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A system of functional differential equations with delay dz/dt = Z�t� zt�, where
Z is the vector-valued functional is considered. It is supposed that this system has a
zero solution z = 0. Definitions of its partial stability, partial asymptotical stability,
and partial equiasymptotical stability are given. Theorems on the partial equiasymp-
totical stability are formulated and proved.  2002 Elsevier Science (USA)
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1. INTRODUCTION

Let t ∈ R+ = �0�∞�� x = �x1� 	 	 	 � xn� ∈ Rn, 	x	 =
√
�x1�2 + · · · + �xn�2,

y = �y1� 	 	 	 � ym�, 	y	 =
√
�y1�2 + · · · + �ym�2� z = �x� y� = �z1� 	 	 	 � zn+m� ∈

Rn+m. For a given h > 0, C denotes the space of continuous functions map-
ping �−h� 0� into Rn+m. Let ϕ = �ϕ1� ϕ2� 	 	 	 � ϕn+m� = �ψ�λ� ∈ C, where
ψ = �ψ1� 	 	 	 � ψn�� λ = �λ1� 	 	 	 � λm�. Denote


ψ
 = sup�	ψi�θ�	 under − h ≤ θ ≤ 0� 1 ≤ i ≤ n��

λ
 = sup�	λj�θ�	 under − h ≤ θ ≤ 0� 1 ≤ j ≤ m��

ϕ
 = max�
ψ
� 
λ
��
BH = �ϕ ∈ C � 
ϕ
 ≤ H��
CH = �ϕ ∈ C � 
ψ
 ≤ H� 
λ
 < +∞�	

If z is a continuous function of u defined on −h ≤ u < A�A > 0, and if
t is a fixed number satisfying 0 ≤ t < A, then zt denotes the restriction of z
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to the segment �t − h� t� so that zt = �z1
t � 	 	 	 � z

n+m
t � = �xt � yt� is an element

of C defined by zt�θ� = z�t + θ� for −h ≤ θ ≤ 0.
Consider a system of functional differential equations

dz

dt
= Z�t� zt�	 (1.1)

In this system dz/dt denotes the right-hand derivative of z at t, t is
time, and Z�t� ϕ� = �X�t� ϕ�� Y �t� ϕ�� ∈ Rn+m is defined on R+ ×CH ; X ∈
Rn�Y ∈ Rm�Z�t� 0� ≡ 0.

According to T. Burton [4], we denote by z�t0� ϕ� = �x�t0� ϕ�� y�t0� ϕ�� a
solution of (1.1) with initial condition ϕ ∈ CH , where zt0�t0� ϕ� = ϕ and we
denote by z�t� t0� ϕ� the value of z�t0� ϕ� at t and zt�t0� ϕ� = z�t + θ� t0� ϕ�,
−h ≤ θ ≤ 0.

It is assumed that the vector-valued functional Z�t� ϕ� is continuous on
�0�∞� × CH so that a solution will exist for each continuous initial condi-
tion. We suppose that each solution z�t0� ϕ� is defined for those t ≥ t0 that

xt�t0� ϕ�
 < H.

Let V �t� ϕ� be a continuous functional defined for t ≥ 0, ϕ ∈ CH . The
upper right-hand derivative of V along solutions of (1.1) is defined to be
[4, 8, 10, 11]

V̇ �t� zt�t0� ϕ�� =
dV �t� zt�t0� ϕ��

dt

= lim
�t→+0

�V �t + �t� zt+�t�t0� ϕ�� − V �t� zt�t0� ϕ���
1
�t

	

If V satisfies a Lipschitz condition in the second argument, then this limit
is uniquely determined.

In [15, 16, 18] the partial stability results were obtained for ordinary
differential equations. The goal of this paper is to prove analogous results
for functional differential equations (1.1).

2. DEFINITIONS AND PRELIMINARY RESULTS

Definition 2.1. The trivial solution

z�t� ≡ 0 (2.1)

of system (1.1) is called partially stable with respect to x (x-stable) if for
every ε > 0 and t0 ∈ R+ there exists δ = δ�ε� t0� > 0 such that inequality
	x�t� t0� ϕ�	 < ε holds for t ≥ t0, if ϕ ∈ Bδ.

