x-x^{*}\right)+\left(x-x^{*}\right)^{i}\right]= \\
= & {\left[\left(x+x^{*}\right)+\left(x-x^{*}\right)^{i}\right]+g_{(m-1, n)}^{*}\left(x-x^{*}\right)=} \\
& \quad=\left(x^{j}+x^{j}\right)+g_{(m-1, n)}^{*}\left(x-x^{*}\right),
\end{aligned}
$$

where $x^{j}+x^{j}=g_{(2, i)}(x) \in \mathbb{T}_{1}$ or \mathbb{T}_{2}.

For $k>2$ and k even, by Lemma 1(b), we obtain

$$
\begin{aligned}
& f_{(k, 2, m, n)}(x)=g_{(k, 2)}(x)+g_{(m, n)}\left(x-x^{*}\right)= \\
& {\left[\left(x+x^{*}\right) \oplus g_{(k-2,2)}(x)\right]+\left[g_{(m-1, n)}\left(x-x^{*}\right)+\left(x-x^{*}\right)^{i}\right]=} \\
& {\left[\left(x^{j} \oplus g_{(k-2,2)}(x)\right)+x^{i}\right]+\left[g_{(m-1, n)}\left(x-x^{*}\right)+\left(x-x^{*}\right)^{i}\right]=} \\
& {\left[x^{i}+\left(x-x^{*}\right)^{i}\right]+\left[\left(x^{j} \oplus g_{(k-2,2)}(x)\right)+g_{(m-1, n)}\left(x-x^{*}\right)\right]=} \\
& x^{i}+\left[\left(x^{j} \oplus g_{(k-2,2)}(x)\right)+g_{(m-1, n)}\left(x-x^{*}\right)\right]= \\
& \quad\left[x^{j}+\left(x^{j} \oplus g_{(k-2,2)}(x)\right]+g_{(m-1, n)}^{*}\left(x-x^{*}\right)=\right. \\
& \quad\left[\left(x^{j}+x^{j}\right) \oplus g_{(k-2,2)}(x)\right]+g_{(m-1, n)}^{*}\left(x-x^{*}\right) .
\end{aligned}
$$

After a finite number of similar steps, we get the term operation of the form $f_{\left(k^{\prime}, l^{\prime}, m^{\prime}, n^{\prime}\right)}(x)$, where $m^{\prime}=0$ or $g_{\left(k^{\prime}, l^{\prime}\right)}(x)$ belongs to \mathbb{T}_{1} or \mathbb{T}_{2}. The same conclusion can be drawn for k odd. Therefore we can assume $l \neq 2$.

Applying the equality $(x+x)+x=\left(x+x^{*}\right)+x^{*}$, by the same method as before, we can see that $l \leq 3$ for $k \geq 3$. Consequently, $g_{(k, l)}(x) \in \mathbb{T}_{1}$ or $g_{(k, l)}(x) \in \mathbb{T}_{2}$.

Since

$$
g_{(2,2)}\left(x-x^{*}\right)=\left(x-x^{*}\right)+\left(x-x^{*}\right)^{*}=\varepsilon
$$

and

$$
g_{(3,0)}\left(x-x^{*}\right)=\left(\left(x-x^{*}\right)+\left(x-x^{*}\right)\right)+\left(x-x^{*}\right)=\left(x-x^{*}\right)
$$

we conclude that the term operations of the form $g_{(m, n)}\left(x-x^{*}\right)$ belong to \mathbb{T}_{1} or \mathbb{T}_{2}.

Now, let $g_{(k, l)}(x), g_{(m, n)}(x) \in \mathbb{T}_{1}$. Then for $k=1$, by Lemma $1(\mathrm{~b})$, we get

$$
\begin{aligned}
& f_{(1,1, m, n)}(x)= \\
& g_{(1,1)}(x)+g_{(m, n)}\left(x-x^{*}\right)=x^{*}+\left[g_{(m-1, n)}\left(x-x^{*}\right)+\left(x-x^{*}\right)\right]= \\
& {\left[x+\left(x-x^{*}\right)\right]+g_{(m-1, n)}^{*}\left(x-x^{*}\right)=x+g_{(m-1, n)}^{*}\left(x-x^{*}\right)=} \\
& g_{(1,0)}(x)+g_{(m-1, n)}^{*}\left(x-x^{*}\right)
\end{aligned}
$$

where $g_{(1,0)}(x) \in \mathbb{T}_{2}$ and $g_{(m-1, n)}^{*}\left(x-x^{*}\right) \in \mathbb{T}_{1}$.
For $k>1, m=1$, we see that

$$
\begin{aligned}
& f_{(k, l, 1,1)}(x)=g_{(k, l)}(x)+g_{(1,1)}\left(x-x^{*}\right)= \\
& \quad\left[g_{(k-1, l)}(x)+x\right]+\left(x-x^{*}\right)^{*}=\left[x+\left(x-x^{*}\right)\right]+g_{(k-1, l)}^{*}(x)= \\
& g_{(k-1, l)}^{*}(x)+x .
\end{aligned}
$$

