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Abstract. In this paper we start to investigate a new notion of pseudo-
nearrings and a generalization of linear spaces to quasi-modules over
pseudo-nearrings. Pseudo-nearrings can be treated as ringoids in the
sense of J. Hion (see [6]). The idea of pseudo-nearings is based on the no-
tion of a ∗-associative quasigroup, i.e. on an involutive groupoid (A; +,∗ )
in which the following identities hold:

(x∗)∗ = x, (x + y)∗ = y
∗ + x

∗
, (x + y)∗ + z = x + (y + z)∗.

We assume also commutativity and quasigroup properties of (A; +).
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1. Introduction

An algebra (A; +,∗ ) is said to be an involutive groupoid if the following
identities hold:

(x∗)∗ = x, (x+ y)∗ = y∗ + x∗.

We call an involutive groupoid ∗-associative if it satisfies the equation:

(x+ y)∗ + z = x+ (y + z)∗.

A ∗-associative groupoid (A; +,∗ ) is a ∗-associative quasigroup
if (A; +) is a quasigroup.

The concepts of ∗- associative groupoid and quasigroup were intro-
duced in [2]. For the standard terminology of semigroups, quasigroups
and near-rings, see [1], [7], [9] and [10].

Examples 1 and 2. Define the following operations in the set Z5:

x∗ = 4x(mod5), x⊕ y = 4x+ 4y + 2x2y2(x+ y)(mod5);
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and in the set Z7:

x∗ = 6x(mod7), x⊕ y = 6x+ 6y+ 2x2y2(x3 + y3) + 4x3y3(x+ y)(mod7).

Then (Z5;⊕,∗ ) and (Z7;⊕,∗ ) are ∗-associative quasigroups.

Example 3. The algebra (Z;⊕,∗ ), where Z is the set of integers, x⊕y =
−(x+y)+3a (for some fixed a ∈ Z), and x∗ = −x+2a, is a ∗-associative
quasigroup.

For more examples, we refer the reader to [2] and [5].

In our investigation, we use the following proposition (see [3]):

Proposition 1. Let (A; +,∗ ) be a commutative ∗-associative groupoid.
Then

(a) (a+ b) + c = (a+ c∗) + b∗;

(b) (a+ b) + (c+ d) = (a+ c) + (b+ d), for all a, b, c ∈ A.

Therefore the considered groupoid (A; +) is medial.
In the following we need to have a description of term operations for

the considered algebras.

For a fixed algebra A = (A; F) and n = 0, 1, 2, . . . , we denote by
T

(n)(A) (or T
(n) for short) the class of all n-ary term operations of A,

i.e. the smallest class of operations satisfying the conditions:

(i) eni ∈ T
(n), (eni (x1, x2, . . . , xn) = xi for i = 1, 2, . . . , n)

(ii) if g1, g2, . . . , gk ∈ T
(n), f ∈ F

(k), then

f(g1, g2, . . . , gk)(x1, x2, . . . , xn) =

= f(g1(x1, x2, . . . , xn), . . . , gk(x1, x2, . . . , xn))

belongs to T
(n).

For completeness, we recall the description of term operations in com-
mutative ∗-associative groupoids (see [3]).

Denote g(k,l)(x) = (. . . (xi1 +xi2)+. . .)+xil)+. . .)+xik , where k ∈ N,
l ∈ N∪{0}, l is the first place in which ∗ appears, x ∈ A, x0 = x∗, x1 = x,
i.e., if l = 1, then i1 = 0, i2r = 0, i2r+1 = 1 for r ∈ N , and if l > 1, then
ir = 1 for r < l; il+2s = 0, il+2s+1 = 1 for r, s ∈ N ∪ {0}.

Then we have (see [3]):

Theorem 1. Every unary term operation in a commutative ∗-associative
groupoid (A; +,∗ ) is of the form g(k,l)(x).



A. Chwastyk, K. G lazek 131

Define h(p,r)(y, x) = (. . . (y+xi1)+xi2)+ . . .)+xir)+ . . .)+xip , where
p, r ∈ N ∪ {0}, h(0,0)(y, x) = y, is = 0 for s < r; ir+2s = 0, ir+2s+1 = 1
for s ∈ N ∪ {0}.