Definition 2.2. If δ does not depend on t0 in Definition 2.1 (i.e., δ =
δ�ε�), then solution (2.1) is called partially uniformly stable with respect to
x (or uniformly x-stable).
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We shall consider various kinds of attraction by analogy to ordinary dif-
ferential equations [13].

Definition 2.3. Solution (2.1) of Eqs. (1.1) is called partially attractive
with respect to x (or x-attractive), if for every t0 ∈ R+ there exists η =
η�t0� > 0 and for every ε > 0 and ϕ ∈ Bη there exists σ = σ�ε� t0� ϕ� > 0
such that 	x�t� t0� ϕ�	 < ε for any t ≥ t0 + σ . In this case we shall say that
the domain of x-attraction at t0 contains the set Bη.

Definition 2.4. Solution (2.1) of system (1.1) is called x-equiattractive
(or equiattractive with respect to variable x), if for every t0 ≥ 0 there exists
η = η�t0� > 0, and for any ε > 0 there is σ = σ�ε� t0� > 0 such that
	x�t� t0� ϕ�	 < ε for all ϕ ∈ Bη and t ≥ t0 + σ .

Definition 2.5. The zero solution of Eqs. (1.1) is called uniformly x-
attractive if for some η > 0 and any ε > 0 there exists σ = σ�ε� > 0 such
that 	x�t� t0� ϕ�	 < ε for all ϕ ∈ Bη� t0 ≥ 0, and t ≥ t0 + σ .

Definition 2.6. The trivial solution (2.1) of system (1.1) is called:

—asymptotically x-stable if it is x-stable and x-attractive;

—equiasymptotically x-stable (or partially equiasymptotically stable
with respect to the variable x) if it is x-stable and x-equiattractive;

—uniformly asymptotically x-stable if it is uniformly x-stable and uni-
formly x-attractive.

Definition 2.7. A functional W �ψ�, independent on t, is called x-
positive definite, if W �ψ� ≥ 0, and also W �ψ� = 0 iff 
ψ
 = 0. A functional
V �t� ϕ� is called x-positive definite, if there exists x-positive definite func-
tional W �ψ� such that V �t� ϕ� ≥ W �ψ�, V �t� 0� ≡ 0. A functional V �t� ϕ�
is called x-negative definite, if −V �t� ϕ� is an x-positive one.

By analogy to ordinary differential equations [13, 15], one can show that
V �t� ϕ� is x-positive definite iff there exists a function a ∈ K such that
V �t� ϕ� ≥ a�
ψ
�. Here K is the class of Hahn functions [7, 13].

Definition 2.8. A solution z�t0� ϕ� of functional differential equations
(1.1) is called y-bounded if 	x�t� t0� ϕ�	 < ζ < H for t ≥ t0 implies that
there exists a number Nζ > 0 such that 	y�t� t0� ϕ�	 < Nζ for t ≥ t0.

Consider some sufficient conditions of partial equiasymptotic stability.

Theorem 2.1. Let the right-hand side of system (1.1) be bounded on
R+ × CH , and any solution z�t0� ϕ� be y-bounded. If a continuous functional
V �t� ϕ�, such that V �t� 0� ≡ 0, satisfies the condition

V �t� ϕ� ≥ a�	ψ�0�	�� a ∈ K� (2.2)
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and for every t0 ≥ 0 there exists q�t0� > 0 such that ϕ ∈ Bq implies that
V �t� zt�t0� ϕ�� does not increase monotonically and tends to zero as t → +∞,
then solution (2.1) of system (1.1) is equiasymptotically x-stable.