So, we can rewrite this term operation in the form $f_{\left(k^{\prime}, l^{\prime}, m^{\prime}, n^{\prime}\right)}(x)$, where $m^{\prime}=0$.

For $k=2$ and $m=2$, by Proposition 1(b) and Lemma 1(b), we have $f_{(2,0,2,0)}(x)=g_{(2,0)}(x)$.

For $k=2$ and $m>2$, we obtain

$$
\begin{aligned}
& f_{(2,0, m, n)}(x)=[x+x]+\left[g_{(m-1, n)}\left(x-x^{*}\right)+\left(x-x^{*}\right)\right]= \\
& {\left[x+\left(x-x^{*}\right)\right]+\left[x+g_{(m-1, n)}\left(x-x^{*}\right)\right]=x+\left[x+g_{(m-1, n)}\left(x-x^{*}\right)\right]=} \\
& {\left[x+x^{*}\right]+g_{(m-1, n)}^{*}\left(x-x^{*}\right)=\left[x+x^{*}\right]+\left[g_{(m-2, n)}^{*}\left(x-x^{*}\right)+\left(x-x^{*}\right)\right]=} \\
& {\left[\left(x+x^{*}\right)^{*}+\left(x-x^{*}\right)\right]+g_{(m-2, n)}\left(x-x^{*}\right)=\left[\left(x+x^{*}\right)+\left(x-x^{*}\right)\right]+} \\
& g_{(m-2, n)}\left(x-x^{*}\right)=\left[x^{*}+x^{*}\right]+g_{(m-2, n)}\left(x-x^{*}\right),
\end{aligned}
$$

where $g_{(2,1)}(x) \in \mathbb{T}_{2}$ and $g_{(m-2, n)}\left(x-x^{*}\right) \in \mathbb{T}_{1}$.
For $k>2, m \geq 2$, we get

$$
\begin{aligned}
& f_{(k, l, m, n)}(x)= \\
& {\left[\left(g_{(k-2, l)}(x)+x^{*}\right)+x\right]+\left[\left(g_{(m-2, n)}\left(x-x^{*}\right)+\left(x-x^{*}\right)^{*}\right)+\left(x-x^{*}\right)\right] }= \\
& {\left[g_{(k-2, l)}^{*}(x)+\left(x^{*}+x^{*}\right)\right]+\left[g_{(m-2, n)}^{*}\left(x-x^{*}\right)+\left(\left(x-x^{*}\right)^{*}+\left(x-x^{*}\right)^{*}\right]\right.}= \\
& {\left[g_{(k-2, l)}^{*}(x)+g_{(m-2, n)}^{*}\left(x-x^{*}\right)\right]+\left[\left(x^{*}+x^{*}\right)+\left(\left(x-x^{*}\right)^{*}+\left(x-x^{*}\right)^{*}\right)\right] }= \\
& {\left[g_{(k-2, l)}^{*}(x)+g_{(m-2, n)}^{*}\left(x-x^{*}\right)\right]+\left(x^{*}+x^{*}\right)=} \\
& {\left[(x+x)+g_{(k-2, l)}^{*}(x)\right]+g_{(m-2, n)}\left(x-x^{*}\right) },
\end{aligned}
$$

so $m^{\prime}=0$ or after a finite number of similar steps, we get the term operation of the required form.

The same conclusion can be drawn for the case $g_{(k, l)}(x), g_{(m, n)}(x) \in$ \mathbb{T}_{2}.