For simplicity of notation, we write g(k,l)(x) ⊕ h(p,r)(x) instead of
h(p,r)(g(k,l)(x), x). We obtain (see [3]):

Proposition 2. Every n-ary term operation in a commutative ∗-associ-
ative groupoid (A,+,∗ ) is of the following form:

f(x1, x2, . . . , xn) = (. . . (g(k1,l1)(x1)⊕h(k2,l2)(x2))⊕ . . .)⊕h(kn,ln)(xn).

2. ∗-Associative quasigroups

We have the following characterization of ∗-associative quasigroups
(see [2]):

Theorem 2. Let (A; +,∗ ) be a ∗-associative groupoid. Then (A; +) is a
quasigroup if and only if the following two conditions hold:

(i) (∃ε ∈ A) (∀a ∈ A) ε+ a = a∗,

(ii) (∀a ∈ A) (∃b ∈ A) b+ a = ε.

Let A = (A; +,∗ , ε) be a ∗-associative quasigroup. Define −a as an
element such that a + (−a) = ε. To shorten notation, we write a − b
instead of a + (−b). The unary operation a 7→ −a can be added to
the set of fundamental operations of A. Now, we prove several simple
properties of ∗-associative quasigroups.

Proposition 3. Let (A; +,−,∗ , ε) be a ∗-associative quasigroup. Then

(a) (−a)∗ = −(a∗);

(b) −(a+ b) = (−b) + (−a);

(c) a = b⇔ a− b = ε; and

(d) [a = b+ c] ⇔ a− b∗ = c, for all a, b, c ∈ A.

Proof. The first equality is obvious. For the second we have:

(a+ b) + ((−b) + (−a)) = (a+ b) + ((−a∗) + (−b∗))∗ =

= ((a+ b) + (−a∗))∗ + (−b∗) = ((b∗ + a∗)∗ + (−a∗))∗ + (−b∗) =

= (b∗ + (a∗ + (−a∗))∗)∗ + (−b∗) = (b∗ + ε)∗ + (−b∗) = b∗ + (−b∗) = ε.

The proofs of the last two equivalences are straightforward.
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If there exists an idempotent e (i.e., e+e = e, e∗ = e) in a ∗-associative
groupoid (A; +,∗ ), then we can define a set Qe as follows:

Qe = {a ∈ A : e+ a = a+ e = a∗, a+ b = b+ a = e for some b ∈ A}.

Proposition 4. Let A = (A; +,∗ ) be a ∗-associative groupoid. Then Qe

is a ∗-associative quasigroup and

Qe = {a ∈ A : a∗ ∈ (e+A) ∩ (A+ e), e ∈ (a+A) ∩ (A+ a)}.

Proof. We first prove that Qe is a subalgebra of A. Let a ∈ Qe. Then
a + e = e + a = a∗ and a + b = b + a = e for some b ∈ A. This yields
e+ a∗ =(a+ e)∗ = (a∗)∗ = a = a∗ + e, a∗ + b∗ = (b+ a)∗ = e = b∗ + a∗.
This clearly forces a∗ ∈ Qe.

Now, suppose that a, b ∈ Qe. Therefore a + c = c + a = e and
b+ d = d+ b = e for some c, d ∈ A. Then

e+ (a+ b)∗ = (e+ a)∗ + b = a∗∗ + b = a+ b,

(a+ b)∗ + e = a+ (b+ e)∗ = a+ b, (a+ b)∗ + (d+ c)∗ =

= a+ (b+ (d+ c)∗)∗ = a+ ((b+ d)∗ + c)∗ = a+ (e+ c)∗ =

= (a+ e)∗ + c = a+ c = e = (d+ c)∗ + (a+ b)∗.