Proof. The conditions of the theorem imply the x-stability of solu-
tion (2.1) [18]. Let us prove its x-equiattraction. Let t0 ≥ 0 be an arbitrary
initial moment of time, and 0 < ζ < H. Choose some positive η, satisfying
the condition 	x�t� t0� ϕ�	 < ζ < H if ϕ ∈ Bη and η = η�t0� < q�t0�. For
any t0 ≥ 0, ε > 0, ϕ ∈ Bη there exists T = T �ε� t0� ϕ� > 0 such that

V �t0 + T� zt0+T �t0� ϕ�� <
1
2
a−1�ε��

where a−1 is the function, inverse to the function a. The solution z�t0� ϕ�
continuously depends on initial data, and the functional V �t� ϕ� is continu-
ous in its arguments. Hence, there is a neighborhood Q�ϕ� of the function ϕ
in Bη such that for each ϕ0 ∈ Q�ϕ� the inequality V �t0 + T� zt0+T �t0� ϕ�� <
a−1�ε� is valid. Since V does not increase along solutions of system (1.1),
then

V �t� zt�t0� ϕ0�� < a−1�ε� for any t ≥ t0 + T �ε� t0� ϕ0�� ϕ0 ∈ Q�ϕ�	

From the choice of the number η one can infer that 	x�t� t0� ϕ0�	 < ζ < H,
	y�t� t0� ϕ0�	 < Nζ , and from the boundedness of Z�t� ϕ� it follows that
the set of functions �zt�t0� ϕ0�� �t ≥ t0 + h�ϕ0 ∈ Bη� is the family of uni-
formly bounded and equicontinuous functions [11]; i.e., this set is a compact
one. Thus, the compact set of functions is covered by the class of neighbor-
hoods Q�ϕ�. Hence, by the Heine–Borel theorem [14], there exists a finite
subcovering Q1�Q2� 	 	 	 �Qk of this covering with corresponding numbers

T1 = T �ε� t0� ϕ1�� T2 = T �ε� t0� ϕ2�� 	 	 	 � Tk = T �ε� t0� ϕk��

where ϕi ∈ Bη �i = 1� 	 	 	 � k� are some fixed functions. Denote σ�t0� ε� =
max�t0 + h� T1� T2� 	 	 	 � Tk�. Then V �t� zt�t0� ϕ�� < a−1�ε� for any ϕ ∈ Bη,
t ≥ t0 + σ�ε� t0�. This relation and the inequality (2.2) imply

	x�t� t0� ϕ�	 < ε under t ≥ t0 + σ�ε� t0�	

This completes the proof.

Theorem 2.2. Let system (1.1) be such that

(1) there exists a functional V �t� ϕ�, satisfying inequality (2.2), and
V �t� 0� ≡ 0,

(2) dV/dt ≤ 0,
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(3) for any ζ > 0, inequalities V �t� zt� > ζ� 
xt
 < H imply

dV �t� zt�
dt

≤ −mζ�t�� (2.3)
∫ ∞

t0

mζ�t�dt = +∞	 (2.4)

Then solution (2.1) of Eqs. (1.1) is equiasymptotically x-stable.

Proof. From the conditions of the theorem it follows that for any t0 ≥ 0,
ε > 0 there exists such δ = δ�ε� t0� > 0 that ϕ ∈ Bδ implies 	x�t� t0� ϕ�	 < ε
for all t ≥ t0. Let us show that V �t� zt�t0� ϕ�� is a monotone nonincreasing
function, and

lim
t→∞V �t� zt�t0� ϕ�� = 0 for any ϕ ∈ Bδ	 (2.5)

The condition dV/dt ≤ 0 implies a lack of increase of V �t� zt�t0� ϕ��. Let
us prove relation (2.5). Suppose that this is not true; i.e., there exists ζ > 0
such that V �t� zt�t0� ϕ�� ≥ ζ. The inequalities

V �t� zt�t0� ϕ�� ≤ V �t0� ϕ� +
∫ t

t0

dV �τ� zτ�t0� ϕ��
dτ

dτ

and (2.3) imply

0 ≤ V �t� zt�t0� ϕ�� ≤ V �t0� ϕ� −
∫ t

t0

mζ�τ�dτ	

But this inequality is not true for t large enough because of condition (2.4).
The contradiction proves relation (2.5). In view of Theorem 2.1 we conclude
solution (2.1) of system (1.1) to be equiasymptotically x-stable.

Theorem 2.3. If the functional V �t� ϕ� is such that V �t� 0� ≡ 0,

V �t� ϕ� ≥ ξ�t�a�	ψ�0�	�� a ∈ K� (2.6)

where ξ�t� is a monotonically increasing function such that ξ�0� = 1,
limt→+∞ ξ�t� = +∞, and dV/dt ≤ 0, then solution (2.1) of system (1.1) is
equiasymptotically x-stable.