3. Pseudo-nearrings

A pseudo-nearrning is an algebra $\left(A ;+, \cdot,^{*}, \eta\right)$ of the type $(2,2,1,0)$ fulfilling the following conditions:
(i) $\left(A ;+,{ }^{*}, \eta\right)$ is a commutative ${ }^{*}$-associative quasigroup,
(ii) $(\alpha \beta) \gamma=\alpha(\beta \gamma)$,
(iii) $(\alpha \beta)^{*}=\alpha^{*} \beta$,
and
(iv) $(\alpha+\beta) \gamma=\alpha \gamma+\beta \gamma$,
for all $\alpha, \beta, \gamma \in A$.
Example 4. Let $\left(A ;+,^{*}, \eta\right)$ be a ${ }^{*}$-associative quasigroup and \mathcal{T}_{A} be the set of all maps from A to itself. Then the algebra $\left(\mathcal{T}_{A} ; \#, \circ,{ }^{\otimes}, f_{\eta}\right)$, where $(f \# g)(x)=f(x)+g(x),(f \circ g)(x)=f(g(x)), f^{\otimes}(x)=(f(x))^{*}$ and $f_{\eta}(x)=\eta$, is a pseudo-nearring.

Indeed, it is easy to show that $\left(\mathcal{T}_{A} ; \#,{ }^{\otimes}\right)$ is a commutative ${ }^{*}$-associative groupoid. We prove that it is a quasigroup. Let $h \in \mathcal{T}_{A}$. Then $\left(f_{\eta} \# h\right)(x)=f_{\eta}(x)+h(x)=\eta+h(x)=(h(x))^{*}=h^{\otimes}(x)$, which gives $f_{\eta} \# h=h^{\otimes}$.

By Lemma 2 of [2], if $a \in A$, then there exists a unique element b, such that $a+b=\eta=b+a$. Define a map $g_{\eta}: A \mapsto A$ as follows $g_{\eta}(x)=y \Leftrightarrow x+y=\eta$.

Let $h \in \mathcal{T}_{A}$. Then $\left(\left(g_{\eta} \circ h\right) \# h\right)(x)=g_{\eta}(h(x))+h(x)=\eta=f_{\eta}(x)$, and, in consequence, $\left(g_{\eta} \circ h\right) \# h=f_{\eta}$.
Example 5. Let $\left(Z ; \oplus,{ }^{*}\right)$ be the ${ }^{*}$-associative quasigroup defined in Example 3 and a multiplication be given by $x \circ y=a$. Then $\left(Z ; \oplus, \circ,{ }^{*}, a\right)$ is a pseudo-nearring.
Example 6. Let $\left(A ;+,{ }^{*}, \eta\right)$ be a ${ }^{*}$-associative quasigroup. Define the operation $x \circ y=x$. Then $\left(A ;+, \circ,{ }^{*}, \eta\right)$ is also a pseudo-nearring.

Proposition 5. Let $\left(A ;+, \cdot,{ }^{*}, \eta\right)$ be a pseudo-nearring. Then

$$
\eta \alpha=\eta \text { and }-(\alpha \beta)=(-\alpha) \beta
$$

Proof. Suppose that $\alpha \in A$. By Theorem 2 and (iii), (iv) from the pseudo-nearring definition, we have:

$$
\begin{aligned}
\eta=\eta \alpha+(-\eta \alpha)=\left(\eta^{*}+\eta^{*}\right) \alpha+(-\eta \alpha) & =(\eta \alpha+\eta \alpha)^{*}+(-(\eta \alpha))= \\
& =\eta \alpha+\left(\eta \alpha+(-(\eta \alpha))^{*}=\eta \alpha\right.
\end{aligned}
$$

The proof of the second property is immediate.
We use similar notations as in [10]. Define two subsets of a pseudonearring $\left(A ;+, \cdot,^{*}, \eta\right)$. A set $A_{\eta}=\{a \in A: a \eta=\eta\}$ is called the η-symmetric part of \mathcal{A} and $A_{c}=\{a \in A: a \eta=a\}$ is called the constant part of \mathcal{A}. It is evident that A_{η}, A_{c} are subalgebras of \mathcal{A}.

Proposition 6. Let $\left(A ;+, \cdot,{ }^{*}, \eta\right)$ be a pseudo-nearring. Then

$$
(\forall a \in A)\left(\exists a_{\eta} \in A_{\eta}\right)\left(\exists a_{c} \in A_{c}\right) a=a_{\eta}+a_{c}
$$

Proof. Similarly as for nearrings the element $a=\left(a^{*}+\left(-a^{*} \eta\right)\right)^{*}+a^{*} \eta$ will do the decomposition job.

A non-empty subset I of a pseudo-nearring \mathcal{A} is said to be a left ideal of \mathcal{A} if:

$$
(\forall \alpha, \beta \in I)(\forall \gamma \in A) \quad\left[\gamma \alpha \in I, \alpha^{*} \in I, \alpha-\beta \in I\right]
$$

Remark. The subset A_{c} is a left ideal of \mathcal{A}.