This implies (a+ b)∗ ∈ Qe, and consequently a+ b ∈ Qe.
To prove that Qe ⊇ {a ∈ A : a∗ ∈ (e + A) ∩ (A + e), e ∈ (a + A) ∩

(A + a)}, let a∗ ∈ (e + A) ∩ (A + e) and e ∈ (a + A) ∩ (A + e). Hence
a∗ = e + p, a∗ = q + e, e = a + r and e = t + a for some p, q, r, t ∈ A.
So e + a = e + (e + p)∗ = (e + e)∗ + p = e + p = a∗, and analogously
a+ e = a∗.

Now, put b = (t + e)∗. Then t + e = t + e∗ = t + (a + r)∗ =
(t+a)∗+r = e+r = (t+a)+r. Thus (t+a)+r = b∗ = t+(a+r) and so
a+b = a+((t+a)+r)∗ = a+(e+r)∗ = (a+e)∗+r = a∗∗+r = a+r = e.
In the same manner, we can see that b+a = e. The result is a ∈ Qe.

Here and subsequently, we denote i = 0, 1, j = i+ 1(mod 2).

Lemma 1. The following properties hold in every commutative ∗-associ-
ative quasigroup (A; +,−,∗ , ε):

(a) −(a− a∗) = (a− a∗)∗,

(b) ai + (a− a∗)i = ai,

(c) (a+ a∗) + (a− a∗)i = aj + aj,
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Proof. It is immediate.

Let g(k,l)(x) be as in Section 1, and let T1 and T2 denote the sets of
all terms of the form g(k,l)(x) fulfilling the following conditions:

1) l = 0 for k = 2, l = 1 for k odd, l = 3 for k > 2, k even;

2) l = 0 for k = 1, l = 1 for k even, l = 3 for k > 1, k odd, respectively.

Denote

f(k,l,m,n)(x) = g(k,l)(x) + g(m,n)(x− x∗),

where k ∈ N, l,m,n ∈ N ∪ {0}, and g(0,0)(x) = ε.

If m 6= 0, then [g(k,l)(x) ∈ T1 and g(m,n)(x) ∈ T2] or [g(k,l)(x) ∈ T2

and g(m,n)(x) ∈ T1].

Theorem 3. Every unary term operation in a commutative ∗-associative
quasigroup (A; +,−,∗ , ε) is of the form ±f(k,l,m,n)(x).

Proof. Obviously, every ∗-associative quasigroup is also a ∗-associative
groupoid. So, by Theorem 1, the term operations of the form g(k,l)(x)
and also −g(k,l)(x) belong to the set of term operations of a commutative
∗-associative quasigroup.

From Propositions 1(b), 3(a) and 3(b) we deduce that the term opera-
tions are also of the form

g(k,l)(x) ± g(m,n)(x− x∗) or − g(k,l)(x) ± g(m,n)(x− x∗).

By Lemma 1(a), these forms are equivalent to

±[g(k,l)(x) + g(m,n)(x− x∗)] = ±f(k,l,m,n)(x).

We consider only the term operations of the form f(k,l,m,n)(x), because
for −f(k,l,m,n)(x) the verification is similar.

We first observe that, for m 6= 0, it is enough to consider the terms
g(k,l)(x) which belong to T1 or T2, because the other forms of term op-
erations can be rewritten in a suitable form, i.e. f(k′,l′,m′,n′)(x).

For k = 2, by Lemma 1(c) we have

f(2,2,m,n)(x) = (x+ x∗) + g(m,n)(x− x∗) =

= (x+ x∗) + [g(m−1,n)(x− x∗) + (x− x∗)i] =

= [(x+ x∗) + (x− x∗)i] + g∗(m−1,n)(x− x∗) =

= (xj + xj) + g∗(m−1,n)(x− x∗),

where xj + xj = g(2,i)(x) ∈ T1 or T2.
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For k > 2 and k even, by Lemma 1(b), we obtain

f(k,2,m,n)(x) = g(k,2)(x) + g(m,n)(x− x∗) =

[(x+ x∗) ⊕ g(k−2,2)(x)] + [g(m−1,n)(x− x∗) + (x− x∗)i] =

[(xj ⊕ g(k−2,2)(x)) + xi] + [g(m−1,n)(x− x∗) + (x− x∗)i] =

[xi + (x− x∗)i] + [(xj ⊕ g(k−2,2)(x)) + g(m−1,n)(x− x∗)] =

xi + [(xj ⊕ g(k−2,2)(x)) + g(m−1,n)(x− x∗)] =

[xj + (xj ⊕ g(k−2,2)(x)] + g∗(m−1,n)(x− x∗) =

[(xj + xj) ⊕ g(k−2,2)(x)] + g∗(m−1,n)(x− x∗).