Proof. Pick any ε1 ∈ �0�H�. From the partial stability of the zero solu-
tion of Eqs. (1.1) it follows that for every t0 ≥ 0 there exists δ = δ�t0� > 0
such that for any ϕ ∈ Bδ, we have 	x�t� t0� ϕ�	 < ε1 for t ≥ t0. Denote

µ�t0� = sup
ϕ∈Bδ

V �t0� ϕ�	

From inequalities dV/dt ≤ 0 and (2.6) we derive

a�	x�t� t0� ϕ�	� ≤
V �t� zt�t0� ϕ��

ξ�t� ≤ V �t0� ϕ�
ξ�t� 	 (2.7)
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For any positive ε there exists σ = σ�ε� t0� > 0 such that ξ�t� > µ�t0�
a�ε� for

all t ≥ t0 + σ . Hence, from inequalities (2.7) we get a�	x�t� t0� ϕ�	�� < a�ε�;
therefore, 	x�t� t0� ϕ�	 < ε for all ϕ ∈ Bδ� t ≥ t0 + σ�ε� t0�. This completes
the proof.

Example 2.1. Consider the system of functional differential equations

dx�t�
dt

= y�t� sin�x�t − h� + y�t − h�� − x�t�
2�t + h+ 1� �

dy�t�
dt

= −x�t� sin�x�t − h� + y�t − h���
(2.8)

which has a zero solution. Let

V = 1
2
�x2�t� + y2�t�� + �t + h+ 1�x2�t� ≥ ξ�t�a�	x�t�	��

where ξ�t� = �t + h + 1�/�h + 1�, a�	x�t�	� = �h + 1�	x�t�	2. Then dV/
dt ≡ 0. Hence, by Theorem 2.3, the zero solution of (2.8) is equiasymptot-
ically x-stable.

3. PARTIAL EQUIASYMPTOTIC STABILITY IN
ALMOST PERIODIC SYSTEMS

Definition 3.1 [1–3, 5, 6, 12, 17, 19]. A continuous function F�t�� R→
Rn+m is called almost periodic if for every ε > 0 there exists l = l�ε� > 0
such that any segment �α� α + l�� α ∈ R, contains at least one number τ
such that 	F�t + τ� − F�t�	 < ε for every t ∈ R. A number τ is called an
ε-almost period of F .

Definition 3.2 [9]. A continuous functional F�t� ϕ�� R × Cr → Rn+m

�0 < r < ∞� is called uniformly almost periodic in t if for every ε > 0 there
exists l = l�ε� r� > 0 such that any segment �α� α + l�� α ∈ R, contains at
least one number τ such that 	F�t + τ� ϕ� − F�t� ϕ�	 < ε for every t ∈ R,
ϕ ∈ Cr .

Remark. A continuous function F�t�, which satisfies Definition 3.1 is
called uniformly almost periodic in [2, 3], so Definitions 3.1 and 3.2 are
somewhat different from their corresponding definitions in [2, 3].

Lemma 3.1 [9]. Let F1�t�� 	 	 	 � FN�t�� R → Rn+m be almost periodic
functions. Then for every ε > 0 there exists l = l�ε� > 0 such that any
segment �α� α+ l�� α ∈ R, contains a number τ such that

	Fi�t + τ� − Fi�t�	 < ε� i = 1� 2� 	 	 	 �N� t ∈ R	
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We denote

CH�L� =
{
ϕ ∈ CH � 	ϕ�θ1� − ϕ�θ2�	 ≤ L	θ1 − θ2	
for each θ1� θ2 ∈ �−h� 0�} ⊂ CH	

Lemma 3.2 [9]. If the functional F�t� ϕ�� R × CH�L� → Rn+m is Lips-
chitzian in ϕ and almost periodic in t for every fixed ϕ ∈ CH�L�, then it is
uniformly almost periodic in t.

We consider the system of functional differential equations (1.1) under
the assumptions above. We also assume that the functional Z�t� ϕ� is Lip-
schitzian in ϕ and almost periodic in t for every fixed ϕ ∈ CH .