4. Quasi-modules over pseudo-nearrings

Let $\left(V ;+,{ }^{*}, \varepsilon\right)$ be a commutative ${ }^{*}$-associative quasigroup and $\mathcal{A}=$ $\left(A ; \oplus, \circ,{ }^{\star}, \eta\right)$ be a pseudo-nearring. Define a map $f_{\alpha}: V \rightarrow V ; u \longmapsto \alpha u$ for all $\alpha \in A$. If, for all $\alpha, \beta \in A$; and for all $u, v \in V$, we have:
(i) $(\alpha \oplus \beta) u=\alpha u+\beta u$,
(ii) $\alpha(u+v)=\alpha u+\alpha v$,
(iii) $(\alpha \circ \beta) u=\alpha(\beta u)$,
(iv) $\alpha \varepsilon=\varepsilon=\eta u$,
and
(v) $\alpha u=\beta u \Rightarrow \alpha=\beta$,
then V with operations $+,{ }^{*}, \varepsilon,\left(f_{\alpha}\right)_{\alpha \in A}$ is called a quasi-module over \mathcal{A}.
Proposition 7. Let $\left(V,+,{ }^{*}, \varepsilon,\left(f_{\alpha}\right)_{\alpha \in A}\right)$ be a quasi-module over a pseudo-nearring $\left(A ; \oplus, \circ,^{\star}, \eta\right)$ and $\alpha \in A, u \in V$. Then we have:
(a) $\alpha^{\star} u=(\alpha u)^{*}=\alpha u^{*}$;
(b) $-(\alpha u)=(-\alpha) u=\alpha(-u)$;
(c) $\alpha u=\varepsilon \Rightarrow[\alpha=\eta$ or $u=\varepsilon]$.

Proof. Let $\alpha \in A, u \in V$. Then

$$
\begin{aligned}
\alpha^{\star} u=(\alpha \oplus \eta) u=\alpha u+\eta u=\alpha u+\varepsilon=(& \alpha u)^{*}= \\
& \alpha u+\alpha \varepsilon=\alpha(u+\varepsilon)=\alpha u^{*} .
\end{aligned}
$$

The rest of the proof is standard.
Denote

$$
F_{(k, l, m, n, \alpha)}(x)=f_{(k, l, m, n)}(x)+\alpha x,
$$

where $f_{(k, l, m, n)}(x)$ is defined as in Section $2, \alpha \in A, x \in V$.

Theorem 4. Every unary term operation in a quasi-module $\left(V,+,{ }^{*}, \varepsilon,\left(f_{\alpha}\right)_{\alpha \in A}\right)$ over a pseudo-nearring $\left(A, \oplus, \circ,{ }^{\star}, \eta\right)$ is of the form $\pm F_{(k, l, m, n, \alpha)}(x)$.
Proof. The proof is by induction with respect of the complexity of operations. We first observe that the projection has the required form:

$$
e_{1}^{1}(x)=x=(x+\varepsilon)+\eta x=F_{(1,0,0,0, \eta)}(x)
$$

The set of all operations of the form $\pm F_{(k, l, m, n, \alpha)}(x)$ is closed under the quasi-module operations. Indeed, by Propositions 3(b) and 7(b), we conclude that

$$
-F_{(k, l, m, n, \alpha)}(x)=-f_{(k, l, m, n)}(x)+(-\alpha) x .
$$

Taking into account Proposition 1(b), we get

$$
\begin{aligned}
F_{\left(k_{1}, l_{1}, m_{1}, n_{1}, \alpha_{1}\right)}(x)+ & F_{\left(k_{2}, l_{2}, m_{2}, n_{2}, \alpha_{2}\right)}(x)= \\
& {\left[f_{\left(k_{1}, l_{1}, m_{1}, n_{1}\right)}(x)+f_{\left(k_{2}, l_{2}, m_{2}, n_{2}\right)}(x)\right]+\left(\alpha_{1}+\alpha_{2}\right) x }
\end{aligned}
$$

From Proposition 7(a), it follows that

$$
F_{(k, l, m, n, \alpha)}^{*}(x)=f_{(k, l, m, n)}^{*}(x)+\alpha^{\star} x
$$

Now, we verify that

$$
\begin{aligned}
& \beta F_{(k, l, m, n, \alpha)}(x)=\beta\left[f_{(k, l, m, n)}(x)+\alpha x\right]= \\
& \beta\left(g_{(k, l)}(x)+g_{(m, n)}\left(x-x^{*}\right)\right)+(\beta \alpha) x= \\
& \quad\left(\beta g_{(k, l)}(x)+\beta g_{(m, n)}\left(x-x^{*}\right)\right)+(\beta \alpha) x .
\end{aligned}
$$