After a finite number of similar steps, we get the term operation of the
form f(k′,l′,m′,n′)(x), where m′ = 0 or g(k′,l′)(x) belongs to T1 or T2. The
same conclusion can be drawn for k odd. Therefore we can assume l 6= 2.

Applying the equality (x+x)+x = (x+x∗)+x∗, by the same method
as before, we can see that l ≤ 3 for k ≥ 3. Consequently, g(k,l)(x) ∈ T1

or g(k,l)(x) ∈ T2.
Since

g(2,2)(x− x∗) = (x− x∗) + (x− x∗)∗ = ε

and

g(3,0)(x− x∗) = ((x− x∗) + (x− x∗)) + (x− x∗) = (x− x∗),

we conclude that the term operations of the form g(m,n)(x − x∗) belong
to T1 or T2.

Now, let g(k,l)(x), g(m,n)(x) ∈ T1. Then for k = 1, by Lemma 1(b),
we get

f(1,1,m,n)(x) =

g(1,1)(x) + g(m,n)(x− x∗) = x∗ + [g(m−1,n)(x− x∗) + (x− x∗)] =

[x+ (x− x∗)] + g∗(m−1,n)(x− x∗) = x+ g∗(m−1,n)(x− x∗) =

g(1,0)(x) + g∗(m−1,n)(x− x∗),

where g(1,0)(x) ∈ T2 and g∗(m−1,n)(x− x∗) ∈ T1.
For k > 1,m = 1, we see that

f(k,l,1,1)(x) = g(k,l)(x) + g(1,1)(x− x∗) =

[g(k−1,l)(x) + x] + (x− x∗)∗ = [x+ (x− x∗)] + g∗(k−1,l)(x) =

g∗(k−1,l)(x) + x.
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So, we can rewrite this term operation in the form f(k′,l′,m′,n′)(x), where
m′ = 0.

For k = 2 and m = 2, by Proposition 1(b) and Lemma 1(b), we have
f(2,0,2,0)(x) = g(2,0)(x).

For k = 2 and m > 2, we obtain

f(2,0,m,n)(x) = [x+ x] + [g(m−1,n)(x− x∗) + (x− x∗)] =

[x+ (x− x∗)] + [x+ g(m−1,n)(x− x∗)] = x+ [x+ g(m−1,n)(x− x∗)] =

[x+ x∗] + g∗(m−1,n)(x− x∗) = [x+ x∗] + [g∗(m−2,n)(x− x∗) + (x− x∗)] =

[(x+ x∗)∗ + (x− x∗)] + g(m−2,n)(x− x∗) = [(x+ x∗) + (x− x∗)]+

g(m−2,n)(x− x∗) = [x∗ + x∗] + g(m−2,n)(x− x∗),

where g(2,1)(x) ∈ T2 and g(m−2,n)(x− x∗) ∈ T1.
For k > 2,m ≥ 2, we get

f(k,l,m,n)(x) =

[(g(k−2,l)(x) + x∗) + x] + [(g(m−2,n)(x− x∗) + (x− x∗)∗) + (x− x∗)] =

[g∗(k−2,l)(x) + (x∗ + x∗)] + [g∗(m−2,n)(x− x∗) + ((x− x∗)∗ + (x− x∗)∗] =

[g∗(k−2,l)(x) + g∗(m−2,n)(x− x∗)] + [(x∗ + x∗) + ((x− x∗)∗ + (x− x∗)∗)] =

[g∗(k−2,l)(x) + g∗(m−2,n)(x− x∗)] + (x∗ + x∗) =

[(x+ x) + g∗(k−2,l)(x)] + g(m−2,n)(x− x∗),

so m′ = 0 or after a finite number of similar steps, we get the term
operation of the required form.