Lemma 3.3 [9]. Consider the solution z�t0� ϕ0� of system (1.1). We sup-
pose that zt�t0� ϕ0� belongs to Cr (0 < r < H) for t ≥ 0. Let �εk� be a mono-
tonically approaching zero sequence of positive numbers and �τk� a sequence
of εk-almost periods of Z�t� ϕ� ( for every εk there corresponds an εk-almost
period τk). Then the limit relation

lim
k→∞


zt∗ �t0� ϕk� − zt∗+τk�t0� ϕ0�
 = 0 (3.1)

holds, where ϕk = zt0+τk�t0� ϕ0� and t∗ is a fixed moment of time which is
more than t0 �t∗ > t0�.
Theorem 3.1. Let functional differential equations (1.1) satisfy the above

conditions; let any solution z�t0� ϕ� be y-bounded, and there exists a continu-
ous functional V �t� ϕ�� R×CH → R, which is locally Lipschitz in ϕ, such that
the following conditions are fulfilled on the set R× CH :

(i) V �t� 0� ≡ 0� a�	ψ�0�	� ≤ V �t� ϕ�, where a ∈ K;
(ii) V �t� ϕ� is almost periodic in t for each fixed ϕ ∈ CH ;

(iii) dV /dt ≤ 0, dV /dt �≡ 0 on each solution of system (1.1).

Then the solution

z = 0 (3.2)

of functional differential equations (1.1) is equiasymptotically x-stable.

Proof. From conditions (i) and (iii) it follows that solution (3.2) is x-
stable [18]. Let ε ∈ �0�H� be any positive number. Denote by t0 ∈ R the
initial moment of time. By the x-stability of the zero solution there exists
δ > 0 such that if ϕ ∈ Bδ, then zt�t0� ϕ� ∈ Cε for every t ≥ t0. Choose such
a δ > 0 and show that any solution z�t0� ϕ� with ϕ ∈ Bδ is x-equiattractive.

The function V �t� = V �t� zt�t0� ϕ�� is monotonically nonincreasing
because dV/dt ≤ 0. Hence there exists the limit

lim
t→∞V �t� = lim

t→∞V �t� zt�t0� ϕ�� = V0�
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and it is easy to see that V �t� zt�t0� ϕ�� ≥ V0 ≥ 0 for t ∈ �t0�∞�. Let us
show that V0 = 0. Suppose that this is not true; i.e., assume that V0 > 0.

Consider some monotonically approaching zero sequence �εk� of pos-
itive numbers, where ε1 is sufficiently small. By Lemma 3.2 for every εi
there exists a sequence of εi-almost periods τi� 1� τi� 2� 	 	 	 � τi� n� 	 	 	 → ∞
for functionals Z�t� ϕ� and V �t� ϕ� that inequalities

	V �t + τi� n� ϕ� − V �t� ϕ�	 < εi�

	Z�t + τi� n� ϕ� − Z�t� ϕ�	 < εi

hold for each t ∈ R, ϕ ∈ CH�L�. Note that, if t is large enough, then zt ∈
CH�L� [11]. Without loss of generality one can suppose τi� n < τi+1� n for
every i� n. Designate τk = τk�k.

Consider the sequence of functions ϕk = zt0+τk�t0� ϕ� �k = 1� 2� 	 	 	�.
It is a bounded sequence of equicontinuous functions because ϕk ∈ Cε,
	y�t� t0� ϕ�	 < Nε; therefore there is a limit function ϕ∗ of this sequence.
Without loss of generality one can assume the sequence ϕk itself converges
to ϕ∗. Because of continuity and almost periodicity of the functional V �t� ϕ�
we obtain

V �t0� ϕ∗� = lim
n→∞V �t0� ϕn�

= lim
k→∞

lim
n→∞V �t0 + τk� ϕn�

= lim
n→∞V �t0 + τn� ϕn�

= lim
n→∞V �t0 + τn� zt0+τn�t0� ϕ0�� = V0	

Now consider the solution z�t0� ϕ∗�. From condition (iii) of the theo-
rem, the existence of such moment of time t∗ �t∗ > t0� follows when the
inequality