By parts (i) and (ii) of the quasi-module definition, and Proposition 7(a), we have

$$
\begin{aligned}
&\left.\left.\left.\beta g_{(k, l)}(x)=\beta\left[\ldots\left(x^{i_{1}}+x^{i_{2}}\right)+\ldots\right)+x^{i_{l}}\right)+\ldots\right)+x^{i_{k}}\right]= \\
&\left.\left.\left(\ldots\left(\beta x^{i_{1}}+\beta x^{i_{2}}\right)+\ldots\right)+\beta x^{i_{l}}\right)+\ldots\right)+\beta x^{i_{k}}= \\
&\left.\left.\left(\ldots\left(\beta^{i_{1}} x+\beta^{i_{2}} x\right)+\ldots\right)+\beta^{i_{l}} x\right)+\ldots\right)+\beta^{i_{k}} x= \\
& {\left.\left.\left[\left(\ldots\left(\beta^{i_{1}}+\beta^{i_{2}}\right)+\ldots\right)+\beta^{i_{l}}\right)+\ldots\right)+\beta^{i_{k}}\right] x }=g_{(k, l)}(\beta) x .
\end{aligned}
$$

And also $\beta g_{(m, n)}\left(x-x^{*}\right)=g_{(m, n)}(\beta)\left(x-x^{*}\right)=\left[g_{(m, n)}(\beta)-g_{(m, n)}^{*}(\beta)\right] x$. Here, we use similar notations for term operations $g_{(k, l)}(x)$ in a quasimodule as for term operations $g_{(k, l)}(\beta)$ in a pseudo-nearring.

Finally, we deduce that

$$
\begin{array}{r}
\beta F_{(k, l, m, n, \alpha)}(x)=\left[g_{(k, l)}(\beta) x+\left(g_{(m, n)}(\beta)-g_{(m, n)}^{*}(\beta)\right) x\right]+(\beta \alpha) x= \\
\quad\left[\left(g_{(k, l)}(\beta)+\left(g_{(m, n)}(\beta)-g_{(m, n)}^{*}(\beta)\right)\right)+(\beta \alpha)\right] x=F_{(0,0,0,0, \gamma)}(x)
\end{array}
$$

where $\gamma=\left[\left(g_{(k, l)}(\beta)+\left(g_{(m, n)}(\beta)-g_{(m, n)}^{*}(\beta)\right)\right)+(\beta \alpha)\right]^{*}$.

In the next paper we will use the obtained results, especially the description of term operations in ${ }^{*}$-associative quasigroups and quasimodules over pseudo-nearrings, for the description of independent sets (in the sense of Marczewski; see [8]) in the above algebras.

References

[1] I. Chajda, K. Głazek, A Basic Course on General Algebra, Technical Univ. Press, Zielona Góra 2000.
[2] A. Chwastyk, K. Głazek, Remarks on ${ }^{*}$-associative groupoids, Contributions to General Algebra 13 (2001), 83-89.
[3] A. Chwastyk, K. Głazek, Term operations in commutative *-associative groupoids, Contributions to General Algebra 14 (2003), in print.
[4] K. Głazek, On some non-associative rings (in Polish), Acta Univ. Wratislav. 17 (1961), 15-19.
[5] K. Głazek, ${ }^{*}$-associative and γ-algebras (in Polish), Acta Univ.Wratislav. 58 (1967), 5-19.
[6] J. Hion, Ω-ringoids, Ω-rings and their representations (in Russian), Trudy Moskov. Mat. Obshch. 14 (1965), 3-47.
[7] A.G. Kurosh, General Algebra Lectures of the 1969-1970 Academic Year (in Russian), Izdat. "Nauka", Moscow 1974.
[8] E. Marczewski, Independence and homomorphism in abstract algebras, Fund. Math. 50 (1961), 45-61.
[9] H.O. Pflugfelder, Quasigroups and Loops: Introduction, Heldermann-Verlag, Berlin 1990.
[10] G. Pilz, Near-Rings, North-Holland Publ. Comp., Amsterdam 1983.

Contact information

Anna Chwastyk Institute of Mathematics, Technical University of Opole, ul. Waryńskiego 4, 45-047, Opole, Poland E-Mail: ach@polo.po.opole.pl

Kazimierz Głazek Institute of Mathematics, University of Zielona Góra, ul. Podgórna 50, 65-246 Zielona Góra, Poland E-Mail: k.glazek@im.uz.zgora.pl