The same conclusion can be drawn for the case g(k,l)(x), g(m,n)(x) ∈
T2.

3. Pseudo-nearrings

A pseudo-nearrning is an algebra (A; +, ·,∗ , η) of the type (2, 2, 1, 0)
fulfilling the following conditions:

(i) (A; +,∗ , η) is a commutative ∗-associative quasigroup,

(ii) (αβ)γ = α(βγ),

(iii) (αβ)∗ = α∗β,
and

(iv) (α+ β)γ = αγ + βγ,
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for all α, β, γ ∈ A.

Example 4. Let (A; +,∗ , η) be a ∗-associative quasigroup and TA be
the set of all maps from A to itself. Then the algebra (TA; #, ◦,⊗ , fη),
where (f#g)(x) = f(x) + g(x), (f ◦ g)(x) = f(g(x)), f⊗(x) = (f(x))∗

and fη(x) = η, is a pseudo-nearring.

Indeed, it is easy to show that (TA; #,⊗ ) is a commutative ∗-associa-
tive groupoid. We prove that it is a quasigroup. Let h ∈ TA. Then
(fη#h)(x) = fη(x) + h(x) = η + h(x) = (h(x))∗ = h⊗(x), which gives
fη#h = h⊗.

By Lemma 2 of [2], if a ∈ A, then there exists a unique element b,
such that a + b = η = b + a. Define a map gη : A 7→ A as follows
gη(x) = y ⇔ x+ y = η.

Let h ∈ TA. Then ((gη ◦ h)#h)(x) = gη(h(x)) + h(x) = η = fη(x),
and, in consequence, (gη ◦ h)#h = fη.

Example 5. Let (Z;⊕,∗ ) be the ∗-associative quasigroup defined in
Example 3 and a multiplication be given by x◦y = a. Then (Z;⊕, ◦,∗ , a)
is a pseudo-nearring.

Example 6. Let (A; +,∗ , η) be a ∗-associative quasigroup. Define the
operation x ◦ y = x. Then (A; +, ◦,∗ , η) is also a pseudo-nearring.

Proposition 5. Let (A; +, ·,∗ , η) be a pseudo-nearring. Then

ηα = η and − (αβ) = (−α)β.

Proof. Suppose that α ∈ A. By Theorem 2 and (iii), (iv) from the
pseudo-nearring definition, we have:

η = ηα+ (−ηα) = (η∗ + η∗)α+ (−ηα) = (ηα+ ηα)∗ + (−(ηα)) =

= ηα+ (ηα+ (−(ηα))∗ = ηα.

The proof of the second property is immediate.

We use similar notations as in [10]. Define two subsets of a pseudo-
nearring (A; +, ·,∗ , η). A set Aη = {a ∈ A : aη = η} is called the
η-symmetric part of A and Ac = {a ∈ A : aη = a} is called the constant
part of A. It is evident that Aη, Ac are subalgebras of A.

Proposition 6. Let (A; +, ·,∗ , η) be a pseudo-nearring. Then

(∀a ∈ A) (∃aη ∈ Aη) (∃ac ∈ Ac) a = aη + ac.

Proof. Similarly as for nearrings the element a = (a∗ + (−a∗η))∗ + a∗η
will do the decomposition job.
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A non-empty subset I of a pseudo-nearring A is said to be a left ideal
of A if:

(∀α, β ∈ I) (∀γ ∈ A) [γα ∈ I, α∗ ∈ I, α− β ∈ I].

Remark. The subset Ac is a left ideal of A.

4. Quasi-modules over pseudo-nearrings

Let (V ; +,∗ , ε) be a commutative ∗-associative quasigroup and A =
(A;⊕, ◦,⋆ , η) be a pseudo-nearring. Define a map fα : V → V ; u 7−→ αu
for all α ∈ A. If, for all α, β ∈ A; and for all u, v ∈ V , we have:

(i) (α⊕ β)u = αu+ βu,

(ii) α(u+ v) = αu+ αv,

(iii) (α ◦ β)u = α(βu),

(iv) αε = ε = ηu,
and

(v) αu = βu⇒ α = β,

then V with operations +,∗ , ε, (fα)α∈A is called a quasi-module over A.