V �t∗� zt∗ �t0� ϕ∗�� = V1 < V0

holds.
Solutions of functional differential equations (1.1) are continuous in ini-

tial data, so one can write

lim
k→∞


zt∗ �t0� ϕk� − zt∗ �t0� ϕ∗�
 = 0

because

lim
k→∞


ϕk − ϕ∗
 = 0	

Hence it follows

lim
k→∞

V �t∗� zt∗ �t0� ϕk�� = V1	 (3.3)
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Using the uniform almost periodicity property of Z�t� ϕ� and limit rela-
tion (3.1), we obtain the inequality


zt∗ �t0� ϕk� − zt∗+τk�t0� ϕ0�
 ≤ γk� (3.4)

where γk → 0 as k → ∞. Because of uniform almost periodicity property
of V �t� ϕ� we have

	V �t∗� ϕ� − V �t∗ + τk� ϕ�	 < εk (3.5)

for every ϕ ∈ CH and from conditions (3.3) and (3.4) it follows that

	V �t∗� zt∗+τk�t0� ϕ�� − V1	 < ηk� (3.6)

where ηk → 0 as k → ∞.
From (3.5) we obtain

	V �t∗� zt∗+τk�t0� ϕ�� − V �t∗ + τk� zt∗+τk�t0� ϕ��	 < εk	 (3.7)

From (3.6) and (3.7) we have

	V �t∗ + τk� zt∗+τk�t0� ϕ�� − V1	 < ηk + εk� (3.8)

where ηk + εk → 0 as k → ∞.
On the other hand

lim
k→∞

V �t∗ + τk� zt∗+τk�t0� ϕ�� = V0	 (3.9)

The relations (3.8) and (3.9) are in contradiction to the inequality V1 < V0.
The obtained contradiction proves that V0 = 0.

Thus, we have proved that for any t0 ∈ �0�∞� there exists a δ = δ�t0� >
0, such that ϕ ∈ Bδ implies that V �t� zt�t0� ϕ�� is monotonically nonincreas-
ing and limt→∞ V �t� zt�t0� ϕ�� = 0. Hence, from Theorem 2.1 it follows that
solution (3.2) of functional differential equations (1.1) is equiasymptotically
x-stable. The proof is complete.

Example 3.1. Consider the nonlinear system of functional differential
equations

dx�t�
dt

= −f �t� xt� yt�y�t� + �sin2 t + sin2 πt − 4�x3�t� + 4x2�t�x�t − h�

−6x�t�x2�t − h� + 4x3�t − h�� (3.10)

dy�t�
dt

= f �t� xt� yt�x�t��
where f �t� ψ� λ� is a continuous bounded functional, which is almost peri-
odic in t for any fixed functions ψ and λ. This system has a zero solution

x�t� ≡ 0� y�t� ≡ 0	 (3.11)
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The derivative of the x-positive definite functional

V = 1
2
�x2�t� + y2�t�� +

∫ t

t−h
x4�s�ds

along the solutions of (3.10) is

dV

dt
= �sin2 t + sin2 πt − 4�x4�t� + 4x3�t�x�t − h� − 6x2�t�x2�t − h�

+ 4x�t�x3�t − h� + x4�t� − x4�t − h�
= −�x�t� − x�t − h��2 + �sin2 t + sin2 πt − 2�x4�t�	

This derivative is not negative definite, but it is negative for any fixed t
for every nonzero solution of Eqs. (3.10). Therefore, by Theorem 3.1, zero
solution (3.11) of system (3.10) is equiasymptotically x-stable.

4. EQUIASYMPTOTICAL STABILITY CRITERIA
WITH TWO FUNCTIONS

Theorem 4.1. Let there exist continuous functionals V �t� ϕ� and W �t� ϕ�
satisfying the following conditions:

(i) for every t0 ∈ R+, there exists � = ��t0�, such that for each ϕ ∈ B�

there is a constant A = A�t0� ϕ� > 0 for which

−A ≤ V �t� zt�t0� ϕ�� for all t ≥ t0� (4.1)

(ii) dV �t�zt�
dt

≤ −W �t� zt�� W �t� 0� ≡ 0, and W �t� ϕ� ≥ c�	�ψ�0�	�,
c ∈ K;

(iii) dW �t�zt�
dt

≤ 0.

