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GENERALIZED ACTION PRINCIPLES IN MECHANICS

In this paper, we begin with the Lagrangian L = T — V | the difference between the kinetic and potential
energies, by introducing some constraints, and applying the Lagrange multiplier, we obtain various forms of
generalized action principles including the Hamilton’s principle and Schwinger’s principle, and some unknown
action principles.

Introduction. We begin with the definition of the action functional as time integral
over the Lagrangian L of a dynamical system:

() = /t ® Lt (1)

Here the Lagrangian is defined as follows

1
L= é—mx’? - V(z;), o) =dz;/dt. (2)

Newton’s motion equation can be obtained from the stationary condition of the functional (1),

. av
which reads ma] + -— = 0.

Ox;

We can introduce some constraints to the action functional (1), leading to various
principles required. For example, if the total energy is a conserved quantity, i.e. T +V =
= const, which is considered as a constraint of the functional (1), then we obtain the Euler-
Maupertuis principle (principle of least action) [1]:,

t2 ta
/ (2T — const)dt — min, or / Tdt — min.

t1 t1

In this paper we will obtain Hamiltonian and other actions from the Lagrangian (2) by
introducing some constraints.
1. Hamiltonian. Now we introduce a generalized velocity |1, 2|:

oL
We consider equation (3) as a constraint of the action functional (1), accordingly the Lag-
rangian (2) can be written as follows L(x;,p;) = —2——p22 — V(z;) . By Lagrange multiplier,
m
we have the following generalized Lagrangian
1 ,
Ly(zi,pi Ni) = %{pf — V(z;) + Xi(ps — mas). (4)
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The multiplier can be readily identified, which reads

1
Y= ——p @
m

Substituting the identified multiplier into (4) results in
1 1

Ly(zi,pi) = %pf - Vi(z;) - Epi(pi — mz}) = pir; — H,
1
where H(z;,p;) is a Hamiltonian [1.2|: H(z;,p;) = 2—p12 + V(z;). Now we introduce a
m
new variable u; defined as
u; = T (6)

We consider the equation (6) as a constraint of the action functional (1), in such case, the
1 o
Lagrangian (2) can be rewritten as  L(z;,u;) = —mu? — V(x;). By Lagrange multiplier, we

2
have the following generalized Lagrangian’

1
Lo(xiyui Ay) = §muf — Vi(x;) + Ni(u; — t). (7)
The multiplier can be readily identified, which reads

Substituting the identified multiplier into (7) results in

1
Lo(zi,u;) = §mu12 — V(x;) — mu;(u; — ) = mu; — H(x;, u),

- - 1 .
where H(x;,u;) is given by H(x;,p;) = Emuf + V(zy).

2. Schwinger’s action. From the equation (8), we know that the multiplier is actually
the generalized velocity:

)\z’ = —mu; = —p;. (9)
Substituting (9) into (7), and keeping p; an independent variable, we have

1 —
L3($i, Ui,pi) = §muz2 - "’"’(l’z’) - pi(ui - l’i) = pﬂg - H(l'z', Uz”pi)’ (10)

— 1
where H(x;,u;,p;) = —imuf + V(z;) + piws.
The equation (10) is called Schwinger action [1].
By same manipulation, from the equation (5), the multiplier can be also determined as

1
A = ——p; = —u,;. So we obtain another action like Schwinger’s, which reads
m
1 2 [ ! / '
Ly(xi, piyu;) = _2mpi -V (11) - Uz’(pi - m:z:l) = mu;xT; — H(z;, Unpi),
) 1, ..
where H(z;,u;,p;) = —%pi + V() + wips -
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3. More generalized action. A more generalized action can be obtained by linear
combination of Ly (z;,u;) and Lo(z;, p;) [3, 4]:

2mpZ 2
= (pi + mu;)x; — He(zi, ui, pi),

Ls(xi,ui, pi) = Ly(2, wi) + Lo(xi,pi) = — mu? + (p; + mu;)x;, — 2V (x;) =

(11)

1 1 .
where  H(z;, u;,p;) = Q—p? + §muf + 2V (z;) .

The Euler equations can be readily obtained, which read

d OH, d oV’
dx;: —(pi i)+ == i) +25— =0,
Z o (p +8TZu )+ oz, — a (p;i + mu;) + e 0
du; : mal— —==mx, — mu; =0,
or" 1
op;: - —"=z/——p; =0
op; m

In a more general form, the equation (11) can be written as
Ls(xiy wi, pi) = aLla(xs, u;) + BL2 (24, i),

where « and 5 are constants.
Linearly combining L; (i =1,2,3,4,5), we have

5

Le(xi, uiypi) = Z oy Ly,

i=1

5
where «; are constants, and we often set Z o; = 1.

Conclusion. In this paper, we o‘btainéd1 some generalized action functionals including
known and unknown ones. As it is well known that the action principles are the foundation
of the Lagrangian mechanics and Hamiltonian mechanics, therefore, the new obtained gene-
ralized action functionals might also lead to some new kinds of mechanics. The applications
of the new obtained action functionals will be discussed in detail in author’s forthcoming
publications.
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