Proposition 7. Let (V,+,∗ , ε, (fα)α∈A) be a quasi-module over
a pseudo-nearring (A;⊕, ◦,⋆ , η) and α ∈ A, u ∈ V . Then we have:

(a) α⋆u = (αu)∗ = αu∗;

(b) −(αu) = (−α)u = α(−u);

(c) αu = ε⇒ [α = η or u = ε].

Proof. Let α ∈ A, u ∈ V. Then

α⋆u = (α⊕ η)u = αu+ ηu = αu+ ε = (αu)∗ =

αu+ αε = α(u+ ε) = αu∗.

The rest of the proof is standard.

Denote

F(k,l,m,n,α)(x) = f(k,l,m,n)(x) + αx,

where f(k,l,m,n)(x) is defined as in Section 2, α ∈ A, x ∈ V .



138 Pseudo-nearrings and quasi-modules over them

Theorem 4. Every unary term operation in a quasi-module
(V,+,∗ , ε, (fα)α∈A) over a pseudo-nearring (A,⊕, ◦,⋆ , η) is of the form
±F(k,l,m,n,α)(x).

Proof. The proof is by induction with respect of the complexity of oper-
ations. We first observe that the projection has the required form:

e11(x) = x = (x+ ε) + ηx = F(1,0,0,0,η)(x).

The set of all operations of the form ±F(k,l,m,n,α)(x) is closed under
the quasi-module operations. Indeed, by Propositions 3(b) and 7(b), we
conclude that

−F(k,l,m,n,α)(x) = −f(k,l,m,n)(x) + (−α)x.

Taking into account Proposition 1(b), we get

F(k1,l1,m1,n1,α1)(x) + F(k2,l2,m2,n2,α2)(x) =

[f(k1,l1,m1,n1)(x) + f(k2,l2,m2,n2)(x)] + (α1 + α2)x.

From Proposition 7(a), it follows that

F ∗
(k,l,m,n,α)(x) = f∗(k,l,m,n)(x) + α⋆x.

Now, we verify that

βF(k,l,m,n,α)(x) = β[f(k,l,m,n)(x) + αx] =

β(g(k,l)(x) + g(m,n)(x− x∗)) + (βα)x =

(βg(k,l)(x) + βg(m,n)(x− x∗)) + (βα)x.

By parts (i) and (ii) of the quasi-module definition, and Proposition
7(a), we have

βg(k,l)(x) = β[. . . (xi1 + xi2) + . . .) + xil) + . . .) + xik ] =

(. . . (βxi1 + βxi2) + . . .) + βxil) + . . .) + βxik =

(. . . (βi1x+ βi2x) + . . .) + βilx) + . . .) + βikx =

[(. . . (βi1 + βi2) + . . .) + βil) + . . .) + βik ]x = g(k,l)(β)x.

And also βg(m,n)(x− x∗) = g(m,n)(β)(x− x∗) = [g(m,n)(β) − g∗(m,n)(β)]x.

Here, we use similar notations for term operations g(k,l)(x) in a quasi-
module as for term operations g(k,l)(β) in a pseudo-nearring.

Finally, we deduce that

βF(k,l,m,n,α)(x) = [g(k,l)(β)x+ (g(m,n)(β) − g∗(m,n)(β))x] + (βα)x =

[(g(k,l)(β) + (g(m,n)(β) − g∗(m,n)(β))) + (βα)]x = F(0,0,0,0,γ)(x),

where γ = [(g(k,l)(β) + (g(m,n)(β) − g∗(m,n)(β))) + (βα)]∗.
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In the next paper we will use the obtained results, especially the
description of term operations in ∗-associative quasigroups and quasi-
modules over pseudo-nearrings, for the description of independent sets
(in the sense of Marczewski; see [8]) in the above algebras.
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Opole, Poland
E-Mail: ach@polo.po.opole.pl

Kazimierz G lazek Institute of Mathematics, University of
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