Then solution (2.1) of system (1.1) is equiasymptotically x-stable.

Proof. The functional W �t� ϕ� is x-positive definite, and its derivative
is nonpositive along solutions of system (1.1), so solution (2.1) is x-
stable [18]. Hence, for every t0 ∈ R+ there exists δ = δ�t0� �0 < δ ≤ ��,
such that ϕ ∈ Bδ implies 	x�t� t0� ϕ�	 < H for all t ≥ t0. Condition (iii)
of the theorem implies that the function W �t� = W �t� zt�t0� ϕ�� does not
increase. Show that

lim
t→∞W �t� = 0� (4.2)

if ϕ ∈ Bδ. Assume the opposite: let W �t� ≥ l > 0 for all t ≥ t0. Hence,
V̇ �t� zt�t0� ϕ�� ≤ −l for t ≥ t0, and from (4.1) we get

−A ≤ V �t� zt�t0� ϕ�� ≤ V �t0� ϕ� − l�t − t0��
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which is impossible for sufficiently large t. This contradiction proves
limit relation (4.2). From Theorem 2.1 it follows that solution (2.1) of
system (1.1) is equiasymptotically x-stable.

In this particular case, when V̇ = −W , we have the following corollary.

Corollary 4.1. If there exists a functional V �t� ϕ� satisfying condition (i)
of Theorem 4.1 and conditions

(ii) V̇ �t� 0� ≡ 0� V̇ �t� ϕ� ≤ −c�	ψ�0�	�� c ∈ K�
(iii) V̈ �t� ϕ� ≥ 0, then solution (2.1) of Eqs. (1.1) is equiasymptotically

x-stable.

Let V �t� ϕ� and W �t� ϕ� be continuous functionals on the set R+ × CH .
Suppose that V satisfies Lipschitz condition in t and ψ� 	V �t1� ϕ� −
V �t2� ϕ�	 ≤ L	t1 − t2	, 	V �t� ϕ1� − V �t� ϕ2�	 ≤ L
ψ1 − ψ2
.

Definition 4.1. A derivative dW
dt

= dW �t�zt�t0�ϕ��
dt

satisfies condition (B) if
there exists q > 0 �q < H�, such that for any sufficiently small α �α < q�
there are a positive number r = r�α� and a continuous function ξα�t�, that
for any t ∈ R+

ξα�t� < 0�
∫ +∞

t
ξα�s�ds = −∞� (4.3)

and the inequality dW/dt ≤ ξα�t� holds on G, where

G = �ϕ ∈ CH � 
ψ
 < q� V �t� ϕ� > α� dV/dt > −r�	
Theorem 4.2. Let the functional X�t� ϕ� in system (1.1) be bounded in

CH�	X�t� ϕ�	 < M�. If there exist continuous functionals V �t� ϕ� and W �t� ϕ�
satisfying the following conditions:

(1) V �t� 0� ≡ 0� V �t� ϕ� ≥ a�	ψ�0�	�� a ∈ K;
(2) dV/dt ≤ 0;
(3) 	W �t� ϕ�	 < N < +∞;
(4) dW/dt satisfies condition (B),

then solution (2.1) of system (1.1) is equiasymptotically x-stable.

Proof. A functional V is x-positive definite, so solution (2.1) of Eqs. (1.1)
is x-stable. Let us show that it is equiasymptotically x-stable. Choose arbi-
trary positive q �0 < q < H�.

For every t0 ∈ R+ there exists δ = δ�t0� q�, such that for any t ≥ t0� ϕ ∈
Bδ the inequality 
xt�t0� ϕ�
 < q is valid. Since q ∈ �0�H� is fixed, then
δ depends only on t0; i.e., δ = δ�t0�. Consider the trajectory z�t0� ϕ�,
where ϕ ∈ Bδ. We choose δ in such way that zt�t0� ϕ� ∈ Cq for all t ≥ t0.
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From the condition (2) of the theorem, it follows that the function V �t� =
V �t� zt�t0� ϕ�� is monotonically nonincreasing. Let us show that

lim
t→∞V �t� = 0	 (4.4)

If (4.4) holds, then in view of Theorem 2.1 we derive that solution (2.1) is
equiasymptotically x-stable.

Suppose that (4.4) is false; i.e., there exists α > 0, such that

V �t� = V �t� zt�t0� ϕ�� ≥ α for t ≥ t0	 (4.5)

Let us state some properties of the solution z�t0� ϕ�.
Property 1. For any t1 and t2 the conditions V �t1� zt1�t0� ϕ�� = r/2,

V �t2� zt2�t0� ϕ� = r imply

	t1 − t2	 ≥
r

2L�1 +M� 	 (4.6)

In reality,
r

2
= 	V �t1� zt1� − V �t2� zt2�	
≤ 	V �t1� zt1� − V �t2� zt1�	 + 	V �t2� zt1� − V �t2� zt2�	
≤ L	t1 − t2	 + L
xt1 − xt2
	 (4.7)

By the finite increments formula, for any i = 1� 	 	 	 � n and t1� t2 we have

	xi�t2 + θ� − xi�t1 + θ�	 =
∣∣∣∣dxi�t∗ + θ�

dt

∣∣∣∣	t2 − t1	 ≤ M	t2 − t1		 (4.8)

Combining (4.7) and (4.8), we get r/2 ≤ L�1 +M�	t1 − t2	. This inequality
implies (4.6).

Property 2. The set G does not include zt for all t ≥ t0.
Let zτ ∈ G. Assume that zt ∈ G for all t > τ. For t > τ the inequalities

W �t� zt� −W �τ� zτ� ≤
∫ t

τ
Ẇ �s� zs�ds ≤

∫ t

τ
ξα�s�ds (4.9)

are valid. From relations (4.3) and (4.9) we get limt→+∞W �t� zt� = −∞,
which is in contradiction to the boundness of the functional W �t� ϕ�.

Property 3. If conditions 
xτ
 < q, V̇ �τ� zτ� ≤ −r/2 hold for τ ≥ t0,
then the inequality

V �τ1� zτ1
� < V �τ� zτ� −ω�α�� (4.10)

where ω�α� = r2�α�
4L�M+1� , is valid for a moment τ1, such that V̇ �τ1� zτ1

� = −r.
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In fact, under the above conditions, there is a moment of time τ2 �τ <
τ2 < τ1� such that V̇ �τ2� zτ2

� = −r/2, and for all t ∈ �τ2� τ1� we have −r ≤
V̇ �t� zt� ≤ −r/2. Properties 1 and 2 imply

r

2L�M + 1� ≤ τ1 − τ2�

whence it follows

V �τ1� zτ1
� − V �τ� zτ� ≤

∫ τ2

τ
V̇ �s� zs�ds +

∫ τ1

τ2

V̇ �s� zs�ds <
∫ τ1

τ2

V̇ �s� zs�ds

< − r

2
�τ1 − τ2� ≤ − r2�α�

4L�M + 1�
= −ω�α�	

This completes the proof of Property 3.

Consider the sequence of moments of time tk = tk−1 + Tk� k =
1� 2� 	 	 	, where numbers Tk = Tk�α� t0� are defined as follows

∫ tk−1+T ∗
k

tk−1

ξα�s�ds = −�2N + 1�� Tk = max
(
T ∗
k �

r

2L�M + 1�
)
	

Property 4. The inequality

V �tk+2� ztk+2
� < V �tk� ztk� −ω (4.11)

holds for every natural number k.
If for all t ∈ �tk� tk+1� the inequality V̇ �t� zt� ≤ −r/2 holds, then

V �tk+2� ztk+2
� − V �tk� ztk� ≤

∫ tk+1

tk

V̇ �s� zs�ds ≤ −ω	

If there exists τ ∈ �tk� tk+1� such that V̇ �τ� zτ� > −r/2, then there is such
τ∗ �τ < τ∗ < tk+2�, that V̇ �τ∗� zτ∗� = −r. According to Property 3, we have

V �tk+2� ztk+2
� ≤ V �τ∗� zτ∗� ≤ V �τ� zτ� −ω ≤ V �tk� ztk� −ω	

Property 4 is proved.
From (4.11) we obtain V �t2k� z2k� ≤ V �t0� ϕ� − kω. This inequality con-

tradicts conjecture (1) for sufficiently large k. This completes the proof of
the theorem.
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